
Abstract—Gene, principal unit of inheritance, is an ordered 

sequence of nucleotides. The genes of eukaryotic organisms include 

alternating segments of exons and introns. The region of 

Deoxyribonucleic acid (DNA) within a gene containing instructions 

for coding a protein is called exon. On the other hand, non-coding 

regions called introns are another part of DNA that regulates gene 

expression by removing from the messenger Ribonucleic acid (RNA) 

in a splicing process. This paper proposes to determine splice 

junctions that are exon-intron boundaries by analyzing DNA 

sequences. A splice junction can be either exon-intron (EI) or intron 

exon (IE). Because of the popularity and compatibility of the 

artificial neural network (ANN) in genetic fields; various ANN 

models are applied in this research. Multi-layer Perceptron (MLP), 

Radial Basis Function (RBF) and Generalized Regression Neural 

Networks (GRNN) are used to analyze and detect the splice junctions 

of gene sequences. 10-fold cross validation is used to demonstrate 

the accuracy of networks. The real performances of these networks 

are found by applying Receiver Operating Characteristic (ROC) 

analysis. 

Keywords—Gene, neural networks, ROC analysis, splice 

junctions.

I. INTRODUCTION

 gene determines one inherited feature of an organism. 

The set of genes interacts to direct physical development 

and behavior of an organism. Most genes encode proteins, but 

some are transcribed into non-coding RNA molecules that 

function in protein biosynthesis and gene regulation. In all 

organisms, there are two major steps of producing a functional 

molecule of RNA or protein called gene expression. The first 

step is transcription that produces a single-stranded RNA 

molecule known as messenger RNA (mRNA) whose 

nucleotide sequence is complementary to the DNA from 

which it was transcribed. The second step is translation in 

which a mature mRNA molecule is used as a template for 

synthesizing a new protein [1].  

An exon is a nucleotide sequence that is expressed or 

translated into protein, whereas an intron is an intervening 
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sequence that is transcribed (into RNA) but later eliminated 

from the transcription by splicing its adjacent exons. 

Therefore, only exons represent the mature gene. The splice 

junctions refer to the points in which splicing takes place that 

connect exon and intron regions. The DNA sequence is an 

ordered structure, so a splice junction can be either exon-

intron (EI) or intron-exon (IE) [2-5] (See Fig. 1). 

Determination of exon and intron regions is crucial in 

diagnosis of genetic diseases. Genetic information is 

generated through seperation of exons and introns, and 

rejoining of exon regions. This process is called splicing. To 

provide accurate splicing, splice junctions should be obtained. 

%15 of the mutations causing genetic diseases are originated 

from splicing mistakes. Most of these mutations are the 

changes of one nucleotid on the intronic and exonic regions of 

splice junctions [6]. 

Therefore, in a DNA sequence, the fundamental gene 

identification issue is to determine the presence and location 

of exons and introns in the sequence. Searching for special 

signal regions such as promoters (the initiation sites of 

transcription) or splice junctions is one approach. Measuring 

the splice characteristic of protein coding from segment to 

segment is another. In either case, exon identification is an 

essential step for gene modeling. A DNA sequence belongs to 

one of three classes [7, 8]according to the center of 60 

nucleotides at the boundary between position 30-31: EI, an 

exon-intron boundary; IE, an intron-exon boundary; N, 

neither type of boundary ( refer to Fig. 2). In this paper, two 

categories of IE and EI are chosen for ROC analysis. Thus, it 

is determined that in which category a DNA sequence belongs 

to. 

II. METHOD

In this paper, ANN is chosen for determination of splice 

junctions because of its learning and generalization 

capabilities [9-11]. MLP, RBF and GRNN are applied to this 

work. The data set used in ANN application, is taken from 

Genbank [12], and it contains 1535 instances. 
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Fig. 1 Splice junctions of a gene
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Each instance consists of a sequence of 60 DNA nucleotides 

of four base types: A (Adenine), G (Guanine), T (Thymine), C 

(Cytosine) and a label indicated one of two possible classes: 

IE (an intron-exon boundary, called an acceptor), EI (an exon-

intron boundary, called donor). There are 768 instances in the 

IE category, 767 instances in the IE category. 

III. THE WAY OF IMPROVING SOLUTION

Cross validation and ROC analysis are applied to find the 

real performances of the networks used to classify the dataset. 

Cross validation is used to find the generalization ability of 

ANN classification. ROC analysis has widely been used in 

medical data analysis to study the effect of varying the 

threshold on the numerical outcome of a diagnostic test. 

A. Cross Validation 

Cross validation is the statistical practice of partitioning a 

sample of data into subsets such that the analysis is initially 

performed on a single subset, while the other subset(s) are 

retained for subsequent use in confirming and validating the 

initial analysis. In this method, some of the data is removed 

before training begins. The initial subset of data is called the 

training set; while the other subset(s) are called testing sets. In 

the hold-out method that is the simple kind of cross validation, 

the data set is separated into two sets, called the training set 

and the testing set. In k-fold cross validation, the original 

sample is partitioned into k subset. A single subset is retained 

as the testing data and the remaining k  1 subsets are used as 

training data. Then, the k results of testing and training can be 

averaged to produce a single estimation. Namely, in k-fold 

cross validation, the data set is divided into k subsets, and the 

holdout method is repeated k times [13]. In this work, k is 10. 

B. Receiver Operating Chaarcteristic (ROC) Analysis 

ROC Analysis is related in a direct and natural way to 

cost/benefit analysis of diagnostic decision making. It is 

originated from signal detection theory, as a model of how 

well a receiver is able to detect a signal in the presence of 

noise. There are four possible outcomes from a binary 

classifier. If the outcome from a prediction is p and the actual 

value is also p, then it is called a true positive (TP); however if 

the actual value is n, then it is said a false positive (FP). 

Conversely, a true negative (TN) has occurred when both the 

prediction outcome and the actual value are n, and false 

negative (FN) is when the prediction outcome is n while the 

actual value is p [14].In this work, p and n is defined as EI and 

IE respectively shown in Table I. The limitations of diagnostic 

"accuracy" as a measure of decision performance require 

introduction of the concepts of the "sensitivity" and  

"specificity" of a diagnostic test. The equations of these 

measures can be given by (1) and (2) [15]: 

negativesfalsepositivestrue

positivestrue
ySensitivit        (1) 

positivesfalsenegativestrue

negativestrue
ySpecificit        (2) 

The key feature of ROC analysis is the distinction between 

hit rate (or true positive rate) and false alarm rate (or false 

positive rate) as two separate performance measures. 

IV. RESULTS

MLP network has 60 input, one hidden layer of 6 hidden 

unit and one output layer of one unit. Each input DNA 

sequence for processing consists of 60 nucleotides. In the 

network, the nucleotide in each position is encoded by four 

input units designated by A, G, T and C. In hidden and output 

layers, “logaritmic sigmoid’’ (logsig) and “saturating linear 

transfer function’’ (satlin) are used. Data should be numeric 

for artificial neural network [16], so numerical values instead 

of A,T,G,C are applied to input layer of the network. MLP 

network was trained 50 epochs. While one subset is used for 

testing, nine of them is used for training. Each of the subsets is 

tested ten times in MLP and the average of them is calculated 

as success rate. GRNN and RBF have 60 inputs and an output 

layer of one unit. The spread value is chosen 0.5 for both of 

them. Classification accuracies of every subsets in training 

and testing processes and the average success rates of MLP, 

RBF and GRNN are shown in Table II. 

Fig. 2 Categories of a) EI; b) IE

TABLE I

DECISION TABLE FOR EI-IE CLASSIFICATION

 Actual Value 

  EI IE 

EI True Positive False Positive
Prediction IE False Negative True Negative 

TABLE II

RESULTS OF MLP, RBF AND GRNN

MLP RBF GRNN 

Testing (%) 91.23 89.35 91.14 

Training (%) 98.88 100 91.99 
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There are applications using 10-fold cross validation for 

recognition splice junctions in literature. They are shown in 

Table III [12]. In this work, it has been shown that MLP, RBF 

and GRNN have a higher testing rate than previous works 

have.

The sensitivity and specificity values of MLP, RBF and 

GRNN are demonstrated in Table IV. 

According to obtained results of MLP, GRNN and RBF, 

training accuracies of all networks are higher than 90 %. 

Results of testing sets including data that is not used in 

training sets are more suitable for evaluation of network 

performances. Thus, all of obtained success rates by using test 

sets, ROC analysis of test sets and ROC curves drawn for test 

sets are considered for three networks. Success rates for test 

sets are acquired as 91.23 % for MLP, 91.14 % for GRNN and 

89.35 % for RBF. So, MLP and GRNN are more superior in 

accuracies. However, ROC analysis results are taken into 

consideration for a more detailed review because these values 

alone are not expressive (they do not demonstrate network 

performances accurately.). Sensitivity values that give 

correctly detected EI junctions are found as 0.9 for MLP, 0.93 

for GRNN and 0.95 for RBF. Specificity values which give 

correctly detected IE junctions are found as 0.92 for MLP, 

0.89 for GRNN and 0.85 for RBF. MLP gives best results for 

specificity and worst results in sensitivity. On the other hand, 

RBF gives best results for sensitivity and worst results in 

specificity. According to these results, GRNN has the most 

correct result supplying network for both specificity and 

sensitivity values. In addition, according to ROC curves 

drawn for different decision borders used in test sets, GRNN 

supplies best result (Fig. 3). Thus, it is tellable that GRNN is 

more successful than other networks which are used in this 

work to determine EI_IE and IE_EI junctions. Determination 

of exon regions that supplies genetic information on gene is 

planned as a next step of this work by appliying GRNN. 
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    (a)           (b)
Fig. 3 ROC Comparison of neural networks for (a) testing results (b) 

training results

TABLE III

PREVIOUS WORKS

Previous Works Accuracies (%) 

KBANN 83.37 

Backprob 83.51

Pebls 84.27 

Perceptron 67.27 

ID3 75.43 

COBWEB 75.5 

Neigreast-Neigbour 79.26 

TABLE IV

THE SENSITIVITY AND SPECIFICITY VALUES OF MLP, RBF

AND GRNN

 Sensitivity Specificity 

Testing 0.9 0.92 
MLP

Training 0.99 0.99

Testing 0.95 0.85 
RBF

Training 1 1

Testing 0.93 0.89 
GRNN

Training 0.94 0.9 
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