Search results for: real number sequences.
5710 Analysis of the Genetic Sequences of PCV2 Virus in Mexico
Authors: Robles F, Chevez J, Angulo R, Díaz E, González C.
Abstract:
These All pig-producing countries from around the world report the presence of Postweaning multisystemic wasting syndrome (PMWS.) In America, PCV2 has been recognized in Canada, United States and Brazil. Knowledge concerning the genetic sequences of PMWS has been very important. In Mexico, there is no report describing the genetic sequences and variations of the PCV2 virus present around the country. For this reason, the main objective was to describe the homology and genetic sequences of the PCV2 virus obtained from different regions of Mexico. The results show that in Mexico are present both subgenotypes \"a\" and \"b\" of this virus and the homologies are from 89 to 99%. Regarding with the aminoacid sequence, three major heterogenic regions were present in the position 59-91, 123–136 and 185–210. This study presents the results of the first genetic characterization of PCV2 in production herds from Mexico.
Keywords: PCV-2, sequencing analysis, Mexico
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15745709 Parallezation Protein Sequence Similarity Algorithms using Remote Method Interface
Authors: Mubarak Saif Mohsen, Zurinahni Zainol, Rosalina Abdul Salam, Wahidah Husain
Abstract:
One of the major problems in genomic field is to perform sequence comparison on DNA and protein sequences. Executing sequence comparison on the DNA and protein data is a computationally intensive task. Sequence comparison is the basic step for all algorithms in protein sequences similarity. Parallel computing is an attractive solution to provide the computational power needed to speedup the lengthy process of the sequence comparison. Our main research is to enhance the protein sequence algorithm using dynamic programming method. In our approach, we parallelize the dynamic programming algorithm using multithreaded program to perform the sequence comparison and also developed a distributed protein database among many PCs using Remote Method Interface (RMI). As a result, we showed how different sizes of protein sequences data and computation of scoring matrix of these protein sequence on different number of processors affected the processing time and speed, as oppose to sequential processing.
Keywords: Protein sequence algorithm, dynamic programming algorithm, multithread
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19065708 Indoor Mobile Robot Positioning Based on Wireless Fingerprint Matching
Authors: Xu Huang, Jing Fan, Maonian Wu, Yonggen Gu
Abstract:
This paper discusses the design of an indoor mobile robot positioning system. The problem of indoor positioning is solved through Wi-Fi fingerprint positioning to implement a low cost deployment. A wireless fingerprint matching algorithm based on the similarity of unequal length sequences is presented. Candidate sequences selection is defined as a set of mappings, and detection errors caused by wireless hotspot stability and the change of interior pattern can be corrected by transforming the unequal length sequences into equal length sequences. The presented scheme was verified experimentally to achieve the accuracy requirements for an indoor positioning system with low deployment cost.Keywords: Fingerprint match, indoor positioning, mobile robot positioning system, Wi-Fi, wireless fingerprint.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16065707 Ranking and Unranking Algorithms for k-ary Trees in Gray Code Order
Authors: Fateme Ashari-Ghomi, Najme Khorasani, Abbas Nowzari-Dalini
Abstract:
In this paper, we present two new ranking and unranking algorithms for k-ary trees represented by x-sequences in Gray code order. These algorithms are based on a gray code generation algorithm developed by Ahrabian et al.. In mentioned paper, a recursive backtracking generation algorithm for x-sequences corresponding to k-ary trees in Gray code was presented. This generation algorithm is based on Vajnovszki-s algorithm for generating binary trees in Gray code ordering. Up to our knowledge no ranking and unranking algorithms were given for x-sequences in this ordering. we present ranking and unranking algorithms with O(kn2) time complexity for x-sequences in this Gray code orderingKeywords: k-ary Tree Generation, Ranking, Unranking, Gray Code.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21115706 Digital Image Encryption Scheme using Chaotic Sequences with a Nonlinear Function
Abstract:
In this study, a system of encryption based on chaotic sequences is described. The system is used for encrypting digital image data for the purpose of secure image transmission. An image secure communication scheme based on Logistic map chaotic sequences with a nonlinear function is proposed in this paper. Encryption and decryption keys are obtained by one-dimensional Logistic map that generates secret key for the input of the nonlinear function. Receiver can recover the information using the received signal and identical key sequences through the inverse system technique. The results of computer simulations indicate that the transmitted source image can be correctly and reliably recovered by using proposed scheme even under the noisy channel. The performance of the system will be discussed through evaluating the quality of recovered image with and without channel noise.Keywords: Digital image, Image encryption, Secure communication
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22415705 Belief Theory-Based Classifiers Comparison for Static Human Body Postures Recognition in Video
Authors: V. Girondel, L. Bonnaud, A. Caplier, M. Rombaut
Abstract:
This paper presents various classifiers results from a system that can automatically recognize four different static human body postures in video sequences. The considered postures are standing, sitting, squatting, and lying. The three classifiers considered are a naïve one and two based on the belief theory. The belief theory-based classifiers use either a classic or restricted plausibility criterion to make a decision after data fusion. The data come from the people 2D segmentation and from their face localization. Measurements consist in distances relative to a reference posture. The efficiency and the limits of the different classifiers on the recognition system are highlighted thanks to the analysis of a great number of results. This system allows real-time processing.
Keywords: Belief theory, classifiers comparison, data fusion, human motion analysis, real-time processing, static posture recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15205704 From Primer Generation to Chromosome Identification: A Primer Generation Genotyping Method for Bacterial Identification and Typing
Authors: Wisam H. Benamer, Ehab A. Elfallah, Mohamed A. Elshaari, Farag A. Elshaari
Abstract:
A challenge for laboratories is to provide bacterial identification and antibiotic sensitivity results within a short time. Hence, advancement in the required technology is desirable to improve timing, accuracy and quality. Even with the current advances in methods used for both phenotypic and genotypic identification of bacteria the need is there to develop method(s) that enhance the outcome of bacteriology laboratories in accuracy and time. The hypothesis introduced here is based on the assumption that the chromosome of any bacteria contains unique sequences that can be used for its identification and typing. The outcome of a pilot study designed to test this hypothesis is reported in this manuscript. Methods: The complete chromosome sequences of several bacterial species were downloaded to use as search targets for unique sequences. Visual basic and SQL server (2014) were used to generate a complete set of 18-base long primers, a process started with reverse translation of randomly chosen 6 amino acids to limit the number of the generated primers. In addition, the software used to scan the downloaded chromosomes using the generated primers for similarities was designed, and the resulting hits were classified according to the number of similar chromosomal sequences, i.e., unique or otherwise. Results: All primers that had identical/similar sequences in the selected genome sequence(s) were classified according to the number of hits in the chromosomes search. Those that were identical to a single site on a single bacterial chromosome were referred to as unique. On the other hand, most generated primers sequences were identical to multiple sites on a single or multiple chromosomes. Following scanning, the generated primers were classified based on ability to differentiate between medically important bacterial and the initial results looks promising. Conclusion: A simple strategy that started by generating primers was introduced; the primers were used to screen bacterial genomes for match. Primer(s) that were uniquely identical to specific DNA sequence on a specific bacterial chromosome were selected. The identified unique sequence can be used in different molecular diagnostic techniques, possibly to identify bacteria. In addition, a single primer that can identify multiple sites in a single chromosome can be exploited for region or genome identification. Although genomes sequences draft of isolates of organism DNA enable high throughput primer design using alignment strategy, and this enhances diagnostic performance in comparison to traditional molecular assays. In this method the generated primers can be used to identify an organism before the draft sequence is completed. In addition, the generated primers can be used to build a bank for easy access of the primers that can be used to identify bacteria.
Keywords: Bacteria chromosome, bacterial identification, sequence, primer generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10475703 Real-Time 3D City Generation using Shape Grammars with LOD Variations
Authors: Pearl Goswell, Jun Jo
Abstract:
Creating3D environments, including characters and cities, is a significantly time consuming process due to a large amount of workinvolved in designing and modelling.There have been a number of attempts to automatically generate 3D objects employing shape grammars. However it is still too early to apply the mechanism to real problems such as real-time computer games.The purpose of this research is to introduce a time efficient and cost effective method to automatically generatevarious 3D objects for real-time 3D games. This Shape grammar-based real-time City Generation (RCG) model is a conceptual model for generating 3Denvironments in real-time and can be applied to 3D gamesoranimations. The RCG system can generate even a large cityby applying fundamental principles of shape grammars to building elementsin various levels of detailin real-time.Keywords: real-time city generation, shape grammars, 3D games, 3D modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23315702 A Geometrical Perspective on the Insulin Evolution
Authors: Yuhei Kunihiro, Sorin V. Sabau, Kazuhiro Shibuya
Abstract:
We study the molecular evolution of insulin from metric geometry point of view. In mathematics, and in particular in geometry, distances and metrics between objects are of fundamental importance. Using a weaker notion than the classical distance, namely the weighted quasi-metrics, one can study the geometry of biological sequences (DNA, mRNA, or proteins) space. We analyze from geometrical point of view a family of 60 insulin homologous sequences ranging on a large variety of living organisms from human to the nematode C. elegans. We show that the distances between sequences provide important information about the evolution and function of insulin.
Keywords: Metric geometry, evolution, insulin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15345701 Exons and Introns Classification in Human and Other Organisms
Authors: Benjamin Y. M. Kwan, Jennifer Y. Y. Kwan, Hon Keung Kwan
Abstract:
In the paper, the relative performances on spectral classification of short exon and intron sequences of the human and eleven model organisms is studied. In the simulations, all combinations of sixteen one-sequence numerical representations, four threshold values, and four window lengths are considered. Sequences of 150-base length are chosen and for each organism, a total of 16,000 sequences are used for training and testing. Results indicate that an appropriate combination of one-sequence numerical representation, threshold value, and window length is essential for arriving at top spectral classification results. For fixed-length sequences, the precisions on exon and intron classification obtained for different organisms are not the same because of their genomic differences. In general, precision increases as sequence length increases.Keywords: Exons and introns classification, Human genome, Model organism genome, Spectral analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20645700 A Stereo Vision System for Top View Book Scanners
Authors: Erik Lilienblum, Robert Niese, Bernd Michaelis
Abstract:
This paper proposes a novel stereo vision technique for top view book scanners which provide us with dense 3d point clouds of page surfaces. This is a precondition to dewarp bound volumes independent of 2d information on the page. Our method is based on algorithms, which normally require the projection of pattern sequences with structured light. We use image sequences of the moving stripe lighting of the top view scanner instead of an additional light projection. Thus the stereo vision setup is simplified without losing measurement accuracy. Furthermore we improve a surface model dewarping method through introducing a difference vector based on real measurements. Although our proposed method is hardly expensive neither in calculation time nor in hardware requirements we present good dewarping results even for difficult examples.Keywords: stereo vision, 3d surface reconstruction, dewarpingdocuments, book scanner
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15905699 A PN Sequence Generator based on Residue Arithmetic for Multi-User DS-CDMA Applications
Authors: Chithra R, Pallab Maji, Sarat Kumar Patra, Girija Sankar Rath
Abstract:
The successful use of CDMA technology is based on the construction of large families of encoding sequences with good correlation properties. This paper discusses PN sequence generation based on Residue Arithmetic with an effort to improve the performance of existing interference-limited CDMA technology for mobile cellular systems. All spreading codes with residual number system proposed earlier did not consider external interferences, multipath propagation, Doppler effect etc. In literature the use of residual arithmetic in DS-CDMA was restricted to encoding of already spread sequence; where spreading of sequence is done by some existing techniques. The novelty of this paper is the use of residual number system in generation of the PN sequences which is used to spread the message signal. The significance of cross-correlation factor in alleviating multi-access interference is also discussed. The RNS based PN sequence has superior performance than most of the existing codes that are widely used in DS-CDMA applications. Simulation results suggest that the performance of the proposed system is superior to many existing systems.Keywords: Direct-Sequence Code Division Multiple Access (DSCDMA), Multiple-Access Interference (MAI), PN Sequence, Residue Number System (RNS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24425698 Towards End-To-End Disease Prediction from Raw Metagenomic Data
Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker
Abstract:
Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.Keywords: Metagenomics, phenotype prediction, deep learning, embeddings, multiple instance learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9185697 Skolem Sequences and Erdosian Labellings of m Paths with 2 and 3 Vertices
Authors: H. V. Chen
Abstract:
Assume that we have m identical graphs where the graphs consists of paths with k vertices where k is a positive integer. In this paper, we discuss certain labelling of the m graphs called c-Erdösian for some positive integers c. We regard labellings of the vertices of the graphs by positive integers, which induce the edge labels for the paths as the sum of the two incident vertex labels. They have the property that each vertex label and edge label appears only once in the set of positive integers {c, . . . , c+6m- 1}. Here, we show how to construct certain c-Erdösian of m paths with 2 and 3 vertices by using Skolem sequences.Keywords: c-Erdösian, Skolem sequences, magic labelling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11655696 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification
Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh
Abstract:
Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.
Keywords: Cancer classification, feature selection, deep learning, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12755695 On λ− Summable of Orlicz Space of Gai Sequences of Fuzzy Numbers
Authors: N.Subramanian, S.Krishnamoorthy, S. Balasubramanian
Abstract:
In this paper the concept of strongly (λM)p - Ces'aro summability of a sequence of fuzzy numbers and strongly λM- statistically convergent sequences of fuzzy numbers is introduced.Keywords: Fuzzy numbers, statistical convergence, Orlicz space, gai sequence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19585694 Construction of cDNALibrary and EST Analysis of Tenebriomolitorlarvae
Authors: JiEun Jeong, Se-Won Kang, Hee-Ju Hwang, Sung-Hwa Chae, Sang-Haeng Choi, Hong-SeogPark, YeonSoo Han, Bok-Reul Lee, Dae-Hyun Seog, Yong Seok Lee
Abstract:
Tofurther advance research on immune-related genes from T. molitor, we constructed acDNA library and analyzed expressed sequence taq (EST) sequences from 1,056 clones. After removing vector sequence and quality checkingthrough thePhred program (trim_alt 0.05 (P-score>20), 1039 sequences were generated. The average length of insert was 792 bp. In addition, we identified 162 clusters, 167 contigs and 391 contigs after clustering and assembling process using a TGICL package. EST sequences were searchedagainst NCBI nr database by local BLAST (blastx, E5693 A New Predictor of Coding Regions in Genomic Sequences using a Combination of Different Approaches
Authors: Aníbal Rodríguez Fuentes, Juan V. Lorenzo Ginori, Ricardo Grau Ábalo
Abstract:
Identifying protein coding regions in DNA sequences is a basic step in the location of genes. Several approaches based on signal processing tools have been applied to solve this problem, trying to achieve more accurate predictions. This paper presents a new predictor that improves the efficacy of three techniques that use the Fourier Transform to predict coding regions, and that could be computed using an algorithm that reduces the computation load. Some ideas about the combination of the predictor with other methods are discussed. ROC curves are used to demonstrate the efficacy of the proposed predictor, based on the computation of 25 DNA sequences from three different organisms.
Keywords: Bioinformatics, Coding region prediction, Computational load reduction, Digital Signal Processing, Fourier Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16725692 Effect of Iterative Algorithm on the Performance of MC-CDMA System with Nonlinear Models of HPA
Authors: R. Blicha
Abstract:
High Peak to Average Power Ratio (PAPR) of the transmitted signal is a serious problem in multicarrier systems (MC), such as Orthogonal Frequency Division Multiplexing (OFDM), or in Multi-Carrier Code Division Multiple Access (MC-CDMA) systems, due to large number of subcarriers. This effect is possible reduce with some PAPR reduction techniques. Spreading sequences at the presence of Saleh and Rapp models of high power amplifier (HPA) have big influence on the behavior of system. In this paper we investigate the bit-error-rate (BER) performance of MC-CDMA systems. Basically we can see from simulations that the MC-CDMA system with Iterative algorithm can be providing significantly better results than the MC-CDMA system. The results of our analyses are verified via simulation.
Keywords: MC-CDMA, Iterative algorithm, PAPR, BER, Saleh, Rapp, Spreading Sequences.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23825691 Noise Reduction in Image Sequences using an Effective Fuzzy Algorithm
Authors: Mahmoud Saeidi, Khadijeh Saeidi, Mahmoud Khaleghi
Abstract:
In this paper, we propose a novel spatiotemporal fuzzy based algorithm for noise filtering of image sequences. Our proposed algorithm uses adaptive weights based on a triangular membership functions. In this algorithm median filter is used to suppress noise. Experimental results show when the images are corrupted by highdensity Salt and Pepper noise, our fuzzy based algorithm for noise filtering of image sequences, are much more effective in suppressing noise and preserving edges than the previously reported algorithms such as [1-7]. Indeed, assigned weights to noisy pixels are very adaptive so that they well make use of correlation of pixels. On the other hand, the motion estimation methods are erroneous and in highdensity noise they may degrade the filter performance. Therefore, our proposed fuzzy algorithm doesn-t need any estimation of motion trajectory. The proposed algorithm admissibly removes noise without having any knowledge of Salt and Pepper noise density.Keywords: Image Sequences, Noise Reduction, fuzzy algorithm, triangular membership function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18845690 Differences in Goal Scoring and Passing Sequences between Winning and Losing Team in UEFA-EURO Championship 2012
Authors: Muhamad S., Norasrudin S, Rahmat A.
Abstract:
The objective of current study is to investigate the differences of winning and losing teams in terms of goal scoring and passing sequences. Total of 31 matches from UEFA-EURO 2012 were analyzed and 5 matches were excluded from analysis due to matches end up drawn. There are two groups of variable used in the study which is; i. the goal scoring variable and: ii. passing sequences variable. Data were analyzed using Wilcoxon matched pair rank test with significant value set at p < 0.05. Current study found the timing of goal scored was significantly higher for winning team at 1st half (Z=-3.416, p=.001) and 2nd half (Z=-3.252, p=.001). The scoring frequency was also found to be increase as time progressed and the last 15 minutes of the game was the time interval the most goals scored. The indicators that were significantly differences between winning and losing team were the goal scored (Z=-4.578, p=.000), the head (Z=-2.500, p=.012), the right foot (Z=-3.788,p=.000), corner (Z=-.2.126,p=.033), open play (Z=-3.744,p=.000), inside the penalty box (Z=-4.174, p=.000) , attackers (Z=-2.976, p=.003) and also the midfielders (Z=-3.400, p=.001). Regarding the passing sequences, there are significance difference between both teams in short passing sequences (Z=-.4.141, p=.000). While for the long passing, there were no significance difference (Z=-.1.795, p=.073). The data gathered in present study can be used by the coaches to construct detailed training program based on their objectives.Keywords: Football, goals scored, passing, timing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28565689 A Robust Method for Hand Tracking Using Mean-shift Algorithm and Kalman Filter in Stereo Color Image Sequences
Authors: Mahmoud Elmezain, Ayoub Al-Hamadi, Robert Niese, Bernd Michaelis
Abstract:
Real-time hand tracking is a challenging task in many computer vision applications such as gesture recognition. This paper proposes a robust method for hand tracking in a complex environment using Mean-shift analysis and Kalman filter in conjunction with 3D depth map. The depth information solve the overlapping problem between hands and face, which is obtained by passive stereo measuring based on cross correlation and the known calibration data of the cameras. Mean-shift analysis uses the gradient of Bhattacharyya coefficient as a similarity function to derive the candidate of the hand that is most similar to a given hand target model. And then, Kalman filter is used to estimate the position of the hand target. The results of hand tracking, tested on various video sequences, are robust to changes in shape as well as partial occlusion.Keywords: Computer Vision and Image Analysis, Object Tracking, Gesture Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29235688 On λ− Summable of Orlicz Space of Entire Sequences of Fuzzy Numbers
Authors: N. Subramanian, U. K. Misra, M. S. Panda
Abstract:
In this paper the concept of strongly (λM)p - Ces'aro summability of a sequence of fuzzy numbers and strongly λM- statistically convergent sequences of fuzzy numbers is introduced.Keywords: Fuzzy numbers, statistical convergence, Orlicz space, entire sequence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19245687 Solution of Interval-valued Manufacturing Inventory Models With Shortages
Authors: Susovan Chakrabortty, Madhumangal Pal, Prasun Kumar Nayak
Abstract:
A manufacturing inventory model with shortages with carrying cost, shortage cost, setup cost and demand quantity as imprecise numbers, instead of real numbers, namely interval number is considered here. First, a brief survey of the existing works on comparing and ranking any two interval numbers on the real line is presented. A common algorithm for the optimum production quantity (Economic lot-size) per cycle of a single product (so as to minimize the total average cost) is developed which works well on interval number optimization under consideration. Finally, the designed algorithm is illustrated with numerical example.Keywords: EOQ, Inventory, Interval Number, Demand, Production, Simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16485686 A New Class χ2 (M, A,) of the Double Difference Sequences of Fuzzy Numbers
Authors: N.Subramanian, U.K.Misra
Abstract:
The aim of this paper is to introduce and study a new concept of strong double χ2 (M,A, Δ) of fuzzy numbers and also some properties of the resulting sequence spaces of fuzzy numbers were examined.
Keywords: Modulus function, fuzzy number, metric space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23095685 On Some Subspaces of Entire Sequence Space of Fuzzy Numbers
Authors: T. Balasubramanian, A. Pandiarani
Abstract:
In this paper we introduce some subspaces of fuzzy entire sequence space. Some general properties of these sequence spaces are discussed. Also some inclusion relation involving the spaces are obtained. Mathematics Subject Classification: 40A05, 40D25.
Keywords: Fuzzy Numbers, Entire sequences, completeness, Fuzzy entire sequences
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12485684 Neural Network Based Determination of Splice Junctions by ROC Analysis
Authors: S. Makal, L. Ozyilmaz, S. Palavaroglu
Abstract:
Gene, principal unit of inheritance, is an ordered sequence of nucleotides. The genes of eukaryotic organisms include alternating segments of exons and introns. The region of Deoxyribonucleic acid (DNA) within a gene containing instructions for coding a protein is called exon. On the other hand, non-coding regions called introns are another part of DNA that regulates gene expression by removing from the messenger Ribonucleic acid (RNA) in a splicing process. This paper proposes to determine splice junctions that are exon-intron boundaries by analyzing DNA sequences. A splice junction can be either exon-intron (EI) or intron exon (IE). Because of the popularity and compatibility of the artificial neural network (ANN) in genetic fields; various ANN models are applied in this research. Multi-layer Perceptron (MLP), Radial Basis Function (RBF) and Generalized Regression Neural Networks (GRNN) are used to analyze and detect the splice junctions of gene sequences. 10-fold cross validation is used to demonstrate the accuracy of networks. The real performances of these networks are found by applying Receiver Operating Characteristic (ROC) analysis.Keywords: Gene, neural networks, ROC analysis, splice junctions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16625683 Codes beyond Bits and Bytes: A Blueprint for Artificial Life
Authors: Rishabh Garg, Anuja Vyas, Aamna Khan, Muhammad Azwan Tariq
Abstract:
The present study focuses on integrating Machine Learning and Genomics, hereafter termed ‘GenoLearning’, to develop Artificial Life (AL). This is achieved by leveraging gene editing to imbue genes with sequences capable of performing desired functions. To accomplish this, a specialized sub-network of Siamese Neural Network (SNN), named Transformer Architecture specialized in Sequence Analysis of Genes (TASAG), compares two sequences: the desired and target sequences. Differences between these sequences are analyzed, and necessary edits are made on-screen to incorporate the desired sequence into the target sequence. The edited sequence can then be synthesized chemically using a Computerized DNA Synthesizer (CDS). The CDS fabricates DNA strands according to the sequence displayed on a computer screen, aided by microprocessors. These synthesized DNA strands can be inserted into an ovum to initiate further development, eventually leading to the creation of an Embot, and ultimately, an H-Bot. While this study aims to explore the potential benefits of Artificial Intelligence (AI) technology, it also acknowledges and addresses the ethical considerations associated with its implementation.
Keywords: Machine Learning, Genomics, Genetronics, DNA, Transformer, Siamese Neural Network, Gene Editing, Artificial Life, H-Bot, Zoobot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1015682 On Pseudo-Random and Orthogonal Binary Spreading Sequences
Authors: Abhijit Mitra
Abstract:
Different pseudo-random or pseudo-noise (PN) as well as orthogonal sequences that can be used as spreading codes for code division multiple access (CDMA) cellular networks or can be used for encrypting speech signals to reduce the residual intelligence are investigated. We briefly review the theoretical background for direct sequence CDMA systems and describe the main characteristics of the maximal length, Gold, Barker, and Kasami sequences. We also discuss about variable- and fixed-length orthogonal codes like Walsh- Hadamard codes. The equivalence of PN and orthogonal codes are also derived. Finally, a new PN sequence is proposed which is shown to have certain better properties than the existing codes.
Keywords: Code division multiple access, pseudo-noise codes, maximal length, Gold, Barker, Kasami, Walsh-Hadamard, autocorrelation, crosscorrelation, figure of merit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60585681 Performance of Chaotic Lu System in CDMA Satellites Communications Systems
Authors: K. Kemih, M. Benslama
Abstract:
This paper investigates the problem of spreading sequence and receiver code synchronization techniques for satellite based CDMA communications systems. The performance of CDMA system depends on the autocorrelation and cross-correlation properties of the used spreading sequences. In this paper we propose the uses of chaotic Lu system to generate binary sequences for spreading codes in a direct sequence spread CDMA system. To minimize multiple access interference (MAI) we propose the use of genetic algorithm for optimum selection of chaotic spreading sequences. To solve the problem of transmitter-receiver synchronization, we use the passivity controls. The concept of semipassivity is defined to find simple conditions which ensure boundedness of the solutions of coupled Lu systems. Numerical results are presented to show the effectiveness of the proposed approach.Keywords: About Chaotic Lu system, synchronization, Spreading sequence, Genetic Algorithm. Passive System
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750