
 Abstract— One of the major problems in genomic field is to
perform sequence comparison on DNA and protein sequences.
Executing sequence comparison on the DNA and protein data is a
computationally intensive task. Sequence comparison is the basic
step for all algorithms in protein sequences similarity. Parallel
computing is an attractive solution to provide the computational
power needed to speedup the lengthy process of the sequence
comparison. Our main research is to enhance the protein sequence
algorithm using dynamic programming method. In our approach, we
parallelize the dynamic programming algorithm using multithreaded
program to perform the sequence comparison and also developed a
distributed protein database among many PCs using Remote Method
Interface (RMI). As a result, we showed how different sizes of
protein sequences data and computation of scoring matrix of these
protein sequence on different number of processors affected the
processing time and speed, as oppose to sequential processing.

Keywords— Protein sequence algorithm, dynamic programming
algorithm, multithread

I. INTRODUCTION

Today, many research works are being carried out by biologist
to understand the biological function of the genome. The
genome is the complete set of DNA molecules inside any cell
of living organism that is passed from one generation to its
offspring. DNA is abstracted as a long text over a four-letter
alphabet, each representing a different nucleotide: A, C, G and
T. It is recognized as what makes two livings thing being
biologically similar or distinct. Protein is a linear sequence of
simpler molecules called amino acids. Twenty different amino
acids found in protein [1], and they are identified by A, C, D,
E, F, G, H, I, K, L, M, N, P, O, R, S, T, U, W and Y. Like the
DNA, proteins are conveniently represented as a string of
three letters expressing its sequence of amino acids. The
amino acid sequence of a number of proteins can be compared
to determine whether the relationship exist between them
could have occurred by chance [2].
Computational method can be used to identify genes and their
function including statistic, sequence similarity, motif,
profiles, protein folds and probabilistic models [4]. Using this
method, it is possible to develop characteristic genome
signatures, assign functions to genes, identify metabolic
pathways and discover potential drug binding sites [5], [6].

One of the powerful methods to infer the biological function
of gene is by doing sequence similarity searching on protein
and DNA sequence in database. Protein or genes that have the
similar sequence are likely to perform the same function or
structure [4]. Two sequences are compared because we want
to identify similarities and differences between them. A
typical approach to solve this problem is to find a good and
plausible alignment between the two sequences. Then, given
an appropriate scoring scheme using BLOSUM [6] or
PAM250 [6], their similarity can be computed. The following
are some definition given to align the sequence [1].
Let say, S and T are strings. An alignment A maps string S’
and T’ that may contain space character, where

S’ = T’ , where S’ and T’ denotes the length of S’
and T’ respectively
 The removal of all spaces from S’ and T’ leaves S
and T respectively.

The value of alignment A is

,),(
1

l

i

iTiS where l = S’ = T’ , (1)

 S’i denotes the ith character of S’

 Let say sequence S = ACAAGACAGT and sequence T =
AGAACAAGGCGT, then S’ = ACAAGACAG-CGT and T’
= AGAACA-AGGCGT. The overall score of the alignment
can then be computed by adding up the score of each pair of
letters. For instance, using a scoring that gives a +1 value to
matches and –1 to mismatches and gaps, the alignment scores
is 9. (1) + 2. (-1) + 2. (-1) = 5. The similarity of two sequences
can be defined as the best score among all possible alignments
between them.

II. RELATED WORK

Sequence similarity requires sequence comparison to be
performed. Two general classes of sequence comparison used
to calculate similarity scores to infer sequence similarity are
heuristic algorithm and exhaustive algorithm. The first method
is currently widely used in practice, such as BLASTP and
FASTA [7]. The sequence comparison method base on
heuristic is faster but do not produce optimal results and do

Parallezation Protein Sequence Similarity
Algorithms using Remote Method Interface

Mubarak Saif Mohsen, Zurinahni Zainol, Rosalina Abdul Salam, Wahidah Husain
School of Computer Sciences

University Sains Malaysia
11800 Penang, Malaysia

 mubarak_saif@yahoo.com,{zuri,rosalina, wahidah}@cs.usm.my

World Academy of Science, Engineering and Technology
International Journal of Bioengineering and Life Sciences

 Vol:1, No:1, 2007

9International Scholarly and Scientific Research & Innovation 1(1) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 B
io

en
gi

ne
er

in
g

an
d

L
if

e
Sc

ie
nc

es
 V

ol
:1

, N
o:

1,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

11
9.

pd
f

not guarantee to calculate an optimal score for every sequence
in a database. The second method based on dynamic
programming such as Needleman–Wunsch algorithm [2] and
Smith-Waterman algorithm [1]. The Needleman- Wunsch
Algorithm is based on global sequence alignment, which was
a method for maximizing the amount of similarity between
two sequences. Sellers [9] described another global alignment
method, which minimized the differences between the
sequences and computed a distance measure. The Smith –
Waterman alignment algorithm is base on the local alignment
approach that allow user to determine the two protein
sequences are distinctly related. This algorithm can be used to
compute the optimal alignment score for creating actual
alignment. It was memory space proportional to product of the
length of two sequences. Smith et al. [1] proved that these two
methods were equivalent with appropriate substitution scores
and gap penalties. Goad and Kanehisa [10] also made some
refinements to the Needleman-Wunsch algorithm. When
alignments are computed in the context of database searching,
the dynamic programming algorithms described by Smith and
Waterman [11] and Gotoh [12] are in general too time-
consuming to be practical. The time complexity of these
algorithms is O(mn) where m,n are the length of two
sequences respectively. The most time spent in these
algorithms is calculating the matrix; so research work is focus
on parallelize the dynamic programming algorithm (DPA) to
speed up the process of calculation the matrix.

III. METHODOLOGY

Our parallel DPA is based on the existing DPA [13]. DPA
consists of two parts that are the calculation of scores
indicating the similarity between the two given sequences, and
the identification of the alignment(s) that lead to the score(s).
The data structure used is a two dimensional array is called
similarity matrix(SM). This SM is used to represent all
possible alignments that can be constructed from the two
sequences.

Comparison of two sequences, X = GGATAGG and Y=
TGATGGAGGT, using the DPA technique is illustrated in
Fig. 1. The sequences are placed along the left margin (X) and
along the top (Y). The SM is initialized with zeros along the
first row and first column so that alignments between
subsequences are not penalized by gaps on its left and right.
The other elements of the matrix are calculated by finding the
maximum value using the following equation

 SM (I, J-1) + gp

SM (I, J) = max SM (I-1, J-1) + ss (2)
 SM (I-1, J) + gp

The gp in equation (2) is the gap penalization and ss is the
substitution score.

Fig. 1: Matrix filling step

Fig. 2: The completed score matrix

Fig. 3: Completed trace back

Following this recurrence equation, the matrix is filled from
top left to bottom right with entry (i; j) requiring the entries (i;
j - 1), (I-1; j-1), and (i -1; j). By choosing the maximum value
at the SM (n,m) the best score is found and stored. Once the
SM is computed as shown in Fig. 2, the second part of the
algorithm will identify the sequence alignments. Each matrix
element, a trace-back procedure is applied to find out the
actual base pairs that constitute the alignment. Starting at the
end of the alignment and moving backwards to the beginning,
this procedure follows a path like the ones described by
arrows in Fig. 3 and the optimal alignment for
“GAATTCACTTA” and “GGATCGA” is “GGA-TC-G- -A”.

In order to enhance the algorithm for local and global
alignment for pair wise protein sequence data, new version of
DPA were proposed. There are as follows:

(a) Database preprocessing
(b) Distributed database
(c) Multithreading DPA

Each of this proposed solution would be discussed in detail
starting with database preprocessing, distributed databases and
followed by the multithread dynamic programming algorithm.

A. Database Preprocessing

Each record in the database contains the sequence and others
information, including the identification (ID), source
organism, accession numbers, gene or protein name, and
more. To reduce the time on disk reading and to perform
effective database searches, the database text files should be
parsed and stored in a more efficient format. In this format, all
protein sequences with its ID are stored in one file, while

World Academy of Science, Engineering and Technology
International Journal of Bioengineering and Life Sciences

 Vol:1, No:1, 2007

10International Scholarly and Scientific Research & Innovation 1(1) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 B
io

en
gi

ne
er

in
g

an
d

L
if

e
Sc

ie
nc

es
 V

ol
:1

, N
o:

1,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

11
9.

pd
f

other information about each protein sequence, e.g. organism,
accession numbers, gene or protein name etc. are stored in the
other file.

B. Distributed Database

Using RMI, more than one sequences will be read at the same
time and calculate the protein sequences similarity parallely.
The reading of the protein sequence is shown as Fig. 4. The
multithreaded system is design to solve the reading sequence
and compute the scoring matrix. The design mainly consists of
three main items that are; master node serve as databank that
hold the sequence data protein, i.e. PC that is needed to submit
and collect the result from the slaves nodes, and set of slave
nodes which are needed to multithread the sequence and
compute the scoring matrix parallels. Once the user input the
protein sequence to be searched, the system will read more
than existed protein sequences from the databank and
distribute the pair of sequences to different PCs. This will help
to keep all processors busy through most of the computation
and the speed of the algorithm will be increased.

Fig.

Fig 4: Distributed DB and computing scoring matrix

C. Multithreading DPA

Given the data presented by the DPA in section III, the SM
can be filled row-by-row, column-by-column. The problem is
that most of the elements in a row or column depend on other
elements in the same row (or column) and also on the
previous row (or column). This means the row (or column)
cannot be computed in parallel. Another challenge is to do
with the number of elements to be computed by each

processor in each step. This would lead to expensive
computation.
As shown in the Fig. 1 of the previous example, the SM
consists of R rows and C columns. In this work, firstly we
divide the SM into two thread or processor; one thread for
computing the columns, and another thread for computing the
rows. We used multithread program with two processors, one
processor for each thread. We named them as “rows
processor” and “columns processor”. Secondly, we initialize
the matrix by zeros and initialize the value of the variables
“next column” and “next row” by one’s.

When the computation starts at position (1,1), the “row
processor” starts computing for all cells from row 1 and the
“column processor” starts its computation for all cell from
column 1. At the same time the value for “next row” and “next
column” are increase to 2. These two variables are the control
variables to determine which column and row to be computed
next by the processor. In the third step, “row processor” and
column processor” computes all cells from the second row and
second column respectively started from position (2,2) and
increase the value of “next row” and “next column” to 3. The
value for these variables will increase in the same way for all
the next steps.
To compute (I,J) cell, we will pass the row I and row I-1 to
the “rows processor”, and pass the column J and column J-1 to
the “columns processor”. This will decrease the memory
space. Sometimes the protein sequences are too long thus to
make it easy to return the value, we will pass the
rows/columns as block and return its score value one by one.

IV. IMPLEMENTATION

We implemented this system using multithreading approach to
improve the parallelization of the DPA. We used Swiss-Prot,
as sequence database. As described in our design as in section
III, the SM will be parallelized into two threads, one for rows
and the other for columns. We implemented this approach on
many PCs by using RMI architecture. RMI provides a
mechanism for the server and client to communicate and pass
information back and forth. We used Java language, which is
a powerful programming language and its support for
multithreaded programming. Java provides RMI architecture,
which is a standard architecture for distributed object systems.
It allows a distributed, heterogeneous collection of objects to
interoperate.

A. Sequential and Parallel DPA

In order to evaluate and compare the performance between the
parallel DPA and sequential DPA, the sequential algorithm
was implemented first by using Java programming language
on a 1.4 GHz Pentium 4 PC machine with 256 MB main
memory, 30GB hard disk. The PC machine runs windows XP
professional operation system.

AVGG
AGTA
GGCT
AAAT
GACC

Protein
sequence
database

AVGG
AGTA
GGCT
AAAT
GACC

AVGG
AGTA
GGCT
AAAT
GACC

MULTITHREAD READING FROM DISTRIBUTED DATABASE

SCORING
VALUE

SCORING
VALUE

MULTITHREAD COMPUTING THE SCORING MATRIX

SCORING
VALUE

World Academy of Science, Engineering and Technology
International Journal of Bioengineering and Life Sciences

 Vol:1, No:1, 2007

11International Scholarly and Scientific Research & Innovation 1(1) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 B
io

en
gi

ne
er

in
g

an
d

L
if

e
Sc

ie
nc

es
 V

ol
:1

, N
o:

1,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

11
9.

pd
f

The parallel DPA was implemented on a shared distributed
architecture using three PCs cluster. A 10-100 MB LAN
connects the PC clusters. The setting and configuration of the
cluster were done using RMI. After the program stated up for
parallel DPA, one node will be chosen as master node and the
rest will serve as slaves. The master is responsible for
determining the length of the two protein sequences intended
for comparison. The master node creates thread for each slave
node and distributes the database to the all slave nodes by
remote method. Slave nodes calculate the scoring value and
master node combines the protein sequence ID, alignment,
and scoring value and return back to the slave nodes in one
file. The slave nodes calculate the similarity matrix for the
pair wise sequence comparison for protein sequence similarity
by request to the “rows processor” and “columns processor” at
the same time.

V. EXPERIMENTAL RESULTS

The parallel DPA have tested 500 protein sequences using 2
and 3 processors. The results were compared with the results
of the sequential DPA. A ratio of 47.02%, 64.28% of
execution time for parallel DPA is reduced when 2 and 3
processors were used respectively.
Fig. 8 shows the reduction of execution time when the number
of the processors increased. The parallel DPA achieved the
reduction of the execution time because of the sequences were
distributed over all processors. Each processor worked on its
sequences to construct the similarity matrix and calculate the
scoring value. The ratio of the execution time reduction is
32.60% when we used 3 processors compared to the 2
processors. The ratio of the execution time decreased to
14.43% if we used 3 processors compared to 4 processors.
The reason for this small ratio of execution time reduction
between 3 and 4 processors was the communication overhead,
which rose when the number of the processors increased. The
communication overhead was due to the increasing of the
number of the messages, data movement between processors
and the request/callback between master/slaves nodes.

0

2500

5000

7500

10000

12500

15000

17500

20000

22500

25000

27500

50 100 150 200 250 300 350 400 450 500

Sequences Number

E
x

e
c

u
ti

o
n

 T
im

e
(m

s
e

c
)

Sequential DPA

Parallel DPA(2 processors)

Parallel DPA(3 processors)

Fig. 8: Parallel and Sequential DPA execution time

VI. CONCLUSION AND FUTURE RESEARCH

In this paper we present a new approach parallel DPA for
sequence alignments using RMI technique in a cluster system.
In our approach, using RMI, more than one sequences will be
read at the same time and distributed to every processor and
calculate the protein sequences similarity parallely. Our
parallel DPA significantly reduced the processing time that
the existing DPA required. Further work , we try to implement
this parallel DPA in other platform such as MPI to reduce the
communication overhead among the PCs.

REFERENCES

[1] T. F. Smith and M. S. Waterman. Identification of common molecular
subsequences. J. Mol. Biol., 147:195–197, 1981.

[2] S. Needleman and C. Wunsch. A general method applicable to the search
for similarities in the amino acid sequences of two proteins. J. Mol.
Biol., 48:444–453, 1970.

[3] Pearson, W.R., Wood, T., Zhang, Z. and Miller, W. Comparison of DNA
sequences with protein sequences. Genomics, 1997

[4] William R. Pearson, Protein sequence comparison and protein evolution,
University of Virginia, Charlotesville, VA 22908, USA, 2000

[5] Pearson, W. R. & Lipman, D. J. Improved tools for biological sequence
comparison. Proc. Natl. Acad. Sci. USA. 1988.

[6] Hobohm, U. and Sander, C. A sequence property approach to searching
protein databases. 1995.

[7] Gibbs, A.J. and McIntyre, G.A. The diagram, a method for comparing
sequences. Its use with amino acid and nucleotide sequences. Eur. J.
Biochem, 16, 1-11.1970.

[8] Pearson, W.R. Rapid and sensitive sequence comparison with FASTP
and FASTA. Methods Enzymol, 183:63-98, 63-98.1990.

[9] Sellers P.H. On the theory and computation of evolutionary distances.
SIAM J.Appl. Math, 26, 787-793. 1974.

[10] Goad, W.B. and Kanehisa, M.I. Pattern recognition in nucleic acid
sequences. I. A general method for finding local homologies and
symmetries. Nucleic Acids. Res., 10, 247-263.1982.Waterman, M.S.,
Smith, T.F. and Beyer, W.A. Some biological sequence metrics. Adv.
Appl. Math, 20, 367-387. 1976.

[11] Waterman, M.S., Smith, T.F. and Beyer, W.A. Some biological sequence
metrics. Adv. Appl. Math, 20, 367-387. 1976.

[12] Gotoh, O. An improved algorithm for matching biological sequences. J.
Mol. Biol., 162, 705–708. 1982.

[13] http://www.sbc.su.se/~per/molbioinfo2001/dynprog/dynamic.html.

World Academy of Science, Engineering and Technology
International Journal of Bioengineering and Life Sciences

 Vol:1, No:1, 2007

12International Scholarly and Scientific Research & Innovation 1(1) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 B
io

en
gi

ne
er

in
g

an
d

L
if

e
Sc

ie
nc

es
 V

ol
:1

, N
o:

1,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

11
9.

pd
f

