Search results for: Aluminum/Copper clad sheet
156 Effect of Composite Material on Damping Capacity Improvement of Cutting Tool in Machining Operation Using Taguchi Approach
Authors: S. Ghorbani, N. I. Polushin
Abstract:
Chatter vibrations, occurring during cutting process, cause vibration between the cutting tool and workpiece, which deteriorates surface roughness and reduces tool life. The purpose of this study is to investigate the influence of cutting parameters and tool construction on surface roughness and vibration in turning of aluminum alloy AA2024. A new design of cutting tool is proposed, which is filled up with epoxy granite in order to improve damping capacity of the tool. Experiments were performed at the lathe using carbide cutting insert coated with TiC and two different cutting tools made of AISI 5140 steel. Taguchi L9 orthogonal array was applied to design of experiment and to optimize cutting conditions. By the help of signal-to-noise ratio and analysis of variance the optimal cutting condition and the effect of the cutting parameters on surface roughness and vibration were determined. Effectiveness of Taguchi method was verified by confirmation test. It was revealed that new cutting tool with epoxy granite has reduced vibration and surface roughness due to high damping properties of epoxy granite in toolholder.
Keywords: ANOVA, damping capacity, surface roughness, Taguchi method, vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3063155 Design and Construction of an Impulse Current Generator for Lightning Strike Experiments
Authors: Kamran Yousefpour, Mojtaba Rostaghi-Chalaki, Jason Warden, David Wallace, Chanyeop Park
Abstract:
There has been a rising trend in using impulse current generators to investigate the lightning strike protection of materials including aluminum and composites in structures such as wind turbine blade and aircraft body. The focus of this research is to present an impulse current generator built in the High Voltage Lab at Mississippi State University. The generator is capable of producing component A and D of the natural lightning discharges in accordance with the Society of Automotive Engineers (SAE) standard, which is widely used in the aerospace industry. The generator can supply lightning impulse energy up to 400 kJ with the capability of producing impulse currents with magnitudes greater than 200 kA. The electrical circuit and physical components of an improved impulse current generator are described and several lightning strike waveforms with different amplitudes is presented for comparing with the standard waveform. The results of this study contribute to the fundamental understanding the functionality of the impulse current generators and present an impulse current generator developed at the High Voltage Lab of Mississippi State University.
Keywords: impulse current generator, lightning, society of automotive engineers, capacitor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 764154 Comparison and Analysis of Lithium Bromide-water Absorption Chillers Using Plastic Heat Transfer Tubes and Traditional Lithium Bromide-water Absorption Chillers
Authors: Xue-dong Zhang
Abstract:
There are extensive applications of lithium bromide-water absorption chillers in industry, but the heat exchangers corrosion and refrigerating capacity loss are very difficult to be solved. In this paper, an experiment was conducted by using plastic heat transfer tubes instead of copper tubes. As an example, for a lithium bromide-water absorption chiller of refrigerating capacity of 35kW, the correlative performance of the lithium bromide-water absorption chiller using plastic heat transfer tubes was compared with the traditional lithium bromide-water absorption chiller. And then the following three aspects, i.e., heat transfer area, pipe resistance, and safety strength, are analyzed. The results show that plastic heat transfer tubes can be used on lithium bromide-water absorption chillers, and its prospect is very optimistic.Keywords: Absorption chillers, Comparison and analysis, Corrosion, Lithium bromide, Plastic heat exchangers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2832153 Influence of Axial Magnetic Field on the Electrical Breakdown and Secondary Electron Emission in Plane-Parallel Plasma Discharge
Authors: Sabah I. Wais, Raghad Y. Mohammed, Sedki O. Yousif
Abstract:
The influence of axial magnetic field (B=0.48 T) on the variation of ionization efficiency coefficient h and secondary electron emission coefficient g with respect to reduced electric field E/P is studied at a new range of plane-parallel electrode spacing (0< d< 20 cm) and different nitrogen working pressure between 0.5-20 Pa. The axial magnetic field is produced from an inductive copper coil of radius 5.6 cm. The experimental data of breakdown voltage is adopted to estimate the mean Paschen curves at different working features. The secondary electron emission coefficient is calculated from the mean Paschen curve and used to determine the minimum breakdown voltage. A reduction of discharge voltage of about 25% is investigated by the applied of axial magnetic field. At high interelectrode spacing, the effect of axial magnetic field becomes more significant for the obtained values of h but it was less for the values of g.Keywords: Paschen curve, Townsend coefficient, Secondaryelectron emission, Magnetic field, Minimum breakdown voltage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2613152 Noise Depressed in a Micro Stepping Motor
Authors: Bo-Wun Huang, Jao-Hwa Kuang, J.-G. Tseng, Yan-De Wu
Abstract:
An investigation of noise in a micro stepping motor is considered to study in this article. Because of the trend towards higher precision and more and more small 3C (including Computer, Communication and Consumer Electronics) products, the micro stepping motor is frequently used to drive the micro system or the other 3C products. Unfortunately, noise in a micro stepped motor is too large to accept by the customs. To depress the noise of a micro stepped motor, the dynamic characteristics in this system must be studied. In this article, a Visual Basic (VB) computer program speed controlled micro stepped motor in a digital camera is investigated. Karman KD2300-2S non-contract eddy current displacement sensor, probe microphone, and HP 35670A analyzer are employed to analyze the dynamic characteristics of vibration and noise in a motor. The vibration and noise measurement of different type of bearings and different treatment of coils are compared. The rotating components, bearings, coil, etc. of the motor play the important roles in producing vibration and noise. It is found that the noise will be depressed about 3~4 dB and 6~7 dB, when substitutes the copper bearing with plastic one and coats the motor coil with paraffin wax, respectively.Keywords: micro motor, noise, vibration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744151 High Precision Draw Bending of Asymmetric Channel Section with Restriction Dies and Axial Tension
Authors: Y. Okude, S. Sakaki, S. Yoshihara, B. J. MacDonald
Abstract:
In recent years asymmetric cross section aluminum alloy stock has been finding increasing use in various industrial manufacturing areas such as general structures and automotive components. In these areas, components are generally required to have complex curved configuration and, as such, a bending process is required during manufacture. Undesirable deformation in bending processes such as flattening or wrinkling can easily occur when thin-walled sections are bent. Hence, a thorough understanding of the bending behavior of such sections is needed to prevent these undesirable deformations. In this study, the bending behavior of asymmetric channel section was examined using finite element analysis (FEA). Typical methods of preventing undesirable deformation, such as asymmetric laminated elastic mandrels were included in FEA model of draw bending. Additionally, axial tension was applied to prevent wrinkling. By utilizing the FE simulations effect of restriction dies and axial tension on undesirable deformation during the process was clarified.Keywords: bending, draw bending, asymmetric channel section, restriction dies, axial tension, FEA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1718150 Experimental Investigation on Effect of the Zirconium + Magnesium Coating of the Piston and Valve of the Single-Cylinder Diesel Engine to the Engine Performance and Emission
Authors: Erdinç Vural, Bülent Özdalyan, Serkan Özel
Abstract:
The four-stroke single cylinder diesel engine has been used in this study, the pistons and valves of the engine have been stabilized, the aluminum oxide (Al2O3) in different ratios has been added in the power of zirconium (ZrO2) magnesium oxide (MgO), and has been coated with the plasma spray method. The pistons and valves of the combustion chamber of the engine are coated with 5 different (ZrO2 + MgO), (ZrO2 + MgO + 25% Al2O3), (ZrO2 + MgO + 50% Al2O3), (ZrO2 + MgO + 75% Al2O3), (Al2O3) sample. The material tests have been made for each of the coated engine parts with the scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) using Cu Kα radiation surface analysis methods. The engine tests have been repeated for each sample in any electric dynamometer in full power 1600 rpm, 2000 rpm, 2400 rpm and 2800 rpm engine speeds. The material analysis and engine tests have shown that the best performance has been performed with (ZrO2 + MgO + 50% Al2O3). Thus, there is no significant change in HC and Smoke emissions, but NOx emission is increased, as the engine improves power, torque, specific fuel consumption and CO emissions in the tests made with sample A3.
Keywords: Ceramic coating, material characterization, engine performance, exhaust emissions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644149 An Approach for Coagulant Dosage Optimization Using Soft Jar Test: A Case Study of Bangkhen Water Treatment Plant
Authors: Ninlawat Phuangchoke, Waraporn Viyanon, Setta Sasananan
Abstract:
The most important process of the water treatment plant process is coagulation, which uses alum and poly aluminum chloride (PACL). Therefore, determining the dosage of alum and PACL is the most important factor to be prescribed. This research applies an artificial neural network (ANN), which uses the Levenberg–Marquardt algorithm to create a mathematical model (Soft Jar Test) for chemical dose prediction, as used for coagulation, such as alum and PACL, with input data consisting of turbidity, pH, alkalinity, conductivity, and, oxygen consumption (OC) of the Bangkhen Water Treatment Plant (BKWTP), under the authority of the Metropolitan Waterworks Authority of Thailand. The data were collected from 1 January 2019 to 31 December 2019 in order to cover the changing seasons of Thailand. The input data of ANN are divided into three groups: training set, test set, and validation set. The coefficient of determination and the mean absolute errors of the alum model are 0.73, 3.18 and the PACL model are 0.59, 3.21, respectively.
Keywords: Soft jar test, jar test, water treatment plant process, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 662148 The Heat and Mass Transfer Phenomena in Vacuum Membrane Distillation for Desalination
Authors: Bhausaheb L. Pangarkar, M. G. Sane, Saroj B. Parjane, Rajendra M. Abhang, Mahendra Guddad
Abstract:
Vacuum membrane distillation (VMD) process can be used for water purification or the desalination of salt water. The process simply consists of a flat sheet hydrophobic micro porous PTFE membrane and diaphragm vacuum pump without a condenser for the water recovery or trap. The feed was used aqueous NaCl solution. The VMD experiments were performed to evaluate the heat and mass transfer coefficient of the boundary layer in a membrane module. The only operating parameters are feed inlet temperature, and feed flow rate were investigated. The permeate flux was strongly affected by the feed inlet temperature, feed flow rate, and boundary layer heat transfer coefficient. Since lowering the temperature polarization coefficient is essential enhance the process performance considerable and maximizing the heat transfer coefficient for maximizes the mass flux of distillate water. In this paper, the results of VMD experiments are used to measure the boundary layer heat transfer coefficient, and the experimental results are used to reevaluate the empirical constants in the Dittus- Boelter equation.Keywords: Desalination, heat and mass transfer coefficient, temperature polarization, membrane distillation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2572147 Effects of Silicon Oxide Filler Material and Fibre Orientation on Erosive Wear of GF/EP Composites
Authors: M. Bagci, H. Imrek, Omari M. Khalfan
Abstract:
Materials added to the matrix help improving operating properties of a composite. This experimental study has targeted to investigate this aim where Silicon Oxide particles were added to glass fibre and epoxy resin at an amount of 15% to the main material to obtain a sort of new composite material. Erosive wear behavior of epoxy-resin dipped composite materials reinforced with glass fibre and Silicon Oxide under three different impingement angles (30°, 60° and 90°), three different impact velocities (23, 34 and 53 m/s), two different angular Aluminum abrasive particle sizes (approximately 200 and 400 μm) and the fibre orientation of 45° (45/-45) were investigated. In the test results, erosion rates were obtained as functions of impingement angles, impact velocities, particle sizes and fibre orientation. Moreover, materials with addition of Silicon Oxide filler material exhibited lower wear as compared to neat materials with no added filler material. In addition, SEM views showing worn out surfaces of the test specimens were scrutinized.
Keywords: Erosive wear, fibre orientation, GF/EP, silicon oxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2560146 Electric Field Effect on the Rise of Single Bubbles during Boiling
Authors: N. Masoudnia, M. Fatahi
Abstract:
An experimental study of saturated pool boiling on a single artificial nucleation site without and with the application of an electric field on the boiling surface has been conducted. N-pentane is boiling on a copper surface and is recorded with a high speed camera providing high quality pictures and movies. The accuracy of the visualization allowed establishing an experimental bubble growth law from a large number of experiments. This law shows that the evaporation rate is decreasing during the bubble growth, and underlines the importance of liquid motion induced by the preceding bubble. Bubble rise is therefore studied: once detached, bubbles accelerate vertically until reaching a maximum velocity in good agreement with a correlation from literature. The bubbles then turn to another direction. The effect of applying an electric field on the boiling surface in finally studied. In addition to changes of the bubble shape, changes are also shown in the liquid plume and the convective structures above the surface. Lower maximum rising velocities were measured in the presence of electric fields, especially with a negative polarity.
Keywords: Single bubbles, electric field, boiling, effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1197145 The Removal of Cu (II) Ions from Aqueous Solutions on Synthetic Zeolite NaA
Authors: Dimitar Georgiev, Bogdan Bogdanov, Yancho Hristov, Irena Markovska
Abstract:
In this study the adsorption of Cu (II) ions from aqueous solutions on synthetic zeolite NaA was evaluated. The effect of solution temperature and the determination of the kinetic parameters of adsorption of Cu(II) from aqueous solution on zeolite NaA is important in understanding the adsorption mechanism. Variables of the system include adsorption time, temperature (293- 328K), initial solution concentration and pH for the system. The sorption kinetics of the copper ions were found to be strongly dependent on pH (the optimum pH 3-5), solute ion concentration and temperature (293 – 328 K). It was found, the pseudo-second-order model was the best choice among all the kinetic models to describe the adsorption behavior of Cu(II) onto ziolite NaA, suggesting that the adsorption mechanism might be a chemisorptions process The activation energy of adsorption (Ea) was determined as Cu(II) 13.5 kJ mol-1. The low value of Ea shows that Cu(II) adsorption process by zeolite NaA may be an activated chemical adsorption. The thermodynamic parameters (ΔG0, ΔH0, and ΔS0) were also determined from the temperature dependence. The results show that the process of adsorption Cu(II) is spontaneous and endothermic process and rise in temperature favors the adsorption.
Keywords: Zeolite NaA, adsorption, adsorption capacity, kinetic sorption
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2207144 Finite Element Application to Estimate Inservice Material Properties using Miniature Specimen
Authors: G. Partheepan, D.K. Sehgal, R.K. Pandey
Abstract:
This paper presents a method for determining the uniaxial tensile properties such as Young-s modulus, yield strength and the flow behaviour of a material in a virtually non-destructive manner. To achieve this, a new dumb-bell shaped miniature specimen has been designed. This helps in avoiding the removal of large size material samples from the in-service component for the evaluation of current material properties. The proposed miniature specimen has an advantage in finite element modelling with respect to computational time and memory space. Test fixtures have been developed to enable the tension tests on the miniature specimen in a testing machine. The studies have been conducted in a chromium (H11) steel and an aluminum alloy (AR66). The output from the miniature test viz. load-elongation diagram is obtained and the finite element simulation of the test is carried out using a 2D plane stress analysis. The results are compared with the experimental results. It is observed that the results from the finite element simulation corroborate well with the miniature test results. The approach seems to have potential to predict the mechanical properties of the materials, which could be used in remaining life estimation of the various in-service structures.Keywords: ABAQUS, finite element, miniature test, tensileproperties
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728143 Hydrogenation of CO2 to Methanol over Copper-Zinc Oxide-Based Catalyst
Authors: S. F. H. Tasfy, N. A. M. Zabidi, M. S. Shaharun
Abstract:
Carbon dioxide is highly thermochemical stable molecules where it is very difficult to activate the molecule and achieve higher catalytic conversion into alcohols or other hydrocarbon compounds. In this paper, series of the bimetallic Cu/ZnO-based catalyst supported by SBA-15 were systematically prepared via impregnation technique with different Cu: Zn ratio for hydrogenation of CO2 to methanol. The synthesized catalysts were characterized by transmission electron microscopy (TEM), temperature programmed desorption, reduction, oxidation and pulse chemisorption (TPDRO), and surface area determination was also performed. All catalysts were tested with respect to the hydrogenation of CO2 to methanol in microactivity fixed-bed reactor at 250oC, 2.25 MPa, and H2/CO2 ratio of 3. The results demonstrate that the catalytic structure, activity, and methanol selectivity was strongly affected by the ratio between Cu: Zn, Where higher catalytic activity of 14 % and methanol selectivity of 92 % was obtained over Cu/ZnO-SBA-15 catalyst with Cu:Zn ratio of 7:3 wt. %. Comparing with the single catalyst, the synergetic between Cu and Zn provides additional active sites to adsorb more H2 and CO2 and accelerate the CO2 conversion, resulting in higher methanol production under mild reaction conditions.
Keywords: Hydrogenation of carbon dioxide, methanol synthesis, Cu/ZnO-based catalyst, mesoporous silica (SBA-15), and metal ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 994142 A Review of Current Trends in Thin Film Solar Cell Technologies
Authors: Adekanmi M. Adeyinka, Onyedika V. Mbelu, Yaqub B. Adediji, Daniel I. Yahya
Abstract:
Growing energy demand and the world's dependence on fossil fuel-based energy systems causing greenhouse gas emissions and climate change have intensified the need for utilizing renewable energy sources. Solar energy can be converted directly into electricity via photovoltaic solar cells. Thin-film solar cells are preferred due to their cost effectiveness, less material consumption, flexibility, and rising trend in efficiency. In this paper, Gallium arsenide (GaAs), Amorphous silicon (a-Si), Copper Indium Gallium Selenide (CIGS), and Cadmium Telluride (CdTe) thin film solar cells are reviewed. The evolution, structures, fabrication methods, stability and degradation methods, and trend in the efficiency of the thin-film solar cells over the years are discussed in detail. Also, a comparison of the thin-film solar cells reviewed with crystalline silicon in terms of physical properties and performance is made.
Keywords: Climate change, conversion efficiency, solar energy, thin-film solar cell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1189141 Improved Small-Signal Characteristics of Infrared 850 nm Top-Emitting Vertical-Cavity Lasers
Authors: Ahmad Al-Omari, Osama Khreis, Ahmad M. K. Dagamseh, Abdullah Ababneh, Kevin Lear
Abstract:
High-speed infrared vertical-cavity surface-emitting laser diodes (VCSELs) with Cu-plated heat sinks were fabricated and tested. VCSELs with 10 mm aperture diameter and 4 mm of electroplated copper demonstrated a -3dB modulation bandwidth (f-3dB) of 14 GHz and a resonance frequency (fR) of 9.5 GHz at a bias current density (Jbias) of only 4.3 kA/cm2, which corresponds to an improved f-3dB2/Jbias ratio of 44 GHz2/kA/cm2. At higher and lower bias current densities, the f-3dB2/ Jbias ratio decreased to about 30 GHz2/kA/cm2 and 18 GHz2/kA/cm2, respectively. Examination of the analogue modulation response demonstrated that the presented VCSELs displayed a steady f-3dB/ fR ratio of 1.41±10% over the whole range of the bias current (1.3Ith to 6.2Ith). The devices also demonstrated a maximum modulation bandwidth (f-3dB max) of more than 16 GHz at a bias current less than the industrial bias current standard for reliability by 25%.Keywords: Current density, High-speed VCSELs, Modulation bandwidth, Small-Signal Characteristics, Thermal impedance, Vertical-cavity surface-emitting lasers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1289140 Effect of Different Treatments on Heavy Metal Concentration in Sugar Cane Molasses
Authors: Gomaa N. Abdel-Rahman, Nadia R. A. Nassar, Yehia A. Heikal, Mahmoud A. M. Abou-Donia, Mohamed M. Naguib, Mohamed Fadel
Abstract:
Cane molasses is used as a raw material for the production of baker’s yeast (Saccharomyces cerevisiae) in Egypt. The high levels of heavy metals in molasses cause a critical problem during fermentation and cause various kinds of technological difficulties (yield and quality of yeast become lower). The aim of the present study was to determine heavy metal concentrations (cadmium, nickel, lead, and copper) in crude and treated molasses obtained from the storage tanks of the baker’s yeast factory through four seasons. Also, the effect of crude molasses treatment by different methods (at laboratory scale) on heavy metals reduction and its comparison with factory treated molasses were conducted. The molasses samples obtained at autumn season had the highest values of all the studied heavy metals. The molasses treated by cation exchange resin then sulfuric acid had the lowest concentrations of heavy metals compared with other treatments.
Keywords: Molasses, baker’s yeast, heavy metals, treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2490139 Surface Roughness Evaluation for EDM of En31 with Cu-Cr-Ni Powder Metallurgy Tool
Authors: Amoljit S. Gill, Sanjeev Kumar
Abstract:
In this study, Electrical Discharge Machining (EDM) is used to modify the surface of high carbon steel En31 with the help of tool electrode (Copper-Chromium-Nickel) manufactured by powder metallurgy (PM) process. The effect of EDM on surface roughness during surface alloying is studied. Taguchi’s Design of experiment (DOE) and L18 orthogonal array is used to find the best level of input parameters in order to achieve high surface finish. Six input parameters are considered and their percentage contribution towards surface roughness is investigated by analysis of variances (ANOVA). Experimental results show that an hard alloyed surface (1.21% carbon, 2.14% chromium and 1.38% nickel) with surface roughness of 3.19µm can be generated using EDM with PM tool. Additionally, techniques like Scanning Electron Microscope (SEM) and Energy Dispersive Spectroscopy (EDS) are used to analyze the machined surface and EDMed layer composition, respectively. The increase in machined surface micro-hardness (101%) may be related to the formation of carbides containing chromium.
Keywords: Electrical Discharge Machining, Surface Roughness, Powder metallurgy compact tools, Taguchi DOE technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2873138 Online Graduate Students’ Perspective on Engagement in Active Learning in the United States
Authors: Ehi E. Aimiuwu
Abstract:
As of 2017, many researchers in educational journals are still wondering if students are effectively and efficiently engaged in active learning in the online learning environment. The goal of this qualitative single case study and narrative research is to explore if students are actively engaged in their online learning. Seven online students in the United States from LinkedIn and residencies were interviewed for this study. Eleven online learning techniques from research were used as a framework. Data collection tools were used for the study that included a digital audiotape, observation sheet, interview protocol, transcription, and NVivo 12 Plus qualitative software. Data analysis process, member checking, and key themes were used to reach saturation. About 85.7% of students preferred individual grading. About 71.4% of students valued professor’s interacting 2-3 times weekly, participating through posts and responses, having good internet access, and using email. Also, about 57.1% said students log in 2-3 times weekly to daily, professor’s social presence helps, regular punctuality in work submission, and prefer assessments style of research, essay, and case study. About 42.9% appreciated syllabus usefulness and professor’s expertise.Keywords: Class facilitation, course management, online teaching, online education, student engagement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 690137 Effect of Rolling Parameters on Thin Strip Profile in Cold Rolling
Authors: H. B. Tibar, Z. Y. Jiang
Abstract:
In this study, the influence of rolling process parameters such as the work roll cross angle and work roll shifting value on the strip shape and profile of aluminum have been investigated under dry conditions at a speed ratio of 1.3 using Hille 100 experimental mill. The strip profile was found to improve significantly with increase in work roll cross angle from 0o to 1o, with an associated decrease in rolling force. The effect of roll shifting (from 0 to 8mm) was not as significant as the roll cross angle. However, an increase in work roll shifting value achieved a similar decrease in rolling force as that of work roll cross angle. The effect of work roll shifting was also found to be maximum at an optimum roll speed of 0.0986 m/s for the desired thickness. Of all these parameters, the most significant effect of the strip shape profile was observed with variation of work roll cross angle. However, the rolling force can be a significantly reduced by either increasing the the work roll cross angle or work roll shifting.Keywords: Rolling speed ratio, strip shape, work roll cross angle, work roll shifting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427136 Comprehensive Characteristics of the Municipal Solid Waste Generated in the Faculty of Engineering, UKM
Authors: A. Salsabili, M.Aghajani Mir, S.Saheri, Noor Ezlin Ahmad Basri
Abstract:
The main aims in this research are to study the solid waste generation in the Faculty of Engineering and Built Environment in the UKM and at the same time to determine composition and some of the waste characteristics likewise: moisture content, density, pH and C/N ratio. For this purpose multiple campaigns were conducted to collect the wastes produced in all hostels, faculties, offices and so on, during 24th of February till 2nd of March 2009, measure and investigate them with regard to both physical and chemical characteristics leading to highlight the necessary management policies. Research locations are Faculty of Engineering and the Canteen nearby that. From the result gained, the most suitable solid waste management solution will be proposed to UKM. The average solid waste generation rate in UKM is 203.38 kg/day. The composition of solid waste generated are glass, plastic, metal, aluminum, organic and inorganic waste and others waste. From the laboratory result, the average moisture content, density, pH and C/N ratio values from the solid waste generated are 49.74%, 165.1 kg/m3, 5.3, and 7:1 respectively. Since, the food waste (organic waste) were the most dominant component, around 62% from the total waste generated hence, the most suitable solid waste management solution is composting.Keywords: Solid Waste, Waste Management, Characterizationand Composition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3595135 Binding of miR398 to mRNA of Chaperone and Superoxide Dismutase Genes in Plants
Authors: Assyl Bari, Olga Berillo, Saltanat Orazova, Anatoliy Ivashchenko
Abstract:
Among all microRNAs (miRNAs) in 12 plant species investigated in this study, only miR398 targeted the copper chaperone for superoxide dismutase (CCS). The nucleotide sequences of miRNA binding sites were located in the mRNA protein-coding sequence (CDS) and were highly homologous. These binding sites in CCS mRNA encoded a conservative GDLGTL hexapeptide. The binding sites for miR398 in the CDS of superoxide dismutase 1 mRNA encoded GDLGN pentapeptide. The conservative miR398 binding site located in the CDS of superoxide dismutase 2 mRNA encoded the GDLGNI hexapeptide. The miR398 binding site in the CDS of superoxide dismutase 3 mRNA encoded the GDLGNI or GDLGNV hexapeptide. Gene expression of the entire superoxide dismutase family in the studied plant species was regulated only by miR398. All members of the miR398 family, i.e. miR398a,b,c were connected to one site for each CuZnSOD and chaperone mRNA.
Keywords: MicroRNA, mRNA, plant, superoxide dismutase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908134 Utilization of Mustard Leaves (Brassica juncea) Powder for the Development of Cereal Based Extruded Snacks
Authors: Maya S. Rathod, Bahadur Singh Hathan
Abstract:
Mustard leaves are rich in folates, vitamin A, K and B-complex. Mustard greens are low in calories and fats and rich in dietary fiber. They are rich in potassium, manganese, iron, copper, calcium, magnesium and low in sodium. It is very rich in antioxidants and Phytonutrients. For the optimization of process variables (moisture content and mustard leave powder), the experiments were conducted according to central composite Face Centered Composite design of RSM. The mustard leaves powder was replaced with composite flour (a combination of rice, chickpea and corn in the ratio of 70:15:15). The extrudate was extruded in a twin screw extruder at a barrel temperature of 120°C. The independent variables were mustard leaves powder (2-10 %) and moisture content (12-20 %). Responses analyzed were bulk density, water solubility index, water absorption index, lateral expansion, antioxidant activity, total phenolic content, and overall acceptability. The optimum conditions obtained were 7.19 g mustard leaves powder in 100g premix having 16.8% moisture content (w.b).Keywords: Extrusion, mustard leaves powder, optimization, response surface methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2172133 Modeling of Steady State Creep in Thick-Walled Cylinders under Internal Pressure
Authors: Tejeet Singh, Ishavneet Singh
Abstract:
The present study focused on carrying out the creep analysis in an isotropic thick-walled composite cylindrical pressure vessel composed of aluminum matrix reinforced with silicon-carbide in particulate form. The creep behavior of the composite material has been described by the threshold stress based creep law. The values of stress exponent appearing in the creep law were selected as 3, 5 and 8. The constitutive equations were developed using well known von-Mises yield criteria. Models were developed to find out the distributions of creep stress and strain rate in thick-walled composite cylindrical pressure vessels under internal pressure. In order to obtain the stress distributions in the cylinder, the equilibrium equation of the continuum mechanics and the constitutive equations are solved together. It was observed that the radial stress, tangential stress and axial stress increases along with the radial distance. The cross-over was also obtained almost at the middle region of cylindrical vessel for tangential and axial stress for different values of stress exponent. The strain rates were also decreasing in nature along the entire radius.Keywords: Steady state creep, composite, cylinder, pressure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612132 Finite Element Analysis of Sheet Metal Airbending Using Hyperform LS-DYNA
Authors: Himanshu V. Gajjar, Anish H. Gandhi, Harit K. Raval
Abstract:
Air bending is one of the important metal forming processes, because of its simplicity and large field application. Accuracy of analytical and empirical models reported for the analysis of bending processes is governed by simplifying assumption and do not consider the effect of dynamic parameters. Number of researches is reported on the finite element analysis (FEA) of V-bending, Ubending, and air V-bending processes. FEA of bending is found to be very sensitive to many physical and numerical parameters. FE models must be computationally efficient for practical use. Reported work shows the 3D FEA of air bending process using Hyperform LSDYNA and its comparison with, published 3D FEA results of air bending in Ansys LS-DYNA and experimental results. Observing the planer symmetry and based on the assumption of plane strain condition, air bending problem was modeled in 2D with symmetric boundary condition in width. Stress-strain results of 2D FEA were compared with 3D FEA results and experiments. Simplification of air bending problem from 3D to 2D resulted into tremendous reduction in the solution time with only marginal effect on stressstrain results. FE model simplification by studying the problem symmetry is more efficient and practical approach for solution of more complex large dimensions slow forming processes.Keywords: Air V-bending, Finite element analysis, HyperformLS-DYNA, Planner symmetry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3208131 Evaluation of Zinc Status in the Sediments of the Kaohsiung Ocean Disposal Site, Taiwan
Authors: Chiu-Wen Chen, Chih-Feng Chen, Cheng-Di Dong
Abstract:
The distribution, enrichment, and accumulation of zinc (Zn) in the sediments of Kaohsiung Ocean Disposal Site (KODS), Taiwan were investigated. Sediment samples from two outer disposal site stations and nine disposed stations in the KODS were collected per quarterly in 2009 and characterized for Zn, aluminum, organic matter, and grain size. Results showed that the mean Zn concentrations varied from 48 mg/kg to 456 mg/kg. Results from the enrichment factor (EF) and geo-accumulation index (Igeo) analyses imply that the sediments collected from the KODS can be characterized between moderate and moderately severe degree enrichment and between none and none to medium accumulation of Zn, respectively. However, results of potential ecological risk index indicate that the sediment has low ecological potential risk. The EF, Igeo, and Zn concentrations at the disposed stations were slightly higher than those at outer disposal site. This indicated that the disposed area centers may be subjected to the disposal impaction of harbor dredged sediments.Keywords: ocean dispose; zinc; enrichment factor; potential ecological risk index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583130 Thermal Analysis of Circular Pin-fin with Rectangular Slot at the Center by Forced Convection
Authors: Kavita H. Dhanawade, Hanamant S. Dhanawade, Ajay Kashikar, Shweta Matey, Mahesh Bhadane, Sunny Sarraf
Abstract:
Extended surfaces are commonly used in practice to enhance heat transfer. Most of the engineering problems require high performance heat transfer components with light weight, volumes, accommodating shapes, costs and reliability depending on industrial applications. This paper reports an experimental analysis to investigate heat transfer enhancement by forced convection using different sizes of pin-fin with rectangular slots at the center. The cross sectional area of the oblong duct was 200 mm x 80 mm. The info utilized in performance analysis was obtained experimentally for material, aluminum at 200 Watts heat input varying velocity 1 m/s to 5 m/s. Using the Taguchi experimental design method, optimum design parameters and their levels were analysed. Nusselt number and friction factor were considered as a performance characteristic parameter. An An L9 (33) orthogonal array was designated as an experimental proposal. Optimum results were found by experimenting. It is observed that pin-fins with different slots sizes have a better impact on Nusselt Number.Keywords: Heat transfer coefficient, Nusselt Number, pin-fin, forced convection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 798129 Hydrogen Production from Dehydrogenation of Ethanol over Ag-Based Catalysts
Authors: S. Totong, K. Faungnawakij, N. Laosiripojana
Abstract:
The development of alternative energy is interesting in the present especially, hydrogen production because it is an important energy resource in the future. This paper studied the hydrogen production from catalytic dehydrogenation of ethanol through via low temperature (<500°C) reaction. Copper (Cu) and silver (Ag) supported on fumed silica (SiO2) were selected in the present work; in addition, bimetallic material; Ag-Cu supported on SiO2 was also investigated. The catalysts were prepared by the incipient wetness impregnation method and characterized via X-ray diffraction (XRD), temperature-programmed reduction (TPR)and nitrogen adsorption measurements. The catalytic dehydrogenation of ethanol was carried out in a fixed bed continuous flow reactor at atmospheric pressure. The effect of reaction temperature between 300-375°C was studied in order to maximize the hydrogen yield. It was found that Ag-Cu/SiO2 exhibited the highest hydrogen yield compared to Ag/SiO2 and Cu/SiO2 at low reaction temperature (300°C) with full ethanol conversion. The highest hydrogen yield observed was 40% and will be further used as a reactant in fuel cells to generate electricity or feedstock of chemical production.
Keywords: Catalyst, dehydrogenation, ethanol, hydrogen production.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3517128 An Investigation on Material Removal Rate of EDM Process: A Response Surface Methodology Approach
Authors: Azhar Equbal, Anoop Kumar Sood, M. Asif Equbal, M. Israr Equbal
Abstract:
In the present work response surface methodology (RSM) based central composite design (CCD) is used for analyzing the electrical discharge machining (EDM) process. For experimentation, mild steel is selected as work piece and copper is used as electrode. Three machining parameters namely current (I), spark on time (Ton) and spark off time (Toff) are selected as the input variables. The output or response chosen is material removal rate (MRR) which is to be maximized. To reduce the number of runs face centered central composite design (FCCCD) was used. ANOVA was used to determine the significance of parameter and interactions. The suitability of model is tested using Anderson darling (AD) plot. The results conclude that different parameters considered i.e. current, pulse on and pulse off time; all have dominant effect on the MRR. At last, the optimized parameter setting for maximizing MRR is found through main effect plot analysis.
Keywords: Electrical discharge machining, electrode, MRR, RSM, ANOVA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1177127 MHD Natural Convection Flow of Tangent Hyperbolic Nanofluid Past a Vertical Permeable Cone
Authors: A. Mahdy
Abstract:
In this paper, a non-similraity analysis has been presented to exhibit the two-dimensional boundary layer flow of magnetohydrodynamic (MHD) natural convection of tangent hyperbolic nanofluid nearby a vertical permeable cone in the presence of variable wall temperature impact. The mutated boundary layer nonlinear governing equations are solved numerically by the an efficient implicit finite difference procedure. For both nanofluid effective viscosity and nanofluid thermal conductivity, a number of experimental relations have been recognized. For characterizing the nanofluid, the compatible nanoparticle volume fraction model has been used. Nusselt number and skin friction coefficient are calculated for some values of Weissenberg number W, surface temperature exponent n, magnetic field parameter Mg, power law index m and Prandtl number Pr as functions of suction parameter. The rate of heat transfer from a vertical permeable cone in a regular fluid is less than that in nanofluids. A best convection has been presented by Copper nanoparticle among all the used nanoparticles.Keywords: Tangent hyperbolic nanofluid, finite difference, non-similarity, isothermal cone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 783