Search results for: shallow foundation.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 400

Search results for: shallow foundation.

370 Study and Evaluation of Added Stresses under Foundation due to Adjacent Structure

Authors: Alireza M. goltabar, Issa shooshpasha , Reza Shamstabar kami , Mostafa Habibi

Abstract:

Added stresses due to adjacent structure should be considered in foundation design and stress control in soil under the structure. This case is considered less than other cases in design and calculation whereas stresses in implementation are greater than analytical stress. Structure load are transmitted to earth by foundation and role of foundation is propagation of load on the continuous and half extreme soil. This act cause that, present stresses lessen to allowable strength of soil. Some researchers such as Boussinesq and westergaurd by using of some assumption studied on this issue, theorically. Target of this paper is study and evaluation of added stresses under structure due to adjacent structure. For this purpose, by using of assumption, theoric relation and numeral methods, effects of adjacent structure with 4 to 10 storeys on the main structure with 4 storeys are studied and effect of parameters and sensitivity of them are evaluated.

Keywords: stress, soil, adjacent structure, foundation, loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452
369 Free Vibration Analysis of Non-Uniform Euler Beams on Elastic Foundation via Homotopy Perturbation Method

Authors: U. Mutman, S. B. Coskun

Abstract:

In this study Homotopy Perturbation Method (HPM) is employed to investigate free vibration of an Euler beam with variable stiffness resting on an elastic foundation. HPM is an easy-to-use and very efficient technique for the solution of linear or nonlinear problems. HPM produces analytical approximate expression which is continuous in the solution domain. This work shows that HPM is a promising method for free vibration analysis of nonuniform Euler beams on elastic foundation. Several case problems have been solved by using the technique and solutions have been compared with those available in the literature.

Keywords: Homotopy Perturbation Method, Elastic Foundation, Vibration, Beam

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217
368 Numerical Study on the Effect of Spudcan Penetration on the Jacket Platform

Authors: Xiangming Ge, Bing Pan, Wei He, Hao Chen, Yong Zhou, Jiayao Wu, Weijiang Chu

Abstract:

How the extraction and penetration of spudcan affect the performance of the adjacent pile foundation supporting the jacket platform was studied in the program FLAC3D depending on a wind farm project in Bohai sea. The simulations were conducted at the end of the spudcan penetration, which induced a pockmark in the seabed. The effects of the distance between the pile foundation and the pockmark were studied. The displacement at the mudline arose when the pockmark was closer. The bearing capacity of this jacket platform with deep pile foundations has been less influenced by the process of spudcan penetration, which can induce severe stresses on the pile foundation. The induced rotation was also satisfied with the serviceability constraints.

Keywords: Offshore foundation, pile-soil interaction, spudcan penetration, FLAC3D.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 365
367 An Empirical Study of Taiwan-s Hospital Foundation Investment in Corporate Social Responsibility and Financial Performance

Authors: Hsiu-Pi Lin, Wen-Chen Huang, Hui-Fang Chen, Yan-Pin Ke

Abstract:

Corporate Social Responsibility (CSR) has become a new trend of business governance. Few research studies on CSR published in Taiwanese academia, especially for medical settings, we were interested in probing the relationship of CSR and financial performance in medical settings in Taiwan. The results illustrate that: (1) a time delay effect exists with a lag between CSR effort and its performance in the hospital foundation, (2) input into the internal domains of CSR will be helpful to improve employee productivity in the hospital foundation, and (3) input into the external domains of CSR will be helpful in improving financial performance in the hospital foundation. This study overviews CSR in the medical industry in Taiwan and the relationship of CSR and financial performance. Discussions of possible implications from the study results are applied to consult the CSR concept that will be transferred into a business strategy for the organization manager.

Keywords: Corporate Social Responsibility (CSR), financialperformance, hospital foundation,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2046
366 A Shallow Water Model for Computing Inland Inundation Due to Indonesian Tsunami 2004 Using a Moving Coastal Boundary

Authors: Md. Fazlul Karim, Mohammed Ashaque Meah, Ahmad Izani M. Ismail

Abstract:

In this paper, a two-dimensional mathematical model is developed for estimating the extent of inland inundation due to Indonesian tsunami of 2004 along the coastal belts of Peninsular Malaysia and Thailand. The model consists of the shallow water equations together with open and coastal boundary conditions. In order to route the water wave towards the land, the coastal boundary is treated as a time dependent moving boundary. For computation of tsunami inundation, the initial tsunami wave is generated in the deep ocean with the strength of the Indonesian tsunami of 2004. Several numerical experiments are carried out by changing the slope of the beach to examine the extent of inundation with slope. The simulated inundation is found to decrease with the increase of the slope of the orography. Correlation between inundation / recession and run-up are found to be directly proportional to each other.

Keywords: Inland Inundation, Shallow Water Equations, Tsunami, Moving Coastal Boundary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528
365 Seismic Fragility Curves for Shallow Circular Tunnels under Different Soil Conditions

Authors: Siti Khadijah Che Osmi, Syed Mohd Ahmad

Abstract:

This paper presents a methodology to develop fragility curves for shallow tunnels so as to describe a relationship between seismic hazard and tunnel vulnerability. Emphasis is given to the influence of surrounding soil material properties because the dynamic behaviour of the tunnel mostly depends on it. Four ground properties of soils ranging from stiff to soft soils are selected. A 3D nonlinear time history analysis is used to evaluate the seismic response of the tunnel when subjected to five real earthquake ground intensities. The derived curves show the future probabilistic performance of the tunnels based on the predicted level of damage states corresponding to the peak ground acceleration. A comparison of the obtained results with the previous literature is provided to validate the reliability of the proposed fragility curves. Results show the significant role of soil properties and input motions in evaluating the seismic performance and response of shallow tunnels.

Keywords: Fragility analysis, seismic performance, tunnel lining, vulnerability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390
364 Performance Analysis of Air-Tunnel Heat Exchanger Integrated into Raft Foundation

Authors: Chien-Yeh Hsu, Yuan-Ching Chiang, Zi-Jie Chien, Sih-Li Chen

Abstract:

In this study, a field experiment and performance analysis of air-tunnel heat exchanger integrated with water-filled raft foundation of residential building were performed. In order to obtain better performance, conventional applications of air-tunnel inevitably have high initial cost or issues about insufficient installation space. To improve the feasibility of air tunnel heat exchanger in high-density housing, an integrated system consisting of air pipes immersed in the water-filled raft foundation was presented, taking advantage of immense amount of water and relatively stable temperature in raft foundation of building. The foundation-integrated air tunnel was applied to a residential building located in Yilan, Taiwan, and its thermal performance was measured in the field experiment. The results indicated that the cooling potential of integrated system was close to the potential of soil-based EAHE at 2 m depth or deeper. An analytical model based on thermal resistance method was validated by measurement results, and was used to carry out the dimensioning of foundation-integrated air tunnel. The discrepancies between calculated value and measured data were less than 2.7%. In addition, the return-on-investment with regard to thermal performance and economics of the application was evaluated. Because the installation for air tunnel is scheduled in the building foundation construction, the utilization of integrated system spends less construction cost compare to the conventional earth-air tunnel.

Keywords: Air tunnel, ground heat exchanger, raft foundation, residential building.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419
363 Backward Erosion Piping through Vertically Layered Sands

Authors: K. Vandenboer, L. Dolphen, A. Bezuijen

Abstract:

Backward erosion piping is an important failure mechanism for water-retaining structures, a phenomenon that results in the formation of shallow pipes at the interface of a sandy or silty foundation and a cohesive cover layer. This paper studies the effect of two soil types on backward erosion piping; both in case of a homogeneous sand layer, and in a vertically layered sand sample, where the pipe is forced to subsequently grow through the different layers. Two configurations with vertical sand layers are tested; they both result in wider pipes and higher critical gradients, thereby making this an interesting topic in research on measures to prevent backward erosion piping failures.

Keywords: Backward erosion piping, embankments, physical modelling, sand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1045
362 Buildings Founded on Thermal Insulation Layer Subjected to Earthquake Load

Authors: D. Koren, V. Kilar

Abstract:

The modern energy-efficient houses are often founded on a thermal insulation (TI) layer placed under the building’s RC foundation slab.The purpose of the paper is to identify the potential problems of the buildings founded on TI layer from the seismic point of view. The two main goals of the study were to assess the seismic behavior of such buildings, and to search for the critical structural parameters affecting the response of the superstructure as well as of the extruded polystyrene (XPS) layer. As a test building a multi-storeyed RC frame structure with and without the XPS layer under the foundation slab has been investigated utilizing nonlinear dynamic (time-history) and static (pushover) analyses. The structural response has been investigated with reference to the following performance parameters: i) Building’s lateral roof displacements, ii) Edge compressive and shear strains of the XPS, iii) Horizontal accelerations of the superstructure, iv) Plastic hinge patterns of the superstructure, v) Part of the foundation in compression, and vi) Deformations of the underlying soil and vertical displacements of the foundation slab (i.e. identifying the potential uplift). The results have shown that in the case of higher and stiff structures lying on firm soil the use of XPS under the foundation slab might induce amplified structural peak responses compared to the building models without XPS under the foundation slab. The analysis has revealed that the superstructure as well as the XPS response is substantially affected by the stiffness of the foundation slab.

Keywords: Extruded polystyrene (XPS), foundation on thermal insulation, energy-efficient buildings, nonlinear seismic analysis, seismic response, soil–structure interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2229
361 Forced Vibration of a Planar Curved Beam on Pasternak Foundation

Authors: Akif Kutlu, Merve Ermis, Nihal Eratlı, Mehmet H. Omurtag

Abstract:

The objective of this study is to investigate the forced vibration analysis of a planar curved beam lying on elastic foundation by using the mixed finite element method. The finite element formulation is based on the Timoshenko beam theory. In order to solve the problems in frequency domain, the element matrices of two nodded curvilinear elements are transformed into Laplace space. The results are transformed back to the time domain by the well-known numerical Modified Durbin’s transformation algorithm. First, the presented finite element formulation is verified through the forced vibration analysis of a planar curved Timoshenko beam resting on Winkler foundation and the finite element results are compared with the results available in the literature. Then, the forced vibration analysis of a planar curved beam resting on Winkler-Pasternak foundation is conducted.

Keywords: Curved beam, dynamic analysis, elastic foundation, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1089
360 Buckling of Plates on Foundation with Different Types of Sides Support

Authors: Ali N. Suri, Ahmad A. Al-Makhlufi

Abstract:

In this paper the problem of buckling of plates on foundation of finite length and with different side support is studied.

The Finite Strip Method is used as tool for the analysis. This method uses finite strip elastic, foundation, and geometric matrices to build the assembly matrices for the whole structure, then after introducing boundary conditions at supports, the resulting reduced matrices is transformed into a standard Eigenvalue-Eigenvector problem. The solution of this problem will enable the determination of the buckling load, the associated buckling modes and the buckling wave length.

To carry out the buckling analysis starting from the elastic, foundation, and geometric stiffness matrices for each strip a computer program FORTRAN list is developed.

Since stiffness matrices are function of wave length of buckling, the computer program used an iteration procedure to find the critical buckling stress for each value of foundation modulus and for each boundary condition.

The results showed the use of elastic medium to support plates subject to axial load increase a great deal the buckling load, the results found are very close with those obtained by other analytical methods and experimental work.

The results also showed that foundation compensates the effect of the weakness of some types of constraint of side support and maximum benefit found for plate with one side simply supported the other free.

Keywords: Buckling, Finite Strip, Different Sides Support, Plates on Foundation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147
359 Evaluating of Bearing Capacity of Two Adjacent Strip Foundations Located around a Soil Slip

Authors: M. Meftahi, M. Hoseinzadeh, S. A. Naeini

Abstract:

Selection of soil bearing capacity is an important issue that should be investigated under different conditions. The bearing capacity of foundation around of soil slope is based on the active and passive forces. On the other hand, due to extension of urban structures, it is inevitable to put the foundations together. Concerning the two cases mentioned above, investigating the behavior of adjacent foundations which are constructed besides soil slope is essential. It should be noted that, according to the conditions, the bearing capacity of adjacent foundations can be less or more than mat foundations. Also, soil reinforcement increases the bearing capacity of adjacent foundations, and the amount of its increase depends on the distance between foundations. In this research, based on numerical studies, a method is presented for evaluating ultimate bearing capacity of adjacent foundations at different intervals. In the present study, the effect of foundation width, the center to center distance of adjacent foundations and reinforced soil has been investigated on the bearing capacity of adjacent foundations beside soil slope. The results indicate that, due to interference of failure surfaces created under foundation, it depends on their intervals and the ultimate bearing capacity of foundation varies.

Keywords: Adjacent foundation, bearing capacity, reinforcements, settlement, numerical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 835
358 Modeling and Simulation of Motion of an Underwater Robot Glider for Shallow-water Ocean Applications

Authors: Chen Wang, Amir Anvar

Abstract:

This paper describes the modeling and simulation of an underwater robot glider used in the shallow-water environment. We followed the Equations of motion derived by [2] and simplified dynamic Equations of motion of an underwater glider according to our underwater glider. A simulation code is built and operated in the MATLAB Simulink environment so that we can make improvements to our testing glider design. It may be also used to validate a robot glider design.

Keywords: AUV, underwater glider, robot, modeling, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2796
357 Back Analysis of Tehran Metro Tunnel Construction Using FLAC-3D

Authors: M. Mahdi, N. Shariatmadari

Abstract:

An important aspect of planning for shallow tunneling under urban areas is the determination of likely surface movements and interaction with existing structures. Back analysis of built tunnels that their settlements magnitude is available, could aid the designers to have a more accuracy in future projects.

In this paper, one single Tehran Metro Tunnel (at west of Hor square, Jang University Street) was selected. At first, surface settlements of this tunnel were measured in situ. Then this tunnel was modeled using the commercial finite deference software FLAC-3D. Finally, Results of modeling and in situ measurements compared for verification.

Keywords: Shallow Tunnel, Back Analysis, Surface Movement, Numerical Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3817
356 Effect of Shallow Groundwater Table on the Moisture Depletion Pattern in Crop Root Zone

Authors: Vijay Shankar

Abstract:

Different techniques for estimating seasonal water use from soil profile water depletion frequently do not account for flux below the root zone. Shallow water table contribution to supply crop water use may be important in arid and semi-arid regions. Development of predictive root uptake models, under influence of shallow water table makes it possible for planners to incorporate interaction between water table and root zone into design of irrigation projects. A model for obtaining soil moisture depletion from root zone and water movement below it is discussed with the objective to determine impact of shallow water table on seasonal moisture depletion patterns under water table depth variation, up to the bottom of root zone. The role of different boundary conditions has also been considered. Three crops: Wheat (Triticum aestivum), Corn (Zea mays) and Potato (Solanum tuberosum), common in arid & semi-arid regions, are chosen for the study. Using experimentally obtained soil moisture depletion values for potential soil moisture conditions, moisture depletion patterns using a non linear root uptake model have been obtained for different water table depths. Comparative analysis of the moisture depletion patterns under these conditions show a wide difference in percent depletion from different layers of root zone particularly top and bottom layers with middle layers showing insignificant variation in moisture depletion values. Moisture depletion in top layer, when the water table rises to root zone increases by 19.7%, 22.9% & 28.2%, whereas decrease in bottom layer is 68.8%, 61.6% & 64.9% in case of wheat, corn & potato respectively. The paper also discusses the causes and consequences of increase in moisture depletion from top layers and exceptionally high reduction in bottom layer, and the possible remedies for the same. The numerical model developed for the study can be used to help formulating irrigation strategies for areas where shallow groundwater of questionable quality is an option for crop production.

Keywords: Moisture Depletion, crop root zone, ground water table, irrigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027
355 Effect of Ground Subsidence on Load Sharing and Settlement of Raft and Piled Raft Foundations

Authors: T.V. Tran, S. Teramoto, M. Kimura, T. Boonyatee, Le Ba Vinh

Abstract:

In this paper, two centrifugal model tests (case 1: raft foundation, case 2: 2x2 piled raft foundation) were conducted in order to evaluate the effect of ground subsidence on load sharing among piles and raft and settlement of raft and piled raft foundations. For each case, two conditions consisting of undrained (without groundwater pumping) and drained (with groundwater pumping) conditions were considered. Vertical loads were applied to the models after the foundations were completely consolidated by selfweight at 50g. The results show that load sharing by the piles in piled raft foundation (piled load share) for drained condition decreases faster than that for undrained condition. Settlement of both raft and piled raft foundations for drained condition increases more quickly than that for undrained condition. In addition, the settlement of raft foundation increases more largely than the settlement of piled raft foundation for drained condition.

Keywords: Ground subsidence, Piled raft, Load sharing, Centrifugal model test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2926
354 Schools of Thought in the Field of Social Entrepreneurship

Authors: Cris Bravo

Abstract:

Social entrepreneurship is a new and exciting topic that holds a great promise in helping alleviate the social problems of the world. As a new subject, the meaning of the term is too broad and this is counterproductive in trying to build understanding around the concept. The purpose of this study is to identify and compare the elements of social entrepreneurship as defined by seven international organizations leading social entrepreneurship projects: Ashoka Foundation, Skoll Foundation, Schwab Foundation and Yunus Center; as well as from three other institutions fostering social entrepreneurship: Global Social Benefit Institute, BRAC University, and Socialab. The study used document analysis from Skoll Foundation, Schwab Foundation, Yunus Center and Ashoka Foundation; and open ended interview to experts from the Global Social Benefit Institute at Santa Clara University in United States, BRAC University from Bangladesh, and Socialab from Argentina. The study identified three clearly differentiated schools of thought, based on their views on revenue, scalability, replicability and geographic location. While this study is by no means exhaustive, it provides an indication of the patterns of ideas fostered by important players in the field. By clearly identifying the similarities and differences in the concept of social entrepreneurship, research and practitioners are better equipped to build on the subject, and to promote more adequate and accurate social policies to foster the development of social entrepreneurship.

Keywords: Replicability, revenue, scalability, schools of thought, social entrepreneurship.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4314
353 Axisymmetric Nonlinear Analysis of Point Supported Shallow Spherical Shells

Authors: M. Altekin, R. F. Yükseler

Abstract:

Geometrically nonlinear axisymmetric bending of a shallow spherical shell with a point support at the apex under linearly varying axisymmetric load was investigated numerically. The edge of the shell was assumed to be simply supported or clamped. The solution was obtained by the finite difference and the Newton-Raphson methods. The thickness of the shell was considered to be uniform and the material was assumed to be homogeneous and isotropic. Sensitivity analysis was made for two geometrical parameters. The accuracy of the algorithm was checked by comparing the deflection with the solution of point supported circular plates and good agreement was obtained.

Keywords: Bending, nonlinear, plate, point support, shell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882
352 Vibration Analysis of Functionally Graded Engesser- Timoshenko Beams Subjected to Axial Load Located on a Continuous Elastic Foundation

Authors: M. Karami Khorramabadi, A. R. Nezamabadi

Abstract:

This paper studies free vibration of functionally graded beams Subjected to Axial Load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on Engesser-Timoshenko beam theory. The Young's modulus of beam is assumed to be graded continuously across the beam thickness. Applying the Hamilton's principle, the governing equation is established. Resulting equation is solved using the Euler's Equation. The effects of the constituent volume fractions and foundation coefficient on the vibration frequency are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: Functionally Graded Beam, Free Vibration, Elastic Foundation, Engesser-Timoshenko Beam Theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
351 Computational Investigations of Concrete Footing Rotational Rigidity

Authors: E. S. Fraser, G. P. A. G. van Zijl

Abstract:

In many buildings we rely on large footings to offer structural stability. Designers often compensate for the lack of knowledge available with regard to foundation-soil interaction by furnishing structures with overly large footings. This may lead to a significant increase in building expenditures if many large foundations are present. This paper describes the interface material law that governs the behavior along the contact surface of adjacent materials, and the behavior of a large foundation under ultimate limit loading. A case study is chosen that represents a common foundation-soil system frequently used in general practice and therefore relevant to other structures. Investigations include compressing versus uplifting wind forces, alterations to the foundation size and subgrade compositions, the role of the slab stiffness and presence and the effect of commonly used structural joints and connections. These investigations aim to provide the reader with an objective design approach, efficiently preventing structural instability.

Keywords: Computational investigation of footing rotation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
350 A Numerical Study of Seismic Response of Shallow Square Tunnels in Two-Layered Ground

Authors: Mahmoud Hassanlourad, Mehran Naghizadehrokni, Vahid Molaei

Abstract:

In this study, the seismic behavior of a shallow tunnel with square cross section is investigated in a two layered and elastic heterogeneous environment using numerical method. To do so, FLAC finite difference software was used. Behavioral model of the ground and tunnel structure was assumed linear elastic. Dynamic load was applied to the model for 0.2 seconds from the bottom in form of a square pulse with maximum acceleration of 1 m/s2. The interface between the two layers was considered at three different levels of crest, middle, and bottom of the tunnel. The stiffness of the two upper and lower layers was considered to be varied from 10 MPa to 1000 MPa. Deformation of cross section of the tunnel due to dynamic load propagation, as well as the values of axial force and bending moment created in the tunnel structure, were examined in the three states mentioned above. The results of analyses show that heterogeneity of the environment, its stratification, and positioning of the interface of the two layers with respect to tunnel height and the stiffness ratio of the two layers have significant effects on the value of bending moment, axial force, and distortion of tunnel cross-section.

Keywords: Dynamic analysis, shallow-buried tunnel, two-layered ground.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 768
349 Dynamic Stability of Beams with Piezoelectric Layers Located on a Continuous Elastic Foundation

Authors: A. R. Nezamabadi, M. Karami Khorramabadi

Abstract:

This paper studies dynamic stability of homogeneous beams with piezoelectric layers subjected to periodic axial compressive load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on Bernoulli-Euler beam theory. Applying the Hamilton's principle, the governing dynamic equation is established. The influences of applied voltage, foundation coefficient and piezoelectric thickness on the unstable regions are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: Dynamic stability, Homogeneous graded beam-Piezoelectric layer, Harmonic balance method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
348 An Empirical Study on Switching Activation Functions in Shallow and Deep Neural Networks

Authors: Apoorva Vinod, Archana Mathur, Snehanshu Saha

Abstract:

Though there exists a plethora of Activation Functions (AFs) used in single and multiple hidden layer Neural Networks (NN), their behavior always raised curiosity, whether used in combination or singly. The popular AFs – Sigmoid, ReLU, and Tanh – have performed prominently well for shallow and deep architectures. Most of the time, AFs are used singly in multi-layered NN, and, to the best of our knowledge, their performance is never studied and analyzed deeply when used in combination. In this manuscript, we experiment on multi-layered NN architecture (both on shallow and deep architectures; Convolutional NN and VGG16) and investigate how well the network responds to using two different AFs (Sigmoid-Tanh, Tanh-ReLU, ReLU-Sigmoid) used alternately against a traditional, single (Sigmoid-Sigmoid, Tanh-Tanh, ReLU-ReLU) combination. Our results show that on using two different AFs, the network achieves better accuracy, substantially lower loss, and faster convergence on 4 computer vision (CV) and 15 Non-CV (NCV) datasets. When using different AFs, not only was the accuracy greater by 6-7%, but we also accomplished convergence twice as fast. We present a case study to investigate the probability of networks suffering vanishing and exploding gradients when using two different AFs. Additionally, we theoretically showed that a composition of two or more AFs satisfies Universal Approximation Theorem (UAT).

Keywords: Activation Function, Universal Approximation function, Neural Networks, convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 154
347 Effect of Confinement on the Bearing Capacity and Settlement of Spread Foundations

Authors: Tahsin Toma Sabbagh, Ihsan Al-Abboodi, Ali Al-Jazaairry

Abstract:

Allowable-bearing capacity is the competency of soil to safely carries the pressure from the superstructure without experiencing a shear failure with accompanying excessive settlements. Ensuring a safe bearing pressure with respect to failure does not tolerate settlement of the foundation will be within acceptable limits. Therefore, settlement analysis should always be performed since most structures are settlement sensitive. When visualising the movement of a soil wedge in the bearing capacity criterion, both vertically and horizontally, it becomes clear that by confining the soil surrounding the foundation, both the bearing capacity and settlement values improve. In this study, two sizes of spread foundation were considered; (2×4) m and (3×5) m. These represent two real problem case studies of an existing building. The foundations were analysed in terms of dimension as well as position with respect to a confining wall (i.e., sheet piles on both sides). Assuming B is the least foundation dimension, the study comprised the analyses of three distances; (0.1 B), (0.5 B), and (0.75 B) between the sheet piles and foundations alongside three depths of confinement (0.5 B), (1 B), and (1.5 B). Nonlinear three-dimensional finite element analysis (ANSYS) was adopted to perform an analytical investigation on the behaviour of the two foundations contained by the case study. Results showed that confinement of foundations reduced the overall stresses near the foundation by 65% and reduced the vertical displacement by 90%. Moreover, the most effective distance between the confinement wall and the foundation was found to be 0.5 B.

Keywords: Bearing capacity, cohesionless soils, spread footings, soil confinement, soil modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 890
346 Stability of Homogeneous Smart Beams based on the First Order Shear Deformation Theory Located on a Continuous Elastic Foundation

Authors: A. R. Nezamabadi, M. Karami Khorramabadi

Abstract:

This paper studies stability of homogeneous beams with piezoelectric layers subjected to axial load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on first order shear deformation beam theory. Applying the Hamilton's principle, the governing equation is established. The influences of applied voltage, dimensionless geometrical parameter and foundation coefficient on the stability of beam are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: Stability, Homogeneous beam- Piezoelectric layer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1426
345 C Vibration Analysis of a Beam on Elastic Foundation with Elastically Restrained Ends Using Spectral Element Method

Authors: Hamioud Saida, Khalfallah Salah

Abstract:

In this study, a spectral element method (SEM) is employed to predict the free vibration of a Euler-Bernoulli beam resting on a Winkler foundation with elastically restrained ends. The formulation of the dynamic stiffness matrix has been established by solving the differential equation of motion which was transformed to frequency domain. Non-dimensional natural frequencies and shape modes are obtained by solving the partial differential equations, numerically. Numerical comparisons and examples are performed to show the effectiveness of the SEM and to investigate the effects of various parameters, such as the springs at the boundaries and the elastic foundation parameter on the vibration frequencies. The obtained results demonstrate that the present method can also be applied to solve the more general problem of the dynamic analysis of structures with higher order precision.

Keywords: Elastically supported Euler-Bernoulli beam, free-vibration, spectral element method, Winkler foundation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 666
344 Simulation of Dam Break using Finite Volume Method

Authors: A.Roshandel, N.Hedayat, H.kiamanesh

Abstract:

Today, numerical simulation is a powerful tool to solve various hydraulic engineering problems. The aim of this research is numerical solutions of shallow water equations using finite volume method for Simulations of dam break over wet and dry bed. In order to solve Riemann problem, Roe-s approximate solver is used. To evaluate numerical model, simulation was done in 1D and 2D states. In 1D state, two dam break test over dry bed (with and without friction) were studied. The results showed that Structural failure around the dam and damage to the downstream constructions in bed without friction is more than friction bed. In 2D state, two tests for wet and dry beds were done. Generally in wet bed case, waves are propagated to canal sides but in dry bed it is not significant. Therefore, damage to the storage facilities and agricultural lands in wet bed case is more than in dry bed.

Keywords: dam break, dry bed, finite volume method, shallow water equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2502
343 The Behavior of Dam Foundation Reinforced by Stone Columns: Case Study of Kissir Dam-Jijel

Authors: Toufik Karech, Abderahmen Benseghir, Tayeb Bouzid

Abstract:

This work presents a 2D numerical simulation of an earth dam to assess the behavior of its foundation after a treatment by stone columns. This treatment aims to improve the bearing capacity, to increase the mechanical properties of the soil, to accelerate the consolidation, to reduce the settlements and to eliminate the liquefaction phenomenon in case of seismic excitation. For the evaluation of the pore pressures, the position of the phreatic line and the flow network was defined, and a seepage analysis was performed with the software MIDAS Soil Works. The consolidation calculation is performed through a simulation of the actual construction stages of the dam. These analyzes were performed using the Mohr-Coulomb soil model and the results are compared with the actual measurements of settlement gauges implanted in the dam. An analysis of the bearing capacity was conducted to show the role of stone columns in improving the bearing capacity of the foundation.

Keywords: Earth dam, dam foundation, numerical simulation, stone columns, seepage analysis, consolidation, bearing capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1126
342 Mechanical Buckling of Functionally Graded Engesser-Timoshenko Beams Located on a Continuous Elastic Foundation

Authors: M. Karami Khorramabadi, A. R. Nezamabadi

Abstract:

This paper studies mechanical buckling of functionally graded beams subjected to axial compressive load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on Engesser-Timoshenko beam theory. Applying the Hamilton's principle, the equilibrium equation is established. The influences of dimensionless geometrical parameter, functionally graded index and foundation coefficient on the critical buckling load of beam are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: Mechanical Buckling, Functionally graded beam- Engesser-Timoshenko beam theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
341 Geotechnical Design of Bridge Foundations and Approaches in Hilly Granite Formation

Authors: Q. J. Yang

Abstract:

This paper presents a case study of geotechnical design of bridge foundations and approaches in hilly granite formation in northern New South Wales of Australia. Firstly, the geological formation and existing cut slope conditions which have high risks of rock fall will be described. The bridge has three spans to be constructed using balanced cantilever method with a middle span of 150 m. After concept design option engineering, it was decided to change from pile foundation to pad footing with ground anchor system to optimize the bridge foundation design. The geotechnical design parameters were derived after two staged site investigations. The foundation design was carried out to satisfy both serviceability limit state and ultimate limit state during construction and in operation. It was found that the pad footing design was governed by serviceability limit state design loading cases. The design of bridge foundation also considered presence of weak rock layer intrusion and a layer of “no core” to ensure foundation stability. The precast mass concrete block system was considered for the retaining walls for the bridge approaches to resolve the constructability issue over hilly terrain. The design considered the retaining wall block sliding stability, while the overturning and internal stabilities are satisfied.

Keywords: Pad footing, hilly formation, stability, block works.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614