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Abstract—Different pseudo-random or pseudo-noise (PN) as well
as orthogonal sequences that can be used as spreading codes for code
division multiple access (CDMA) cellular networks or can be used
for encrypting speech signals to reduce the residual intelligence are
investigated. We briefly review the theoretical background for direct
sequence CDMA systems and describe the main characteristics of
the maximal length, Gold, Barker, and Kasami sequences. We also
discuss about variable- and fixed-length orthogonal codes like Walsh-
Hadamard codes. The equivalence of PN and orthogonal codes are
also derived. Finally, a new PN sequence is proposed which is shown
to have certain better properties than the existing codes.

Keywords—Code division multiple access, pseudo-noise codes,
maximal length, Gold, Barker, Kasami, Walsh-Hadamard, autocor-
relation, crosscorrelation, figure of merit.

I. INTRODUCTION

IN a spread spectrum CDMA scheme, the transmitted
bandlimited signal is spread over a wide frequency band,

much wider than the minimum bandwidth required to transmit
the information being sent [1]. It employs a waveform that
for all purposes appears random to anyone but the intended
receiver of the transmitter waveform. Actually, for ease of both
generation and synchronization by the receiver, the waveform
is taken as a random-like, meaning that it can be generated
by mathematically precise rules, but statistically it satisfies
the requirements of a truly random sequence in the limiting
sense. These pseudo-random or pseudo-noise (PN) proper-
ties include, among other properties, balance, run and auto-
correlation properties. In spread spectrum CDMA all users
use the same bandwidth, but each transmitter is assigned a
distinct code. For using same bandwidth, there lies a possible
chance of high interference among the users when all are
close. The spreading codes, therefore, play a vital role in
designing such a system where each one should have high
autocorrelation and very less, ideally zero, crosscorrelation
values. A direct sequence (DS) CDMA modulation technique
using a PN code is shown in Fig. 1. Multiplying the input
data by a PN sequence, the bit rate of which is much higher
than the data bit rate, is called spreading. This increases the
data rate while adding redundancy to the system. The ratio of
PN sequence bit rate to data bit rate is called the spreading
factor (SF). The resulting waveform is wideband, noise-like,
and balanced in phase. In case there are two different I and
Q branches, each channel can be spread separately (which
is usually done in wideband CDMA). When the signal is
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received, the spreading is removed from the received code by
multiplying the same PN code exactly synchronized with the
received signal. However, if the CDMA codes are designed to
have very low crosscorrelation, then there is no despreading
generated by other user’s interference signals.

The notion of PN codes can be used for encryption purpose
as well. While transmitting information (speech, image or
other data) through insecure channels, there might be un-
wanted disclosure as well as unauthorized modification of data
if that is not properly secured. Therefore, certain mechanisms
are needed to protect the information within insecure channel.
One way to provide such protection is to convert the intelli-
gible data into unintelligible form prior to transmission and
such a process of conversion with a key is called encryption
[2]. At the receiver side, the encrypted message is converted
back to the original intelligible form by the reverse process of
the encryption called decryption.

For these two important application areas, PN sequences
have received a lot of attention lately. We take an analytical
approach in this article to show the generation, code length,
autocorrelation and crosscorrelation properties of some impor-
tant PN [3]-[15] and orthogonal sequences [16]-[19]. The main
among them are maximal length, Gold, Barker, Kasami, and
Walsh-Hadamard sequences. We also provide the mean square
correlation measurements for evaluating the performance of
different PN sequences. We next propose a new class of PN
sequence and show that it has better correlation properties than
the existing codes that makes the code a potential alternate
choice as spreading codes in CDMA systems.

This paper is organized as follows. In Sections 2 and 3,
we deal with different kind of PN and orthogonal sequences.
Section 4 shows the equivalence of PN and orthogonal codes.
Section 5 describes the main techniques to measure the
correlation properties of the PN sequences practically. We
introduce the new class of PN sequence with one of its
important properties in Section 6. The paper is concluded by
summarizing the main concepts discussed herein in Section 7.

II. FUNDAMENTALS OF DIFFERENT PN SEQUENCES

PN sequences are sequence of 1’s and 0’s where the
numbers look like statistically independent and uniformly
distributed. As said earlier, they are arranged random-like,
meaning that it can be generated by mathematically precise
rules, but statistically it satisfies the requirements of a truly
random sequence in the limiting sense. The PN sequences have
the following noise like properties [5]:
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Fig. 1. A DS-CDMA modulation technique using a PN code.

(i) Balance: Any PN sequence of length N = 2n− 1 contains
2n−1 ones and 2n−1 − 1 zeros,
(ii) Run: In any PN sequence, 1/2 of the runs have length 1,
1/4 have length 2, 1/8 have length 3, 1/16 have length 4,
and so on, as long as these fractions give integral numbers of
runs (in each case, the number of runs of 0’s is equal to the
number of run’s of 1’s),
(iii) Autocorrelation: The autocorrelation function r(i) of any
PN sequence of length N is given by

r(i) =
{

1 for i = 0
− 1

N for 1 ≤ |i| ≤ N − 1.

These three properties make PN sequences efficient for speech
encryption. However, particularly due to the third property,
adjacent bits correlation becomes considerably less, thereby
making the PN sequences more effective to be used in systems
like CDMA. Therefore, useful PN sequences must have very
good auto-correlation and cross-correlation properties as well
as maintaining some randomness properties. The Welch bound
places a lower limit on the maximum level of the correlation
function (auto-correlation of sidelobes and cross-correlation
levels). The Welch bound for a set of K sequences with each
sequence of length N (N ≥ K) is defined as

φmax ≥
√

N −K

NK −K
(1)

and such a bound is no longer achievable when N > K(K +
1)/2 for real cases. Note that, in the sequel, sometimes we
shall represent binary sequences using zeros and ones and in
other cases +1’s and −1’s. The appropriate mapping is that
the zeros are mapped to +1’s and ones are mapped to −1’s.
Below, we describe certain main PN sequences.

A. Maximal Length Sequences

The Maximal length sequence (m-sequence) generator is
usually constructed with linear feedback shift registers (LFSR)
[8],[9]. The m-sequences are, by definition, the largest codes
that can be generated by a given shift register of given
length with feedback. The feedback function, also called as
characteristic polynomial, determines the length and type of
the sequence generated. Say, p(x) = xn+αn−1x

n−1+· · ·+α0.
In a finite field of or Galois field (GF (q)) over a prime number
q, p(x) is irreducible if it cannot be factored into a product of

Sn−1

Cn−1

Sn−2

Cn−2 C1

S1 S0

C0

Decimal

Sequence
Random

Initial Seed Register (which is transmitted through secured channel)

Binary to
Decimal
Converter Index

Pseudo

Fig. 2. The block diagram of an m-sequence generator.

lower degree polynomials. It becomes primitive if the smallest
integer l for which p(x) divides c(x) = xl − 1 is l = qn − 1.
Fig. 2 shows the general structure of a m-sequence generator.
It contains n shift registers and is initiated with a starting seed,
which is usually transmitted to the intended users through a
secure channel. The outputs of the shift registers are multiplied
with the coefficients (Cn−1, Cn−2, . . . , C1, C0) of a primitive
polynomial with respect to modulo-2 operation. The resultant
output obtained by the modulo-2 operation is then fed back
to the first shift register and is called an m-sequence. The
length of the generated m-sequence is N = 2n − 1, which
depends on the length of the LFSR used for the generation of
the m-sequence. For binary fields (GF (2n)), a set of primitive
polynomials up to n = 30 is shown in Table 1, which is quite
sufficient for most of the purposes. Primitive polynomials of
much higher degree can be found in [18].

An m-sequence possesses good randomness properties in-
cluding a two valued auto-correlation function: level one
which occurs for every N elements, when all the patterns
match, and has a correlation of 1, and level two has a
correlation of − 1

N . In other words,

r(τ) =
{

1 for τ = 0, N, 2N, . . .
− 1

N otherwise. (2)

B. Gold Sequences

Gold sequences are generated by the modulo-2 operation
of two different m-sequences of same length. Fig. 3 shows
the block diagram of a Gold sequence generator. The two m-
sequences are able to generate a family of many non maximal
product codes, but a preferred maximal sequences can only
produce Gold codes [4]. Finding preferred pair of m-sequences
is necessary in defining set of Gold sequences. Since both m-
sequences have equal length N , the generated gold sequence
is of length N as well. From a pair of preferred sequences, the
Gold sequences are generated by the modulo-2 sum of the first
with shifted versions of the second or vice-versa. For a period
of N = 2n−1, there are N possible circular shifts. Thus, one
can get N sequences with two preferred m-sequences, and
these are called Gold sequences [5].

Consider an m-sequence represented by a binary vector u
of length N, and a second sequence v obtained by sampling
every qth symbol of u. In other words, v = u[q], where q
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TABLE I
A SET OF PRIMITIVE POLYNOMIALS UP TO DEGREE 30 FOR FOR

GENERATING m-SEQUENCES

degree (n) p(x)
1 x + 1
2 x2 + x + 1
3 x3 + x + 1
4 x4 + x + 1
5 x5 + x2 + 1
6 x6 + x + 1
7 x7 + x + 1
8 x8 + x6 + x5 + x + 1
9 x9 + x4 + 1
10 x10 + x3 + 1
11 x11 + x2 + 1
12 x12 + x7 + x4 + x3 + 1
13 x13 + x4 + x3 + x + 1
14 x14 + x12 + x11 + x + 1
15 x15 + x + 1
16 x16 + x5 + x3 + x2 + 1
17 x17 + x3 + 1
18 x18 + x7 + 1
19 x19 + x6 + x5 + x + 1
20 x20 + x3 + 1
21 x21 + x2 + 1
22 x22 + x + 1
23 x23 + x5 + 1
24 x24 + x4 + x3 + x + 1
25 x25 + x3 + 1
26 x26 + x8 + x7 + x + 1
27 x27 + x8 + x7 + x + 1
28 x28 + x3 + 1
29 x29 + x2 + 1
30 x30 + x16 + x15 + x + 1

is odd and either q = 2k + 1 or q = 22k − 2k + 1. Two
m-sequences u and v are called the preferred pair if

n 6= 0 (mod 4) (3)

i.e., n is odd or n = 2 (mod 4). The relation between n and
k in such Gold sequences follows the below stated property.

gcd(n, k) =
{

1 for n odd
2 for n = 2 (mod 4). (4)

The set of Gold sequences generated with the two preferred
pair of m-sequences u and v is given as:

G(u, v) = {u, v, u⊕v, u⊕T ·v, u⊕T 2 ·v, . . . , u⊕TN−1 ·v}
(5)

where T is the cyclic shift operator and ⊕ is the XOR
operation.

The auto-correlation properties of Gold sequences are not
as good as that of m-sequences. Apart from the two orig-
inal sequences, the other are not m-sequences; hence the
auto-correlation is not two valued. The Gold sequences set
have three valued auto-correlation spectrum, but these se-
quences provides more security compared to m-sequences.
Gold sequences auto-correlation function rxx(τ) and the cross-
correlation function rxy(τ) can be defined as

rxx(τ) =

{
1 for τ = 0{
− t(n)

N ,− 1
N , t(n)−2

N

}
for τ 6= 0 (6)

rxy(τ) =
{
− t(n)

N
,− 1

N
,
t(n)− 2

N

}
(7)

m−Sequence 2 (t=T   )k

Gold Sequence (k)

m−Sequence 1 (t=0)

Fig. 3. A typical Gold sequence generator.

where

t(n) =

{
1 + 2

n+1
2 for n odd

1 + 2
n+2

2 for n even.

The peak correlation value for Gold sequences is t(n)/N
and from the above equations, Gold sequences with odd value
of LFSR length have less correlation values compared to that
of even value of n, since the value of t(n) for even value of
n is less.

C. Gold-Like Sequences

There exist a class of sequences which have parameters
similar to those of Gold sequences. Let u be an m-sequence of
length N = 2n−1 generated by a primitive polynomial of de-
gree n and let q be an integer such that gcd(q,N) = 3 and let
v(k), k = 0, 1, 2, denote the sequences obtained by decimating
T ku by q. The sequences v(k) are periodic with period N ′ =
N/3. This new class of sequences, defined as Gq(u, v) =
{u, u ⊕ v(0), u ⊕ Tv(0), u ⊕ T 1v(0), · · · , u ⊕ TN ′−1v(0), u ⊕
v(1), u⊕ Tv(1), u⊕ T 1v(1), · · · , u⊕ TN ′−1v(1), u⊕ v(2), u⊕
Tv(2), u ⊕ T 1v(2), · · · , u ⊕ TN ′−1v(2)}, are called Gold-like
sequences [10].

The Gold-like sequence set contains 2n sequences and
period of the each sequence is 2n − 1. The peak correlation
value for the set Gq(u, v) is φmax = t(n), which is similar to
that of the Gold sequences.

D. Barker Sequences

Barker sequences are short length codes that offer good
correlation properties. A Barker code is a sequence, {ci}, of
1’s and 0’s of some finite length N such that the discrete
auto-correlation function r(τ), defined as:

r(τ) =
N−τ∑

i=0

cici+τ (8)

satisfies |r(τ)| ≤ 1 for (τ 6= 0) [11]. Barker sequences have
many advantages over other PN sequences. These sequences
satisfies the balance property and the run property of the
PN sequences. These sequences have uniformly low auto-
correlation sidelobes (≤1), and the size of these families is
also small. Table II gives a list of known Barker sequences.
No theoretical limit to the length of Barker sequences has
been found. Turyn and Storer [12] have shown that there are
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TABLE II
A LIST OF KNOWN BARKER SEQUENCES

Length (bits) Sequence

2 [1 -1], [1 1]

3 [1 1 -1]

4 [1 -1 1 1], [1 -1 -1 -1]

5 [1 1 1 -1 1]

7 [1 1 1 -1 -1 1 -1]

11 [1 1 1 -1 -1 -1 1 -1 -1 1 -1]

13 [1 1 1 1 1 -1 -1 1 1 -1 1 -1 1]

no other solutions of odd length and very little has been said
concerning the existence of Barker codes of even length. In
[13] it has been shown that codes of even length must have a
length which is a perfect square (except N = 2).

E. Barker-Like Sequences

Barker sequences have good correlation properties with the
peak correlation value of these sequences being bounded by 1.
The number of existing Barker sequences, however, are very
less. We can generate more number of sequences by making
some relaxation on the peak value of the correlation function.
These new sequences are called Barker-like sequences [14]
which are defined as follows:

r(τ) ≤ m 0 < τ ≤ τ ′ < N (9)

where r(τ) is the auto-correlation function for a sequence
of length N as defined in (8). The variables τ ′ and m are
design parameters for the Barker like sequences, where τ ′ is
the maximum allowed shift between the sequence and m is
the magnitude of the upper bound on the peak correlation
function. If m = 1 and τ ′ = N , the generated sequences
becomes Barker sequences.

F. Kasami Sequences

Kasami sequences are PN sequences of length N = 2n−1,
where n is the degree of the primitive polynomial used to
generate Kasami sequences and these sequences are defined
for even values of n [10],[15]. There are two classes of Kasami
sequences: (i) small set of Kasami sequences, (ii) large set of
Kasami sequences.

1) Small Set of Kasami Sequences: Small set of Kasami
sequences are optimal in the sense of matching Welch’s
lower bound for correlation functions. A small set of Kasami
sequences [10] is a set of 2n/2 binary sequences each of length
N = 2n−1, where n is the degree of the higher order primitive
polynomial used to generate the set and it is of even length.
The degree of the second order polynomial used to generate
small Kasami set is n/2. Let u be an m-sequence of length
N generated by a primitive polynomial of length n, and let w

be the sequence obtained by decimating u by 2n/2 + 1. The
small set of Kasami sequences is defined as:

ks(u) =
{

u, u⊕ w, u⊕ Tw, · · · , u⊕ T 2n/2−2w
}

. (10)

The sequence w obtained by decimating the m-sequence u
by 2n/2 + 1 is also an m-sequence of length 2n/2 − 1,
generated by a primitive polynomial of degree n/2. Similar to
the Gold codes the correlation function of small set of Kasami
sequences is also three valued. The correlation functions for
the sequences take on from the values {−1,−s(n), s(n)−2},
where s(n) = 2n/2 +1. The auto-correlation function of small
set of Kasami sequences is defined as:

rxx(τ) =

{
1 for τ = 0{
− s(n)

N ,− 1
N , s(n)−2

N

}
for τ 6= 0. (11)

2) Large Set of Kasami Sequences: Small set of Kasami
sequences are optimal sequences, these sequences have better
correlation properties compared to Gold sequences. However,
the set contains less number of sequences. For the shift
register of length n the number of possible sequences for the
small Kasami sequence set is only 2n/2 sequences, whereas
a Gold code set contains 2n + 2 sequences. The number
of sequences can be increased by making some relaxation
on the correlation values of the sequences. The new set of
sequences is called large set of Kasami sequences [10],[15].
The large set of Kasami sequences contains more number of
sequences compared to Gold codes but these sequences have
more correlation values compared to Gold codes. The large set
of Kasami sequences contains all the sequences in the small
set along with the Gold codes.

For mod(n, 4) = 2, the large set of Kasami sequences
is defined as follows. Let v be the sequence formed by
decimating the sequence u by t(n). The large set of Kasami
sequences is then defined as:

kl(u) = G(u, v)
⋃




2n/2−2⋃

i=0

{
T iw ⊕G(u, v)

}

 . (12)

The correlation functions for the sequences takes on the
values {−t(n),−s(n),−1, s(n)−2, t(n)−2}. The maximum
value of the correlation function is t(n) which is same as that
of Gold codes for even value of n and for odd value of n
the Gold codes have less correlation values compared to large
set of Kasami sequences. Table III provides a comparative
account of the length of the PN sequences, number of possible
PN sequences of a class and the peak correlation values
for different PN sequences depending on the degree of the
primitive polynomial used to generate the sequences.

III. ORTHOGONAL CODES

Two sequences are said to be orthogonal when the inner
product between the two sequences is zero. If ci(kτ) and
cj(kτ) are the ith and jth orthogonal members of an orthog-
onal set, respectively, M is the length of the set and τ is the
symbol duration, then the orthogonal property states that

M−1∑

k=0

ci(kτ)cj(kτ) = 0 i 6= j. (13)
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TABLE III
A COMPARISON OF FAMILIES OF PN SEQUENCES

Sequence n Length Number of Sequences φmax

Maximal even/odd 2n − 1 1 1

Gold odd 2n − 1 2n − 1 1 + 2
n+1

2

Gold even 2n − 1 2n − 1 1 + 2
n+2

2

Gold-Like gcd(n, k) = 3 2n − 1 2n 1 + 2
n+2

2

Barker-Like even/odd 2n − 1 f(n, m) m

Small Kasami even 2n − 1 2
n
2 1 + 2

n+2
2

Large Kasami even and
mod(n, 4) = 2

2n − 1 [2
n
2 (2n + 1)− 1] 1 + 2

n+2
2

There are two kinds of orthogonal codes: fixed- and variable-
length, which obey this relation and are discussed below.

A. Fixed Length Orthogonal Codes

1) Walsh Hadamard Codes: Walsh Hadamard (WH) codes
are orthogonal codes possessing low auto-correlation proper-
ties. The WH sequences [16], [17] of length N are defined
with a class of orthogonal matrices HN , called Hadamard
matrices, as follows

HNHT
N = NIN (14)

where HT
N is the transposed Hadamard matrix of order N ,

and IN is the N ×N unity matrix.
Walsh sequences are the rows of a Hadamard matrix HN ,

which is a square matrix of order N . Hadamard matrices
contain one row of all ones and the remaining rows each
have equal numbers of +1’s and −1’s. Walsh sequences can
be constructed for block length N = 2n, where n is an integer.
The Hadamard matrix of desired length can be generated by
the following recursive procedure

H1 =
[

1
]
1×1

, H2 =
[

H1 H1

H1 −H1

]

2×2

, . . .

HN =
[

HN/2 HN/2

HN/2 −HN/2

]

N×N

.

From the corresponding matrix, the WH sequences are given
by the rows, in Walsh functions the 0’s are mapped to 1’s and
1’s are mapped to −1’s. However, the auto-correlation function
of WH codes does not have good characteristics, it can have
more than one peak and these sequences do not satisfy the run
property.

2) Modified Walsh Hadamard Codes: Modified Walsh
Hadamard (MWH) codes are generated by multiplying the
Hadamard matrix HN with a diagonal matrix DN of same
order [17],[19] as follows

WN = HNDN . (15)

The modified WH codes are orthogonal codes too, since

WNWT
N = HNDN (HNDN )T = HNDNDT

NHT
N (16)

where it can be shown that

DNDT
N = kIN k ∈ R. (17)

Substituting (17) into (16) yields

WNWT
N = kHNHT

N = kNIN . (18)

If k = 1, then the sequences defined by the matrix WN are
not only orthogonal, but possess the same normalization as
the WH sequences. However, the correlation properties of the
sequences defined by WN can be significantly different to
those of the original WH sequences. These sequences have
better correlation properties compared to Walsh sequences.
The simple class of orthogonal matrices that can be chosen
is diagonal matrices, with their elements (dm,n) fulfilling the
condition:

dm,n =
{

0 for m 6= n
k for m = n; m,n = 1, 2, . . . , N

where |k| = 1.

B. Variable Length Orthogonal Codes

WH codes and MWH codes are fixed length orthogonal
codes with the dot product of any two such sequences being
zero. Variable length orthogonal codes ck(i), i = 1, 2, . . . , 2k,
are those with different lengths satisfying the orthogonal
property [4]. The codes are taken from a orthogonal variable
spreading factor (OVSF) code tree as shown in Fig. 4. This
code tree generation algorithm is similar to the recursive gener-
ation of the Walsh codes by means of the Hadamard matrices.
New levels in the code tree are generated by concatenating a
root codeword with a replica of itself. Ck is a matrix of size
N × N representing N(= 2k) codes, each of length N bits
and the subscript k in Ck represents the layer of recursion.
As shown below, a set of 2k codes can be generated at the kth

layer using the recursive relation in with an initial condition
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1

1   1

1 −1

1   1   1   1

1   1 −1 −1

1 −1   1 −1

1 −1 −1   1

1    1  −1  −1    1    1  −1  −1

1  −1    1  −1    1  −1    1  −1

1  −1    1  −1  −1    1  −1    1

1    1  −1  −1  −1  −1    1    1

 1    1    1    1    1    1    1    1

 1    1    1    1  −1 −1  −1  −1

1  −1  −1    1    1  −1  −1    1

1  −1  −1    1  −1    1    1  −1

H1 H2 H4 H8 H16

Fig. 4. OVSF code tree for WH codes.

c0(1) = {1}:

Ck =




ck(1)
ck(2)
ck(3)

...
ck(2k − 1)

ck(2k)




=




ck−1(1)ck−1(1)
ck−1(1)ck−1(1)
ck−1(2)ck−1(2)
ck−1(2)ck−1(2)

...
ck−1(2k−1)ck−1(2k−1)
ck−1(2k−1)ck−1(2k−1)




(19)
where any c(.) represents the complement of c(.). Note that
all the codes in the tree are not orthogonal to each other. They
become orthogonal only if they obey the following rules:
(a) The codes in the same layer constitute the Walsh functions
and, hence, are orthogonal.
(b) Any two codes of different layers are also orthogonal
except for the condition that one code is the mother code of
the other.

MWH codes of given length N are generated by multiplying
the Hadamard matrix with a diagonal matrix of size N ×N .
Thus, we have 2N different diagonal matrices with +1 and
−1 as the diagonal elements. Every diagonal matrix can
restore the fixed length orthogonal property of the MWH
code set, but not the variable length orthogonal property. To
acquire variable length orthogonal property for MWH code
set, the diagonal elements of the diagonal matrix should be the
repetitive sequence of length equal to the minimum spreading
factor required in the system. Fig. 5 shows the code tree
for the generation of variable length orthogonal codes with
{1, 1, 1,−1} as repetitive sequence.

C. Orthogonal Gold Codes

One can find that many cross-correlation values of Gold
codes are −1. By padding one zero to the original Gold
codes, it is possible to make cross-correlation values to 0 at
no shift among the two sequences. In fact, 2n + 1 orthogonal
codes can be obtained by this simple zero padding. These
codes are called orthogonal Gold codes. The length of these
orthogonal Gold codes is 2n, thereby making these sequences
more suitable for different applications. The correlation values
of these orthogonal Gold codes are nearly equal to that of the
original Gold codes.

1,    0,    0,    0

0,    1,    0,    0

0,    0,    1,    0

0,    0,    0, −1

1,    1,    1,    1

1,    1, −1, −1

1, −1,    1, −1

1, −1, −1,    1

1,    1,    1, −1

1, −1,    1,    1

1, −1, −1, −1

1,    1, −1,    1

H1 H2 H4 D4 W4 W8 W16 

1, −1

1,    1

1

   

1,    1,    1, −1,    1,    1,    1, −1   

1,    1,    1, −1, −1, −1, −1,    1 

1,    1, −1,    1,    1,    1, −1,    1

1,    1, −1,    1, −1, −1,    1, −1

 1, −1,     1,    1,   1,  −1,     1,   1

 1, −1, −1, −1, −1,    1,    1,    1

 1, −1,     1,    1, −1,    1, −1,  −1

 1, −1,  −1, −1,    1, −1, −1, −1

Fig. 5. OVSF code tree for MWH codes with {1, 1, 1,−1} as basic repetitive
sequence.

IV. EQUIVALENCE OF PSEUDO-RANDOM CODES AND
ORTHOGONAL CODES

The Hadamard matrices can be easily constructed from PN
sequences. Below, we state it in the form of a property and
then by proving it.

Property 1: Construction of Hadamard Matrices: If an
(N + 1) × (N + 1) array is formed whose rows are each of
the PN sequences, formed by same primitive polynomial, by
replacing 1’s with −1’s and 0’s with 1’s of each sequence
along with adding an initial row of length N and an initial
column of length (N + 1) with all 1’s, the resultant array is a
2n × 2n Hadamard matrix.

Proof: Any n × n real matrix Hn with all its entries as
±1 is called a Hadamard matrix if it satisfies the relation:
HnHT

n = nI , as given in (14). Following the construction of
H2n as given above, it is easy to check that H2nHT

2n = 2nI ,
where 2n = N + 1.

V. MEAN SQUARE CORRELATION MEASURES

The performance of different PN sequences is usually
evaluated by mean square aperiodic auto-correlation RAC

(MSAAC) and mean square aperiodic cross-correlation RCC

(MSACC) measures. These correlation measures have been
introduced by Oppermann and Vucetic [7]. If ci(n) represents
non-delayed version of ck(i), cj(n+τ) represents the delayed
version of ck(j) by ‘τ ’ units and N is the length of the
sequence ci, then the discrete aperiodic correlation function
is defined as

ri,j(τ) =
1
N

N−1∑

τ=1−N

ci(n)cj(n + τ). (20)

The mean square aperiodic auto-correlation value for a code
set containing M sequences is given by

RAC =
1
M

M∑

i=1

N−1∑

τ=1−N,τ 6=0

|ri,i(τ)|2 (21)
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and a similar measure for the mean square aperiodic cross-
correlation value is given by

RCC =
1

M(M − 1)

M∑

i=1

M∑

j=1,j 6=i

N−1∑

τ=1−N

|ri,j(τ)|2. (22)

Auto-correlation refers to the degree of correspondence be-
tween a sequence and phase shifted replica of itself, whereas
cross-correlation is the measure of agreement between two
different codes. These two measures have been used as the
basis for comparing the sequence sets in this paper. The se-
quences which have good auto-correlation properties will have
poorer cross-correlation properties, and vice-versa, and they
have wide and flat frequency spectrum. The sequences which
have less MSAAC values removes the correlation among the
bits with in a sample, and the sequences which have less
MSACC values removes the sample to sample correlation, and
make the speech signal less intelligible. We illustrate this fact
by plotting aperiodic auto- and cross-correlation functions of
several discussed sequences. Fig. 6(a)-(b) shows the aperiodic
auto- and cross-correlation functions of Gold sequences of
length 63 bits. Fig. 7(a)-(b), Fig. 8(a)-(b), Fig. 9(a)-(b) and Fig.
10 (a)-(b) show the same functions for Barker-like, Kasami,
MWH and orthogonal Gold sequences, respectively. Note that
for all the PN sequences, the length of the codes have been
taken as 63 bits, whereas for orthogonal codes, it has been
taken as 64 bits. The figures clearly show the MSAAC and
MSACC tradeoff for these codes.

A. Figure of Merit

As has been mentioned, the price for being able to select
good cross-correlation properties will be a degradation in
the auto-correlation properties of the set of sequences. A
degradation of the auto-correlation properties has a direct
relation on the frequency spectrum of the sequences in the set.
If the RAC values are poor, the spectrum of the sequence will
not be wide-band and flat. In order to determine quantitatively
how significant this degradation is for a given set of sequences,
a Figure of Merit (FoM) is required to judge the suitability
of the frequency characteristics of the sequences. Sequences
with low FoM has narrow flat spectrum and they are neither
suitable for CDMA nor for speech encryption. The FoM for
a sequence, ci(n), of length N having the auto-correlation
function ri(τ) is given as: Fx = r2i,i(0)∑

τ 6=0
|ri,i(τ)|2 = N2

2.
N−1∑
τ=1

|ri,i(τ)|2
.

This is nothing more than the inverse of the MSAAC value
for a given sequence. It should be noted that for the new class
of PN code, given in next section, this FoM may be extended
to the whole sequence set as each sequence in the set has the
same absolute value of the auto-correlation. Thus we may use
the inverse of the value calculated for the RAC as the FoM.

VI. PROPOSAL OF A NEW CLASS OF PN CODE

We construct a new family of sequences ei = (ei, ei+1, ...)
by generating two m-sequences ci = (ci, ci+1, ..., ci+2n1−2)
and di = (di, di+1, ..., di+2n2−2) with two different primitive
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Fig. 6. Aperiodic (a) auto-correlation function, (b) cross-correlation function,
of Gold sequence of length 63 bits.
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Fig. 7. Aperiodic (a) auto-correlation function, (b) cross-correlation function,
of Barker-like sequence of length 63 bits.
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Fig. 8. Aperiodic (a) auto-correlation function, (b) cross-correlation function,
of large Kasami sequence of length 63 bits.
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Fig. 9. Aperiodic (a) auto-correlation function, (b) cross-correlation function,
of MWH sequence of length 64 bits.
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Fig. 10. Aperiodic (a) auto-correlation function, (b) cross-correlation
function, of orthogonal Gold sequence of length 64 bits.

polynomials whose respective degrees n1 and n2 are two
primes and then having a mod 2 (i) addition and (ii) mul-
tiplication of these two m-sequences. The resultant family of
sequences thus generated can broadly be classified as modulo-
2 operation of Mersenne (MOM) sequences. In particular,
there will be two different kind of sequences: mod 2 addition
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Fig. 11. The construction of MAM (e′i) and MMM (e′′i ) sequences.

of Mersenne (MAM) e′i = ci + di and mod 2 multiplication
of Mersenne (MMM) e′′i = ci.di sequences, which are shown
in Fig. 11. We provide an interesting property of this new
family of sequences in the sequel. Note that whenever we
mention MOM in the sequel, unless otherwise specified, it
implies either MAM or MMM.
Notations: We consider ci is recursively generated via prim-
itive polynomial p(x) ∈ GF (2n1) and di via q(x) ∈
GF (2n2). A k shift on the resultant recursive sequence ei

would be denoted as T k(ei), i.e., T 0(ei) = ei. If any
T a(ci)(+/.)T b(di) = ẽi and if ẽi = T k(ei) for any k, then
their shift equivalence would be denoted as ẽi ∼ ei.

Property 2: The values of cross-correlation R
ei,T

k(ei)
c be-

tween any two shift equivalent MOM sequences is bounded
by the set {te,−f(n1),−f(n2)} where any f(n) = 2n − 1.

Proof: We represent the sequence as R
ei,T

k(ei)
c =∑Mn1Mn2−1

i=0 (−1)ei+T k(ei). Therefore, either in e′i or in e′′i ,
the cross correlation between any two sequences is equal to the
difference of total number of agreements and disagreements
of the two corresponding bits in any i-th position within
a single period Mn1Mn2 . It is known that the correlation
of any length N m-sequence is defined as a set {N,u}
where N denotes the auto-correlation with zero delay while
u = −1 represents cross-correlation (Rc) levels (the value
comes from balance and window properties of m-sequences).
The correlation values of MAM sequences can thus be defined
as {Mn1 ,−1}{Mn2 ,−1} = {Mn1Mn2 , 1,−Mn1 ,−Mn2},
where the first argument denotes auto-correlation value with
zero delay (by another property we haven’t shown). Hence, the
cross-correlation of MAM sequences would be given by the set
Rc = {1,−Mn1 ,−Mn2}. Note that in Rc, the first argument
u.u = 1 denotes the difference between total number of zeros
and total number of ones for e′i and hence can be replaced by
te′′ for MMM sequences. This completes the structure of Rc

for MOM sequences in general.
Corollary 1: The theoretical Welch lower bound on maxi-

mum level of Rc comes approximately as
√

Mn1Mn2 in our
case as the number of sequences are many. From the set Rc, we
get |Rcmax | = Mn2 >

√
Mn1Mn2 . The MOM sequences thus

follow the Welch lower bound criteria. On the other hand, the
Rc values are considerably less in comparison with the long
sequence period Mn1Mn2 .

VII. CONCLUSION

We have reviewed different PN as well as fixed- and
variable-length orthogonal sequences that can be used in many
applications including spreading codes for CDMA cellular net-
works. The equivalence of PN and orthogonal codes are also
derived. Simulation results show that large Kasami sequence
has both good correlation values and high FoM, which make
these sequences to have wide flat spectrum that is better suited
for any applications. For this reason, these are used in the
reverse link of W-CDMA systems. A new PN sequence has
been proposed in the latter part of this paper which is shown to
have a bounded cross-correlation value, better than the existing
codes. It is expected that this new code would be explored in
CDMA application areas.

REFERENCES

[1] A. J. Viterbi, CDMA: Principles of Spread Spectrum Communication,
Addison-Wesley, 1995.

[2] W. Diffe and M. E. Hellman, “New directions in cryptography,” IEEE
Trans. Inform. Theory, vol. 22, pp. 644-654, Nov. 1976.

[3] R. L. Pickholtz, D. L. Schilling and L. B. Milstein, “Theory of spread
spectrum communications- A tutorial,” IEEE Trans. Commun., vol.
COM-30, no. 5, May 1982.

[4] E. H. Dinan and B. Jabbari, “Spreading codes for direct sequence CDMA
and wideband CDMA cellular networks,” IEEE Commun. Magazine, vol.
36, no. 4, pp. 48-54, Sep. 1998.

[5] B. Sklar, Digital Communications: Fundamentals and Applications, 2nd

Ed., Prentice Hall, 2001.
[6] J. H. Lindholm, “An analysis of the pseudo randomness properties of

the subsequences of long m-sequences,” IEEE Trans. Inform. Theory,
vol. IT-14, pp. 569-576, July 1968.

[7] I. Oppermann and B. S. Vucetic, “Complex spreading sequences with a
wide range of correlation properties,” IEEE Trans. Commun., vol. COM-
45, pp. 365-375, March 1997.

[8] L. T. Wang and E. J. McCluskey, “Linear feedback shift register design
using cyclic codes,” IEEE Trans. Comput., vol. 37, pp. 1302-1306, Oct.
1988.

[9] A. Fuster and L. J. Garcia, “An efficient algorithm to generate binary
sequences for cryptographic purposes,” Theoretical Computer Science,
vol. 259, pp. 679-688, May 2001.

[10] D. V. Sarwate and M. B. Pursley, “Correlation properties of pseudo
random and related sequences,” Proc. IEEE, vol. 68, no. 5, pp. 593-
619, May 1980.

[11] S. W. Golomb and R. A. Scholtz, “Generalized Barker sequences,” IEEE
Trans. Inform. Theory, vol. IT-11, no. 4, pp. 533-537, Oct. 1965.

[12] R. Turyn and J. E. Storer, “On binary sequences,” Proc. Am. Math. Soc,
vol. 12, pp. 394-399, June 1961.

[13] D. G. Luenberger, “On Barker codes of even length,” Proc. IEEE, vol.
51, pp. 230-231, Jan. 1963.

[14] C. K. Chan and W. H. Lam, “Generalised Barker-like PN sequences
for quasisynchronous spread spectrum multiple access communication
systems,” IEE Proc. Commun., vol. 142, no. 2, pp. 91-98, April 1995.

[15] X. Wang, Y. Wu and B. Caron, “Transmitter identification using embed-
ded pseudo random sequences,” IEEE Tran. Broadcasting, vol. 50, no.
3, pp. 244-252, Sep. 2004.

[16] V. Milosevic, V. Delic and V. Senk, “Hadamard transform application
in speech scrambling,” Proc. IEEE, vol. 1, pp. 361-364, July 1997.

[17] Tai-Kuo Woo, “Orthogonal variable spreading codes for wideband
CDMA,” IEEE Trans. Vehicular Techn., vol. 51, no. 4, pp. 700-709,
July 2002.

[18] E. J. Watson, “Primitive Polynomials (mod 2),” Mathematics of Com-
putation, vol. 16, pp. 368-369, 1962.

[19] B. Wysocki and T. A. Wysocki, “Modified Walsh Hadamard
sequences for DS-CDMA wireless systems,” School of
Electrical, Computer and Telecommunications Engineering,
University of Wollongong, Australia. [Online] Available:
www.elec.uow.edu.au/staff/wysocki/publications/J1.pdf.

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:2, No:12, 2008 

2843International Scholarly and Scientific Research & Innovation 2(12) 2008 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n 

E
ng

in
ee

ri
ng

 V
ol

:2
, N

o:
12

, 2
00

8 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
37

16
.p

df


