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Abstract—Though there exists a plethora of Activation Functions
(AFs) used in single and multiple hidden layer Neural Networks
(NN), their behavior always raised curiosity, whether used in
combination or singly. The popular AFs – Sigmoid, ReLU, and
Tanh – have performed prominently well for shallow and deep
architectures. Most of the time, AFs are used singly in multi-layered
NN, and, to the best of our knowledge, their performance is never
studied and analyzed deeply when used in combination. In this
manuscript, we experiment on multi-layered NN architecture (both on
shallow and deep architectures; Convolutional NN and VGG16) and
investigate how well the network responds to using two different AFs
(Sigmoid-Tanh, Tanh-ReLU, ReLU-Sigmoid) used alternately against
a traditional, single (Sigmoid-Sigmoid, Tanh-Tanh, ReLU-ReLU)
combination. Our results show that on using two different AFs,
the network achieves better accuracy, substantially lower loss, and
faster convergence on 4 computer vision (CV) and 15 Non-CV
(NCV) datasets. When using different AFs, not only was the accuracy
greater by 6-7%, but we also accomplished convergence twice as fast.
We present a case study to investigate the probability of networks
suffering vanishing and exploding gradients when using two different
AFs. Additionally, we theoretically showed that a composition of two
or more AFs satisfies Universal Approximation Theorem (UAT).

Keywords—Activation Function, Universal Approximation
function, Neural Networks, convergence.

I. INTRODUCTION

IN the past few decades, owing to a rise in computing

power, Artificial Neural Networks (ANNs) have found

wide-ranging applications in a variety of fields. ANNs are

usually made up of components called layers, consisting of

neurons. ANNs have input layers, hidden layers, and a final

output layer. Information from the previous layer is sent to

the next layer, where each input to the next layer is multiplied

with its relevant weights and a bias is added. AFs are then

employed on this weighted sum, to deliver an output to the

next layer. These AF are generally used to impart non-linearity

to a neuron, in order to capture a wider range of functions that

an output must take. They also have a significant impact on

the speed at which the neural network converges to a minima,

and help in normalising the output.

Various AFs like Sigmoid, ReLU and Tanh have been used

in neural networks. Variants like leaky ReLU and PReLU

have also been used to combat issues that ReLU has; i.e.

vanishing gradients due to too many negative values. Sigmoid

has a vanishing gradient issue as well, due to the low
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magnitude of the gradients of the sigmoid function. To combat

these issues, many optimizers have been used instead of

the traditional gradient descent. SGD with momentum uses

the first moment, a running average of previous gradients,

which speeds up convergence and helps avoid local minima

traps. RMSProp instead normalizes gradient by its root mean

square (as opposed to just previous gradients) and ensures

that gradients for each weight have unique learning rates.

Adam combines both momentum and RMSProp and results

in tweakable hyperparameters. Adam is the optimizer that is

most widely used.
Activation Functions (AF) are building blocks for

performing predictive tasks in Neural Networks. Generally,

the same AF in different layers is used, be it Sigmoid, ReLU,

or Tanh. Extensive empirical studies on the behavior and

effectiveness of different AFs have been conducted on different

data sets and in shallow and deep networks, with narrow and

wide architectures. The application of the neural network is not

just limited to the field of classification and regression, but also

to model control systems in power plants like de-superheater

for controlling temperature [1]. Both linear and non-linear AFs

are used in modeling the de-superheater. Likewise, Jianli et al.

[2] and Sibi et al. [3] have studied the behavior of AF ranging

from all variants of ReLU, sigmoid, tanh, Elliot, Swish,

EliSH, and Hexpo [4], [5] on shallow as well as deep neural

architectures but lacking any robust empirical or experimental

analysis for their work. Saha et al. [6] studied and proposed

new AFs in the parabolic form by using a Diffact-based

framework. Another set of research experiments to determine

whether two hidden layers are optimal or one was conducted

by Hornik et al. [7]. Makhoul et al. [8] explored how a

two-layered NN separates the input space into distinct decision

regions on the first and the second layer. While Brightwell et

al. [9] analyzed the benefits of having one hidden layer over

two, Wan et al. [10] proposed an enhanced back-propagation

algorithm for updating selective weights on particular epochs

to ensure a noise-insensitive training and a better classification.

Most of these research findings dealt with the expressive

power of hidden layers associated with the hidden units in

each layer. They lacked the exploration of different AFs used

in combination, within the same network, and across hidden

layers with the perspective of achieving cross-pollination of

AFs facilitating significant network performance and better

classification metrics.

A. Motivations
The idea to leverage two different AFs alternately (in

the sense of composition of affine transformations) in the
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hidden layers instead of using a common AF is thus worth

investigating. Subsequently, an attempt to study the effects

of using two different AFs in subsequent layers coupled

with a mathematical justification of the approximation ability

of such composition is reasonably rational. However, such

claims need to be supported by empirical results which might

validate the hypothesis that a neural network using this kind of

combination of two AFs could result in better outcomes when

compared to a neural network using the same AF for both

layers. The paper demonstrates how the AFs are employed

in the network to generate good classification results and

investigates the link between various AFs when applied to

the hidden and output layers. The goal is to create a Neural

network capable of performing the following tasks: to replicate

the behavior of all AFs on the hidden and output layers and

also observe the operation of the commutative property of the

AF (Sigmoid, Tanh, and ReLU) on the hidden and output

layers measuring the network’s composition characteristic

for the aforementioned AFs. The supposed superiority of

composition characteristics of two different AFs used in

tandem as opposed to using a single AF throughout is termed

as ’2 is better than 1’ in the paper.

B. Contributions

To the best of our knowledge, there is no such study on

using different AFs in hidden layers and switching them

to achieve better performance. We propose and test the

hypothesis ’2 is better than 1’ advocating the use of two

different AFs in two hidden layers for smaller data and

architecture and replicate the strategy in larger architectures by

alternating AFs as the hidden layers increase. In the process,

we contribute to the following:

• Prove Universal Approximation [11] mathematically

(UAT) when AFs are switched i.e. in a compositional

sense and hence show that a composition of AFs can

approximate the non-linearity in deep neural networks.

• Conduct extensive empirical experiments on Computer

Vision and Non-Computer vision data to validate our

hypothesis on different optimizers.

The remainder of the paper is organized as follows. An

intuition supported by a case study of two specific AFs used

in the compositional sense is presented in Section III. This

is followed by the Mathematical Setup in Section IV where

we show the approximation ability of the network when two

different AFs are used alternately. Section V contains detailed

exposition on experiments and results on several benchmark

data sets allowing us to conclude on the efficacy of the ’2 is

better than 1’ hypothesis in section 6.

II. INTUITION BEHIND OUR HYPOTHESIS

Glorot and Bengio [12] hypothesized that in neural

networks, the logistic layer output softmax(b+Wh) might

initially rely more on the biases b, and hence push the

activation value h towards 0, thus resulting in error gradients of

smaller values. They referred to this as the saturation property

of neural networks. This results in slower training and prevents

the gradients from propagating backward until the layers close

to the input learn. This saturation property is observed in the

sigmoid. The sigmoid is non-symmetric around zero and hence

obtains smaller error gradients when the sigmoid outputs a

value close to 0. Similarly, tanh in all layers tends to saturate

towards 1, which leads to layer saturation. All the layers attain

a particular value, which is detrimental to the propagation of

gradients. However, this issue of attaining saturation would

be less pronounced in cases where two different activation

functions are used. Since each activation function behaves

differently in terms of gradients, i.e. sigmoid outputs are in the

range [0,1], and the gradients are minimum at the maximum

and minimum values of the function. Tanh on the other hand

has minimum gradients at -1 and 1 and reaches its maximum

at 0. Therefore, even if the layers begin to saturate to a

common value, some of the layers would escape the saturation

regime of their activations, and would still be able to learn

essential features. As an outcome, this might result in fewer

instances of vanishing gradients. This assumption would mean

that networks with two different activations would learn faster

and converge faster to a minima, and the same premise is

supported with a Convergence study (details in section V). As

demonstrated by Glorot and Bengio [12], if the saturation ratio

of layers is less pronounced, it leads to better results in terms

of accuracy. A standard neural network with N layers is given

by,

hl = σ(hl−1W l +b)

sl = hl−1W l +b

where hl is the output of the first hidden layer, σ is a non-linear

activation function, and b is the bias. We compute the gradients

as,
∂Cost

∂ sl
k

= f ′(sl
k)W

l
k,·

∂Cost
∂ sl+1

∂Cost
∂W l

m,n
= zi

l
∂Cost

∂ sl
k

Now, we find the variances of these values. As the

network propagates we need to ensure that the variances

are equal to keep the information flowing. Essentially, when

∀(l, l′),Var[hl ] =Var[hl
′
], it ensures that forward propagation

does not saturate, and when ∀(l, l′),Var[ ∂Cost
∂ sl ] = Var[ ∂Cost

∂ sl′ ],

it ensures that backward propagation flows at a constant rate.

Now, what remains is to calculate these variance values. The

activation functions for which the derivative at 0 is 1, have

been covered by Glorot and Bengio [12].

A Case Study

First, we attempt to find variance for two sigmoid activations

in a network. The derivative of each activation output

is approximately 0.25(σ ′(0) = 0.25), as the weights are

uniformly initialized, and the input features are assumed to

have the same variance. Hence,

f ′(sl
k) = 0.25

Var[z2] =Var[x]((0.25)2n1Var[W 1′ ]∗ (0.25)2n2Var[W 2′ ])
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We see that this diminishing factor of 0.25N steeply drops

the variance during forward pass. Similarly, we observe that

the gradient,
∂Cost

∂ sl
k

= f ′(sl
k)W

l
k,·

∂Cost
∂ sl+1

has f ′(sl
k) as one of the factors, and thus the diminishing factor

is tied to the variance. Even when N = 2 the variance reduces

by a factor of 44 = 256.

Let’s compute variance for a neural network with two

hidden layers using sigmoid and tanh activations. For tanh,

if the initial values are uniformly distributed around 0, the

derivative is f ′(sl
k) = 1. Therefore, the variance for the second

layer output is,

Var[z2] =Var[x]∗ ((0.25)2 ∗n1 ∗Var[W 1′ ]∗n2 ∗Var[W 2′ ])

We see that the diminishing factor is just 42 = 16, and

this results in a much better variance when compared to the

previous case. Therefore, using different AFs instead of the

same implies a reduction in vanishing gradients and results in

a much better flow of information because the variance value

is preserved for longer.

III. SETUP

Previous sections outlined the intuition behind using two

different AFs alternately in the sense of function composition.

The hypothesis ’2 is better than 1’ however rests on the

theoretical guarantee that such compositions capture the

latent non-linearity in data and provide good approximations

via the composition of two different AFs. The different

AFs in two layers form a composition function computed at

individual neurons. If f(x) is applied at the first layer and

g(x) at the second, then f(g(x) is considered a composition

function. We use and extend the well-known results [13], [14]

to establish the Universal Approximation Theorem (UAT)

for the composition of AFs. We also exploit the existing

results such as the following: An affine transformation of the

plane has an inverse, that is also an affine transformation;

and a composition of affine transformations is an affine

transformation [13]. Theorem 1 proves that the composition

of two AFs in a network with two hidden layers, with an

arbitrary number of hidden units, is discriminatory and can

approximate any function with a desired level of precision.

Following similar lines, the values from the second hidden

layer go to the third (the output layer), forming a composition

function at the next level. Theorem 2 shows that a composition

function at the output layer is discriminatory too. Following

Guilhoto’s argument [15], it is easy to follow that such

an arrangement of alternating AFs would approximate the

non-linearity over multiple hidden layers.

Universal Approximation Theorem for Sigmoidal Function

Definition 1. A function σ : R→ R is sigmoidal function if,
for some finite constants μ+∞ and μ−∞ (which may take values
as 0,1 or -1),

σ(t) =
{

μ+∞ t → ∞
μ−∞ t →−∞

Examples are logistic sigmoid, hyperbolic tangent and
Rectified linear unit.

Definition 2. Two hidden layer Feedforward Neural network
(FNN) N and different sigmoidal Activation Function for
σ ∈ sigmoid, T, R, input x ∈ R

d, output H(x) ∈ R, weight
matrices, W1 ∈R

nxd (weights connecting neurons of input and
first hidden layer), W2 ∈ R

mxn (for first and second hidden
layer), W3 ∈ R

1xm (for second hidden and output layer),
b1 ∈ R,b2 ∈ R the output of N is -
y = H(x) = σ (W3σ ′ (W2σ∗ (W1x+b1)+b2)+b3)
where, f1(x) = σ∗ (W1x+b1) and f2(x) =
W3σ ′ (W2σ∗ (W1x+b1)+b2).

Theorem 1. We say any sigmoidal function σ : R → R is
discriminatory if, for a measure μ ∈ M(In)∫

In
σ (W ( f2(x)+b))dμ(x) = 0

∀W ∈ R
NxN,b ∈ R, implies μ = 0. In denotes n-dimensional

unit cube. f2(x) is a sigmoidal function of affine
transformation of f1(x) which is also an affine transformation
of input x.

Proof: Let σ∗
N(x) = σ∗(N(W T

1 x + b1))∀x,W1,b1 ∈ R

where σ∗
N is a sequence of sigmoidal functions s.t. σ∗

N →
σ∗. Additionally, σ∗

N converges point-wise and boundedly

to σ∗. As N → ∞, σ∗
N(x) → 1 whenever (W T

1 x + b1 > 0).
Similarly, σ∗

N(x)→ 0 when (W T
1 x+b1 < 0). And for the case

(W T
1 x+b1 = 0), σ∗

N =σ∗(b1). There exist some function δ (x),
s.t.

δ (x) =

⎧⎨
⎩

1 W T
1 x+b1 > 0

0 W T
1 x+b1 < 0

σ(b1) W T
1 x+b1 = 0

By applying dominated convergence theorem, and defining

M0,M1 as open half spaces for (W T
1 x+ b1 < 0) and (W T

1 x+
b1 > 0); M2 to be a hyperplane that satisfies (W T

1 x+b1 = 0)

lim
N→∞

∫
In

σ∗
Ndμ(x) =

∫
In

lim
N→∞

σ∗
Ndμ(x) = μ(M1)+σ(b1)μ(M2)

Now we consider a bounded linear functional H :

L∞(R) → R, and a measurable function f, such that H( f ) =∫
In f (W T

1 x)dμ(x).

H(1[b1,∞)) =
∫

In
1[b1,∞)

(
W T

1 x
)

dμ(x) = μ(M1)+μ(M2) = 0

Likewise, for any open interval (b1,∞)

H(1(b1,∞)) =
∫

In
1(b1,∞)

(
W T

1 x
)

dμ(x) = μ(M0) = 0

This shows that for an indicator function on any interval and

also for a simple function, H(f)=0. We know sin and cosine

are elements of L∞(R), so

H(cos)+ iH(sin) =
∫

In

(
cos

(
W T

1 x
)
+ isin

(
W T

1 x
))

dμ(x)

=
∫

In
eiW T

1 xdμ(x) = 0

Since the Fourier transform of μ is zero, it means

μ = 0. Hence σ∗ is discriminatory on a space of C(In)
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in the output of two hidden layer given as H(x) =
σ (W3σ ′ (W2σ∗ (W1x+b1)+b2)+b3). Furthermore, σ ′ is

applied as an affine transformation of σ∗. Hence σ ′ is also

discriminatory. Following the same rule, σ is discriminatory.

Theorem 2. If f denotes any function in a space of continuous
function C(In), f is the supremum norm of the decision
function, f . Let σ be any continuous, discriminatory function.
Sum of functions resulting from the two hidden layers (M
denotes number of neurons on second hidden layer) FNN is
given by

H(x) =
M

∑
i=1

λiσ (W ( f2(x)+b))

then H(x) is dense in C(In), i.e. for ψ > 0, ∃ f s.t.

H(x)− f (x)〈ψ

Proof: The proof can be seen from the Universal

approximation theorem given by Cybenko [16] (Theorem 1).

IV. EXPERIMENTS AND RESULTS

As the experiments are run in exhaustive and extensive

manner, spanning several NCV and CV data sets, different

combinations of AFs on different architectures (narrow and

wide, deep neural nets, Convolutional NN and VGG16), there

are several questions on the reporting structure of the results.

In this section, we shall address the following questions:

• Is the proposed method consistent in outperforming (Loss

and Accuracy) the traditional structure of deploying

activations i.e. same AFs on all hidden layers?

• Over multiple runs on the same data, is the method stable

in terms of accuracy and loss statistics (small variance

from the mean)?

• Over multiple runs (10), is the method able to beat the

other (standard) combinations of AFs consistently?

• Is the method able to converge faster in comparison to the

threshold (best) accuracy achieved by other combinations

of AFs?

As we shall observe, the above questions are satisfactorily

addressed by the experiments, empirically confirming our

hypothesis ’2 is better than 1’. Note, for Computer Vision

data, more than 2 hidden layers were used where 2 different

AFs are alternately used in the hidden layers.

Settings and Evaluation

Our experiment involves 2-hidden layers NN (for NCV

data) and deep NN architecture (Convolutional NN, VGG16),

both implemented in Python3 by using Keras and Tensorflow

built-in libraries. The experiments are performed on Google

Colab notebook, run on (minimum) i5 processor and 8GB

RAM. The model consisted of an input layer, 2-hidden layers

and an output layer for NCV data. In the case of CV data, for

MNIST, F-MNIST and Beans, 2 hidden Convolutional layers

along with Max Pooling layers were used. As for CIFAR-10,

the architecture consisted of an input layer, 8 CNN layers,

and 2 Dense output layers, along with Batch Normalization

and Max Pooling. For this network, the AFs were used in an

alternating fashion. The VGG 16 architecture consists of 14

convolutional layers followed by 2 fully connected layers of

size 4096 (where ReLU, Tanh and Sigmoid are plugged-in

alternatively) which is later fed to the output layer with

softmax activation function. The AFs used in the hidden layers

are Sigmoid, Relu and Tanh. For each execution, different sets

of AFs are plugged-in. The validation accuracy and loss are

noted for each run. The NCV data sets used in the study

are Iris, Wheat seeds, Bank Note Authentication, Diabetes,

Mushroom, Heart Disease, Breast Cancer, Sonar, and zoo

(Other CV datasets -Car Evaluation, Abalone, Haberman’s

Survival, Wine, Ionosphere, Titanic- used in the experiments).

We also experimented on Computer Vision datasets like

MNIST, FMNIST, CIFAR 10, and Beans. The model is trained

with 5 fold cross-validation for every dataset to ensure it never

overfits, followed by ten executions (25 and more epochs

in each iteration). We calculated mean, standard deviation

for accuracy, loss, and Bonferroni Criterion over 10 runs on

each data set. Later we carried out a threshold-based study to

understand the impact of two different AFs on convergence by

comparing with a minimum threshold accuracy. We conducted

experiments using fixed learning rates like 10−1,10−2,10−3

as well as learning rate decay [17] and found that the results

were better and converged faster with the learning-rate-decay.

Hence, the experiments in the manuscript are reported just for

the Learning rate decay.

Performance Comparison: To interpret the results, we refer

to Model A as one with two different AFs, and Model B with

the same functions on two hidden layers. Table I gives the

average results (training, validation accuracy, and loss) of 10

runs for each combination of AF, one dataset at a time. K-fold

cross-validation is implemented to ensure that the model never

overfits and the probability of bias gets eliminated. The tables

refer to S, T and, R as Sigmoid, Tanh, and ReLU respectively,

and S, T represents Sigmoid and ReLU on the 2 hidden layers.

The same representations are used throughout the tables. On

close examinations of the results in Table I, we infer that

mostly all datasets returned greater accuracies for Model A

(highlighted in bold). For example, Zoo, Heart disease shows

5-6% higher validation accuracies when Model A and B are

compared for Sigmoid and Tanh. Similarly, 6-7% increase in

accuracy is seen with Sigmoid and ReLU. For the remaining

datasets, the accuracy of Model A is observed to be greater

by 1-2% or at par with Model B. Interestingly, Mushroom and

Bank Note data gave 100% accuracy for Model A (involving

different AFs). Another interesting observation is the lowest

loss (9.02E-06) reached with Model A, implemented with

ReLU and Tanh on the mushroom dataset. Looking at the

CV datasets, we saw that Sigmoid - Sigmoid networks fared

worse than the other activation functions. However, in the

case of Beans and Fashion-MNIST, we saw that Sigmoid-Tanh

and Sigmoid-ReLU respectively had better accuracies and

lower loss values, despite the poor performance of Beans on

Sigmoid-Sigmoid.

Fig. 1 shows the accuracy comparison between the

ReLU-Tanh and ReLU-ReLU activation functions in all the
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(a) FMNIST:R,R (b) FMNIST:T,T

(c) FMNIST:S,R (d) FMNIST:S,T

Fig. 1 Same AFs (Model B) in the models leading to a condition of overfit
for R,R and T,T in FMNIST data; for Model A a fair training is noticeable;

Plots of the Accuracy curve, loss plotted against the number of epochs;
Caption of every sub-figure implies dataset: (AFs used)

(a) Ionosphere:T,S (b) Iris:R,T

(c) Iris:S,R (d) Iris:T,S

Fig. 2 Plots of the Accuracy curve, loss plotted against the number of
epochs; caption of every sub-figure implies dataset:(AFs used)

(a) MNIST:R,T (b) MNIST:S,R

(c) MNIST:S,S (d) MNIST:T,S

Fig. 3 Plots of the Accuracy curve, loss plotted against the number of
epochs; caption of every sub-figure implies dataset:(AFs used)

(a) Wheat Seeds:R,T (b) Wheat Seeds:S,R

(c) WheatSeeds:S,S (d) Wheat Seeds:T,S

Fig. 4 Plots of the Accuracy curve, loss plotted against the number of
epochs; caption of every sub-figure implies dataset:(AFs used)

Fig. 5 Bar Plot to compare accuracy of the two Models; here we used
values for (R,T) and (R,R) for all datasets; (R,T) worked as a better

classifier than (R,R)

NCV datasets; which shows that ReLU-Tanh outperforms in

all datasets. From the graphs in the figures, we see that most

networks run on the same number of epochs are able to

train without overfitting. Figs. 2 and 3 show that networks

with the same activations start stagnating in their test loss

while reducing train loss, whereas the networks with different

activations are able to overcome this issue and train fairly. Fig.

4 shows the bar plots to compare the accuracies from the two

models.
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TABLE I
RESULTS OF NON-COMPUTER VISION AND COMPUTER VISION DATASETS, K-FOLD CROSS VALIDATED FOR 2 HIDDEN LAYERS NN SHOWING TRAIN

AND VALIDATION ACCURACIES AVERAGED OVER 10 EXECUTIONS

Non Computer Vision Datasets (Optimizer - Adam)
Model A - Two different AFs Model B - Same AFs

Datasets
AFs

(Model
A)

Avg.Tr.Acc±SD Avg.Val.Acc±
SD

Loss AFs
(Model

B)

Avg.Tr.Acc±SD Avg.Val.Acc±
SD

Loss

Zoo
S,T 1 ± 0 0.93 ± 0.018 0.25 R,R 0.88±0.001 0.87±0.001 0.28
R,S 1 ± 0 0.94 ± 0.012 0.062 S,S 0.86±0.001 0.86±0.001 0.29
R,T 1 ± 0 0.94 ± 0.012 0.20 T,T 0.88±0.001 0.87±0.014 0.27

Heart Disease
S,T 0.94 ± 0.017 0.84 ± 0.03 0.45 R,R 0.88±0.004 0.81±0.002 0.44
S,R 0.86 ± 0.001 0.82 ± 0.001 0.41 S,S 0.86±0.002 0.81± 0.001 0.42
T,R 0.93 ± 0.004 0.87 ± 0.03 0.46 T,T 0.89±0.001 0.79±0.001 0.55

Sonar
S,T 0.97 ± 0.03 0.81 ± 0.001 0.003 R,R 1±0.001 0.84±0.02 0.001
R,S 1 ± 0 0.84 ± 0.06 0.007 S,S 0.96±0.001 0.78±0.01 0.001
R,T 1 ± 0 0.84 ± 0.01 0.002 T,T 1±0 0.80±0.02 0.004

Iris
S,T 0.88±0.01 0.86±0.01 0.41 R,R 0.93±0.009 0.88±0.01 0.09
R,S 0.97 ± 0.03 0.95 ± 0.01 0.20 S,S 0.76±0.01 0.74±0.02 0.77
R,T 0.99 ± 0.00 0.97 ± 0.01 0.15 T,T 0.94±0.01 0.91±0.01 0.26

Wheat Seeds
S,T 0.96± 0.01 0.94 ± 0.01 0.26 R,R 0.97±0.001 0.90±0.01 0.21
R,S 0.96 ± 0.001 0.94 ± 0.001 0.20 S,S 0.94±0.001 0.93±0.01 0.24
R,T 0.98 ± 0.001 0.95 ± 0.001 0.19 T,T 0.97±0.001 0.94±0.001 0.16

Bank Note
S,T 1 ± 0 1 ± 0 0.0 R,R 1±0 1±0 0
R,S 1 ± 0 1 ± 0 0.0 S,S 1±0 0.99±0.001 0
R,T 1 ± 0 1 ± 0 0.0 T,T 1±0 0.99±0.001 0

Diabetes
S,T 0.78 ± 0.001 0.77 ± 0.001 0.47 R,R 0.80±0.001 0.75±0.001 0.49
S,R 0.78 ± 0.002 0.77 ± 0.007 0.46 S,S 0.78±0.003 0.76±0.001 0.48
R,T 0.80 ± 0.008 0.76 ± 0.009 0.47 T,T 0.79±0.005 0.76±0.004 0.48

Mushroom
S,T 1 ± 0 1 ± 0 2.13E-05 R,R 1±0 1±0 1.63E-05
R,S 1 ± 0 1 ± 0 2.55E-05 S,S 0.99±0.001 0.99±0.001 2.69E-03
R,T 1 ± 0 1 ± 0 9.02E-06 T,T 1±0 1±0 1.09E-05

Breast Cancer
S,T 0.97 ± 0.005 0.96 ± 0.004 0.23 R,R 0.97±0.007 0.96±0.001 0.24
S,R 0.97 ± 0.004 0.97 ± 0.007 0.19 S,S 0.82±0.001 0.82±0.01 0.2
R,T 0.97 ± 0.003 0.97 ± 0.002 0.25 T,T 0.96±0.001 0.96±0.001 0.16

Car Evaluation
S,T 0.93±0.008 0.91±0.009 0.20 R,R 0.92±0.004 0.90±0.005 0.02
R,S 0.96 ± 0.001 0.95 ± 0.001 0.11 S,S 0.83±0.003 0.82±0.005 0.41
R,T 0.93±0.01 0.91±0.01 0.20 T,T 0.96±0.009 0.94±0.01 0.15

Abalone
S,T 0.78 ± 0.001 0.77 ± 0.002 0.47 R,R 0.76±0.09 0.77±0.002 0.47
S,R 0.79 ± 0.002 0.78 ± 0.002 0.47 S,S 0.78±0.001 0.77±0.003 0.46
R,T 0.80 ± 0.003 0.78 ± 0.002 0.50 T,T 0.78±0.002 0.77±0.002 0.47

HS∗
S,T 0.76 ± 0.001 0.74 ± 0.002 0.55 R,R 0.79±0.001 0.73±0.001 0.55
S,R 0.76 ± 0.001 0.75 ± 0.011 0.54 S,S 0.75±0.001 0.74±0.001 0.54
T,R 0.78 ± 0.001 0.74 ± 0.002 0.52 T,T 0.77±0.001 0.73±0.001 0.55

Wine
S,T 0.89 ± 0.004 0.88 ± 0.002 0.27 R,R 0.89±0.001 0.88±0.003 0.28
S,R 0.88 ± 0.001 0.88 ± 0.001 0.27 S,S 0.89±0.001 0.87±0.006 0.29
T,R 0.89 ± 0.011 0.88 ± 0.015 0.27 T,T 0.89±0.001 0.88±0.001 0.27

Ionosphere
S,T 0.92±0.005 0.88±0.010 0.29 R,R 0.98±0.002 0.91±0.01 0.23
R,S 0.97 ± 0.006 0.91 ± 0.009 0.22 S,S 0.90±0.002 0.86±0.008 0.32
R,T 0.98 ± 0.008 0.92 ± 0.001 0.23 T,T 0.97±0.002 0.91±0.007 0.23

Titanic
S,T 0.80 ± 0.002 0.79 ± 0.003 0.46 R,R 0.83±0.004 0.81±0.004 0.44
R,S 0.82 ± 0.003 0.81 ± 0.005 0.44 S,S 0.80±0.002 0.79±0.005 0.45
R,T 0.83 ± 0.002 0.81 ± 0.006 0.43 T,T 0.82±0.002 0.79±0.004 0.42

Computer Vision Datasets (Optimizer - Adam)
Model A - Two different AFs Model B - Same AFs

Datasets
AFs

(Model
A)

Avg.Tr.Acc±SD Avg.Val.Acc±
SD

Loss AFs
(Model

B)

Avg.Tr.Acc±SD Avg.Val.Acc±
SD

Loss

MNIST
S,T 0.995 ± 0.0005 0.972 ± 0.0004 0.10 R,R 0.997±0.0001 0.9748±0.0006 0.15
R,S 0.9997 ± 0.0003 0.976 ± 0.0004 0.18 S,S 0.9995±0.00 0.9701±0.0008 0.13
R,T 0.9997 ± 0.0004 0.974 ± 0.001 0.11 T,T 0.9948±0.001 0.969±0.001 0.10

CIFAR-10**
R,T 0.95 ± 0.001 0.87 ± 0.002 0.55 R,R 0.96±0.001 0.86±0.001 0.62

T,T 0.60±0.001 0.59±0.001 1.17

F-MNIST
S,T 0.93 ± 0.0011 0.90 ± 0.052 0.27 R,R 0.95±0.001 0.90±0.001 0.29
R,S 0.94 ± 0.001 0.90 ± 0.019 0.29 S,S 0.89±0.002 0.88±0.002 0.32
R,T 0.96 ± 0.001 0.90 ± 0.001 0.32 T,T 0.96±0.001 0.90±0.001 0.34

Beans
S,T 0.96±0.02 0.69±0.02 0.91 R,R 0.89±0.004 0.73±0.001 0.91
R,S 0.96 ± 0.01 0.75 ± 0.01 1.01 S,S 0.34±0.02 0.31± 0.01 1.1
R,T 0.95 ± 0.02 0.74 ± 0.01 0.93 T,T 0.98±0.02 0.972±0.01 1.23

MNIST
S,T 0.91±0.01 0.94±0.02 0.45 R,R 0.92±0.005 0.91±0.03 0.27
R,S 0.97 ± 0.03 0.95 ± 0.01 0.20 S,S 0.82±0.02 0.89±0.03 0.40

(VGG16) R,T 0.91 ± 0.04 0.90 ± 0.02 0.27 T,T 0.90±0.01 0.90± 0.02 0.29

Loss is also reported. S- sigmoid; T-tanh; R-ReLU;CIFAR-10** - CIFAR could not be trained and gave very low accuracy for R,S;S,T; S,S.
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Robustness Study: Comparing the efficacy of Model A with

B over a single run is not significant statistically. Hence we

incorporated Bonferroni Criterion (BC) to the effectiveness

of Model A over ten successive runs. BC gives a statistical

count of the number of times Model A is better than B

when compared over ten runs (Table II). To ensure a fair

comparison of the two models, we computed BC1 and BC2.

The interpretation of BC1 and BC2 is as follows. We know that

Model A has different AFs while Model B has the same AF

on hidden layers. BC1 denotes a count of the number of times

the accuracy of Model A surpassed B when Model A’s first

AF is deployed in B. For instance, when comparing Sigmoid

and ReLU (S, R), BC1 signifies the number of times (S,R)

beats the accuracy of (S,S) in 10 executions. Furthermore,

in Table II, a BC1 value of 10 (say, Mushroom dataset)

suggests that (S,R) has surpassed (S,S) in all the 10 executions.

Likewise, BC2 signifies the number of times the accuracy

of (S,R) surpassed (R,R). For example, a BC2 value of 9

(Iris data) infers (S,R) exceeds (R,R) in accuracy, 9 times out

of 10. These comparisons are carried out for each possible

combination of AF’s (S,R), (R,T), and (T,S) on every dataset.

We observed from Table II, Model A performed better than

B in Mushroom, Titanic, Zoo, Banknote, Wine, Diabetes, Iris,

and Heart Disease. As a rule of thumb, a BC value larger

than 6 conveys Model A performing better than B, and Table

II shows most of the BC values larger than 6. As far as

the CV datasets are concerned, (S,R) or (R,T) surpassed the

competitor configurations very promptly, particularly in all

cases of (S,S) and (T,T). The table shows promising results

especially for Beans and MNIST, where the (S,R) and (S,T)

networks performed much better than their counterparts. In

CIFAR-10, (T,R) is marginally better than (R,R).

Convergence Study

It is important to compare the convergence of both models

while looking into their accuracy and losses. Is there a

substantial difference in the convergence (no. of epochs) when

both AFs are deployed in Model A and when just one AF

was used? We went ahead in our experiments to perform a

thresholding study of epochs needed to reach the maximum

accuracy for both models. We picked two AFs to begin with

(say S,T) and made combinations under Model A (S,T) and

B (S,S, T,T). We ran NN for 25-50 epochs with activations

from the above combinations and recorded ’threshold accuracy

(ThAC)’ defined as the minimum accuracy reached by the

above combinations. We also recorded the epochs needed

to reach ThAC for every NN under Model A and B. The

results were very encouraging and interesting to explore. The

threshold study performed for Iris data revealed 74% accuracy

(T hACIris = 74%) reached for (S,S) at 49 epochs. Interestingly,

epochs that needed to reach 74% by (S,T) model were just

22. This indicates that Model A reaches the accuracy set

by Model B in less than half of the epochs. Besides, (T,T)

architecture converged at 47 epochs with ThAC of 91% while

(R,T) model converged at just 16 epochs (one third) while

reaching 91% accuracy. Additionally, (S,R) took 7 epochs

to reach ThAC, whereas Model B (S,S) took 24 epochs to

converge at ThAC. Similar trends were witnessed on the

remaining datasets. For Fashion MNIST, (S,S) took 15 epochs

to converge at accuracies around 89%, whereas (R,S) and

(T,S) took 9 epochs to reach ThAC. In Beans, (S,S) had poor

training outcomes even after 15-20 epochs, whereas (R,S) and

(T,S) managed to cross ThAC within the first 2 epochs. We
observe a consistency in faster convergence when 2 different
AFs are used, across 19 data sets. A complete tabulation of

threshold convergence is available at github repository which

can be shared on request. Additionally, our model on average

yielded 9% greater accuracy on the Iris dataset (with ADAM

optimizer) in comparison with several other SoTA optimizers

such as AdaGrad, AdaDelta, AMSgrad, and AdaSwarm [18].

Similarly, the accuracy on Pima India Diabetes dataset is

6-13% greater; for Wheat Seeds, the accuracy obtained is

13-28% higher; for Heart Disease the accuracies varied to

a greater range of 11-38% when compared with AdaSwarm

and AdaGrad optimizers. There are also datasets like Car

Evaluation with accuracies varied over a range of 4-10% and

it was observed that our model produces the best results when

compared to other optimizers. The corresponding results are

presented in Table I.

TABLE II
BONFERRONI CRITERION (BC) FOR ALL COMBINATIONS OF AFS

[T-TANH S-SIGMOID, R-RELU]

Model A- Two different AFs S,R S,T T,R
Model B - Same AFs S,S R,R S,S T, T T, T R,R
Datasets BC1BC2BC1BC2BC1BC2
Mushroom 10 10 10 10 10 10
Titanic 10 10 10 10 10 6
Zoo 10 8 10 8 10 10
Heart Disease 10 8 9 9 10 10
Bank Note 8 10 10 10 10 10
Wine 10 7 10 10 10 7
Diabetes 7 9 10 10 10 10
Iris 10 9 10 10 6 10
Wheat Seeds 10 9 6 7 8 10
Breast Cancer 10 8 8 6 10 8
Sonar 10 10 10 7 10 7
Car Evaluation 10 10 10 4 4 8
Abalone 5 5 8 8 8 9
Haberman’s Survival 8 8 5 9 9 9
Ionosphere 10 3 8 6 10 3
Cifar-10 - 10 - 10 10 6
Fashion-MNIST 10 0 10 4 10 3
Beans 10 9 10 2 10 6
MNIST 10 2 10 10 10 3

V. CONCLUSION

The manuscript broadly examines the effectiveness of a

composition of two different activation functions on the

expressive power of NN by analyzing it on a large number

of NCV and CV datasets. Our hypothesis ’2 is better is 1’ is

undoubtedly supported by all the datasets used in the study.

The claim is that the simple, non-linear AFs together in a

network may create complex but more effective composition

functions, thus leading to better classification metrics. A

2-hidden-layer NN and deep learning network (Convolutional

NN, VGG16) were run for the standard benchmark datasets

from the UCI Machine Learning repository to test our

hypothesis and, the Models with different AFs surpassed
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the ones that used the same with a margin of 6-7%. We

investigated the deep learning architectures to explore the

hypothesis and found that accuracies for Model A were 1-3%

larger than B for the benchmark CV datasets. In total, we

experimented on 19 different data of all types and reported

mean and standard deviation of classification metrics resulting

from the ten runs from every composition [(S,T), (T,R),

(R,S), so on]. The risk of overfitting and bias is kept at bay

by assuring K-fold cross-validation in each run, the same

is validated in the training-validation plots. To thoroughly

test the hypothesis, we compared models with all possible

options, say, if (R,T) is studied on some data, its metrics are

compared against (R,R) and (T,T). We found that metrics for

(R,T) and (T,R) were close, assuring empirical commutativity.

The robustness of the hypothesis was assessed by Bonferroni

criteria, and we inspected the two BC’s to be larger for Model

A. In particular, Mushroom, Banknote, and many datasets

yielded BC values of 10. It was also found that the 2 different

AF combinations converged to threshold accuracy faster.

The empirical study is based on the fact that two

different AFs generalize better over two or more hidden

layer architectures. This was argued effectively and theoretical

results on the approximation ability of compositional

activations when used alternately have been established. We

restricted the current study to sigmoid, ReLU, tanh and their

combinations and evaluated the hypothesis for these simple

yet popular AFs. However, we would like to extend this work

for other AF combinations that include SELU, ELU, Swish,

Mish and many more. The study is encouraging enough to

pursue in future and investigate compositional activations for

more complex data and architectures.
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