Improved Small-Signal Characteristics of Infrared 850 nm Top-Emitting Vertical-Cavity Lasers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33035
Improved Small-Signal Characteristics of Infrared 850 nm Top-Emitting Vertical-Cavity Lasers

Authors: Ahmad Al-Omari, Osama Khreis, Ahmad M. K. Dagamseh, Abdullah Ababneh, Kevin Lear

Abstract:

High-speed infrared vertical-cavity surface-emitting laser diodes (VCSELs) with Cu-plated heat sinks were fabricated and tested. VCSELs with 10 mm aperture diameter and 4 mm of electroplated copper demonstrated a -3dB modulation bandwidth (f-3dB) of 14 GHz and a resonance frequency (fR) of 9.5 GHz at a bias current density (Jbias) of only 4.3 kA/cm2, which corresponds to an improved f-3dB2/Jbias ratio of 44 GHz2/kA/cm2. At higher and lower bias current densities, the f-3dB2/ Jbias ratio decreased to about 30 GHz2/kA/cm2 and 18 GHz2/kA/cm2, respectively. Examination of the analogue modulation response demonstrated that the presented VCSELs displayed a steady f-3dB/ fR ratio of 1.41±10% over the whole range of the bias current (1.3Ith to 6.2Ith). The devices also demonstrated a maximum modulation bandwidth (f-3dB max) of more than 16 GHz at a bias current less than the industrial bias current standard for reliability by 25%.

Keywords: Current density, High-speed VCSELs, Modulation bandwidth, Small-Signal Characteristics, Thermal impedance, Vertical-cavity surface-emitting lasers.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1314859

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1286

References:


[1] P. K. Pepeljugoski, et al., “Low power and high density optical interconnects for future supercomputers,” in Proceedings of the Optical Fiber Communication Conference (OFC ’10), San Diego, Calif, USA, March 2010, Paper OThX2.
[2] A. N. Al-Omari, A. Ababneh, and K. L. Lear, "High-Speed Inverted-Polarity Oxide-Confined Copper-Plated 850-nm Vertical-Cavity Lasers," IEEE Journal of Selected Topics in Quantum Electronics, Vol.21, No.6, 1701408, November/December 2015.
[3] A. N. Al-Omari, G. P. Carey, S. Hallstein, J. P. Watson, G. Dang, and K. L. Lear, “Low thermal resistance high-speed top-emitting 980-nm VCSELs,” IEEE Photon. Technol. Lett., vol. 18, no. 11, pp. 1225-1227, May-Jun. 2006.
[4] C. Lin, A. Tandon, K. Djordjev, S.W. Corzine, and M. R. T. Tan, "High-Speed 985 nm Bottom-Emitting VCSEL Arrays for Chip-to-Chip Parallel Optical Interconnects", IEEE J. Sel. Top. Quantum Electron., vol. 13, no. 5, pp.1332-1339, 2007.
[5] F. Tan, M. Wu, M. Liu, M. Feng, and N. Holonyak, "850 nm Oxide-VCSEL with Low Relative Intensity Noise and 40 Gb/s Error Free Data Transmission," IEEE Photon. Technol. Lett., vol. 26, NO. 3, pp.289-292, Feb, 2014.
[6] R. A. Morgan, M. Hibbs-Brenner, J. Lehman, E. Kalweit, R. A. Walterson, T. Marta, and A. I. Akinwande, "Novel hybrid-DBR single mode controlled GaAs top-emitting VCSEL with record low voltage", Proc. 7th Ann. Mtg. LEOS’94, Extended Abstract PD1.6, 1994.
[7] A.N. Al-Omari and K. L. Lear, “High-speed 980 nm vertical cavity surface emitting lasers with a multi-oxide layer structure for single-mode operation ”, IET Optoelectron., vol.5, No.2, pp. 57-61, April 2011.
[8] R. Safaisini, J. R. Joseph, D. Louderback, X. Jin, A. N. Al-Omari, and K. L. Lear, “Temperature Dependence of 980-nm Oxide-Confined VCSEL Dynamics,” IEEE Photon. Technol. Lett. vol. 20, no.14, pp.1273- 1275, July 2008.
[9] A. Larsson, P. Westbergh, J. Gustavsson, Å. Haglund, and B. Kögel, “High-speed VCSELs for short reach communication,” Semicond. Sci. Technol. 26 (2011) 014017 (5pp)
[10] L. Y. Karachinsky, S. A. Blokhin, I. I. Novikov, N. A. Maleev, A. G. Kuzmenkov, M. A. Bobrov, J. A. Lott, N. N. Ledentsov, V. A. Shchukin, J-R. Kropp and D. Bimberg, “Reliability performance of 25 Gbit s−1 850 nm vertical-cavity surface-emitting Lasers,” Semicond. Sci. Technol. vol. 28, 065010 (8pp), 2013.
[11] A. N. Al-Omari, A.M.K. Dagamseh, O.M. Khreis, A. Ababneh, and K.L. Lear, “High-Speed Dielectric-Planarized 850nm Surface-Emitting Lasers with Metal-Plated Heat Sinks,” IEEE 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA-2016), American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates, pp.:1-4, 6-8 December 2016.
[12] J. Guenter, B. Hawkins, R. H., and G. Landry, "Reliability of VCSELs for >25Gb/s," Optical Fiber Communication Conference, Optical Society of America, San Francisco, CA, USA, p. M3G.2, March 2014.
[13] R. Huang, W. Robl, H. Ceric, T. Detzel, and G. Dehm, “Stress, sheet resistance, and microstructure evolution of electroplated Cu films during self-annealing,” IEEE Transactions on Device and Materials Reliability, vol.10, no. 1, pp. 47-54, March 2010.
[14] A. N. Al-Omari, M.S. Alias, A. Ababneh, and K. L. Lear, “Improved Performance of Top-Emitting Oxide-Confined Polyimide- Planarized 980-nm VCSELs with Copper-Plated Heatsinks,” Journal of Physics D: Applied Physics, Vol. 45, No. 50, pp. 505101 (8pp), December 2012.
[15] L.A. Coldren and S.W. Corzine, Diode Lasers and Photonic Integrated Circuits. New York: Wiley, 1995.
[16] A. N. AL-Omari and K.L. Lear, “Low current density, inverted polarity, high-speed, top-emitting 850 nm vertical-cavity surface-emitting lasers,” IET Optoelectron., vol.1, No.5, pp. 221-225, October 2007.
[17] A. N. AL-Omari, I. K. AL-Kofahi, and K. L. Lear, “Fabrication, performance and parasitic parameter extraction of 850nm high-speed vertical-cavity lasers,” Semicond. Sci. Technol., vol. 24, no.9, pp. 095024 (8pp), September 2009.
[18] J. A. Lott, A.S. Payusov, S. A. Blokhin, P. Moser, N.N. Ledentsov, and D. Bimberg, "Arrays of 850 nm photodiodes and vertical cavity surface emitting lasers for 25 to 40 Gbit/s optical interconnects," physica status solid, vol.9, no. 2, pp.290-293, 2012.
[19] T. R. Fanning, J. Wang, Z. Feng, M. Keever, C. Chu, A. Sridhara, C. Rigo, H. Yaun, T. Sale, G. Koh, R. Murty, S. Aboulhouda, L. Giovane, "28 Gbps 850 nm Oxide VCSEL Development and Manufacturing Progress at Avago", Proc. Of SPIE - The International Society for Optical Engineering, Vertical-Cavity Surface-Emitting Lasers XVIII Conf., vol.: 9001, San Francisco, CA, USA, pp. 1-11, February 2014.
[20] P. Wolf, P. Moser, G. Larisch, W. Hofmann, and D. Bimberg, “High-Speed and Temperature-Stable, Oxide-Confined 980-nm VCSELs for Optical Interconnects,” IEEE J. Sel. Top. Quantum Electron., vol. 19, no.4, pp. 1701207, July/August 2013
[21] A. N. Al-Omari and K. L. Lear, “Dielectric Characteristics of Spin-Coated Dielectric Films Using On-Wafer Parallel-Plate Capacitors at Microwave Frequencies,” IEEE Transactions on Dielectrics and Electrical Insulation. Vol. 12, No. 6, pp. 1151- 1161, December 2005.
[22] A. N. AL-Omari and K. L. Lear, “Polyimide-Planarized Vertical-Cavity Surface Emitting Lasers with 17.0 GHz Bandwidth,” IEEE Photon. Technol. Lett., vol. 16, no. 4, pp. 969–971, April 2004.