Search results for: lightning parameters
3712 Analysis of Electrical Installation of a Photovoltaic Power Park in Greece
Authors: D. E. Gourgoulis, C. G. Yakinthos, M. G. Vassiliadou
Abstract:
The scope of this paper is to describe a real electrical installation of renewable energy using photovoltaic cells. The displayed power grid connected network was established in 2007 at area of Northern Greece. The photovoltaic park is composed of 6120 photovoltaic cells able to deliver a total power of 1.101.600 Wp. For the transformation of DC voltage to AC voltage have been used 25 stand alone three phases inverters and for the connection at the medium voltage network of Greek Power Authority have been installed two oil immersed transformer of 630 kVA each one. Due to the wide space area of installation a specific external lightning protection system has been designed. Additionally, due to the sensitive electronics of the control and protection systems of park, surge protection, equipotent bonding and shielding were also of major importance.Keywords: Inverter, Photovoltaic cells, Transformer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15653711 Optimization of Process Parameters of Pressure Die Casting using Taguchi Methodology
Authors: Satish Kumar, Arun Kumar Gupta, Pankaj Chandna
Abstract:
The present work analyses different parameters of pressure die casting to minimize the casting defects. Pressure diecasting is usually applied for casting of aluminium alloys. Good surface finish with required tolerances and dimensional accuracy can be achieved by optimization of controllable process parameters such as solidification time, molten temperature, filling time, injection pressure and plunger velocity. Moreover, by selection of optimum process parameters the pressure die casting defects such as porosity, insufficient spread of molten material, flash etc. are also minimized. Therefore, a pressure die casting component, carburetor housing of aluminium alloy (Al2Si2O5) has been considered. The effects of selected process parameters on casting defects and subsequent setting of parameters with the levels have been accomplished by Taguchi-s parameter design approach. The experiments have been performed as per the combination of levels of different process parameters suggested by L18 orthogonal array. Analyses of variance have been performed for mean and signal-to-noise ratio to estimate the percent contribution of different process parameters. Confidence interval has also been estimated for 95% consistency level and three conformational experiments have been performed to validate the optimum level of different parameters. Overall 2.352% reduction in defects has been observed with the help of suggested optimum process parameters.
Keywords: Aluminium Casting, Pressure Die Casting, Taguchi Methodology, Design of Experiments
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 73353710 Performance Analysis of Adaptive LMS Filter through Regression Analysis using SystemC
Authors: Hyeong-Geon Lee, Jae-Young Park, Suk-ki Lee, Jong-Tae Kim
Abstract:
The LMS adaptive filter has several parameters which can affect their performance. From among these parameters, most papers handle the step size parameter for controlling the performance. In this paper, we approach three parameters: step-size, filter tap-size and filter form. The regression analysis is used for defining the relation between parameters and performance of LMS adaptive filter with using the system level simulation results. The results present that all parameters have performance trends in each own particular form, which can be estimated from equations drawn by regression analysis.
Keywords: System level model, adaptive LMS FIR filter, regression analysis, systemC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28003709 Parameters Extraction for Pseudomorphic HEMTs Using Genetic Algorithms
Authors: Mazhar B. Tayel, Amr H. Yassin
Abstract:
A proposed small-signal model parameters for a pseudomorphic high electron mobility transistor (PHEMT) is presented. Both extrinsic and intrinsic circuit elements of a smallsignal model are determined using genetic algorithm (GA) as a stochastic global search and optimization tool. The parameters extraction of the small-signal model is performed on 200-μm gate width AlGaAs/InGaAs PHEMT. The equivalent circuit elements for a proposed 18 elements model are determined directly from the measured S- parameters. The GA is used to extract the parameters of the proposed small-signal model from 0.5 up to 18 GHz.
Keywords: PHEMT, Genetic Algorithms, small signal modeling, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22623708 Predicting Extrusion Process Parameters Using Neural Networks
Authors: Sachin Man Bajimaya, SangChul Park, Gi-Nam Wang
Abstract:
The objective of this paper is to estimate realistic principal extrusion process parameters by means of artificial neural network. Conventionally, finite element analysis is used to derive process parameters. However, the finite element analysis of the extrusion model does not consider the manufacturing process constraints in its modeling. Therefore, the process parameters obtained through such an analysis remains highly theoretical. Alternatively, process development in industrial extrusion is to a great extent based on trial and error and often involves full-size experiments, which are both expensive and time-consuming. The artificial neural network-based estimation of the extrusion process parameters prior to plant execution helps to make the actual extrusion operation more efficient because more realistic parameters may be obtained. And so, it bridges the gap between simulation and real manufacturing execution system. In this work, a suitable neural network is designed which is trained using an appropriate learning algorithm. The network so trained is used to predict the manufacturing process parameters.Keywords: Artificial Neural Network (ANN), Indirect Extrusion, Finite Element Analysis, MES.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23673707 Optimization Parameters of Rotary Positioner Controller using CDM
Authors: Meemongkol A., Tipsuwanporn V., Numsomran A.
Abstract:
The authors present optimization parameters of rotary positioner controller in hard disk drive servo track writing process using coefficient diagram method; CDM. Due to estimation parameters in PI Positioning Control System by expected ratio method cannot meet the required specification of response effectively, we suggest coefficient diagram method for defining controller parameters under the requirement of the system. Finally, the simulation results show that our proposed method can improve the problem in tuning parameter of rotary positioner controller. It is satisfied specification of performance of control system. Furthermore, it is very convenient as a fast adjustment damping ratio as well as a high speed response.Keywords: Optimization Parameters, Rotary Positioner, CDM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15483706 A Method for Identifying Physical Parameters with Linear Fractional Transformation
Authors: Ryosuke Ito, Goro Obinata, Chikara Nagai, Youngwoo Kim
Abstract:
This paper proposes a new parameter identification method based on Linear Fractional Transformation (LFT). It is assumed that the target linear system includes unknown parameters. The parameter deviations are separated from a nominal system via LFT, and identified by organizing I/O signals around the separated deviations of the real system. The purpose of this paper is to apply LFT to simultaneously identify the parameter deviations in systems with fewer outputs than unknown parameters. As a fundamental example, this method is implemented to one degree of freedom vibratory system. Via LFT, all physical parameters were simultaneously identified in this system. Then, numerical simulations were conducted for this system to verify the results. This study shows that all the physical parameters of a system with fewer outputs than unknown parameters can be effectively identified simultaneously using LFT.Keywords: Identification, Linear Fractional Transformation, Right inverse system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13173705 A Statistical Approach for Predicting and Optimizing Depth of Cut in AWJ Machining for 6063-T6 Al Alloy
Authors: Farhad Kolahan, A. Hamid Khajavi
Abstract:
In this paper, a set of experimental data has been used to assess the influence of abrasive water jet (AWJ) process parameters in cutting 6063-T6 aluminum alloy. The process variables considered here include nozzle diameter, jet traverse rate, jet pressure and abrasive flow rate. The effects of these input parameters are studied on depth of cut (h); one of most important characteristics of AWJ. The Taguchi method and regression modeling are used in order to establish the relationships between input and output parameters. The adequacy of the model is evaluated using analysis of variance (ANOVA) technique. In the next stage, the proposed model is embedded into a Simulated Annealing (SA) algorithm to optimize the AWJ process parameters. The objective is to determine a suitable set of process parameters that can produce a desired depth of cut, considering the ranges of the process parameters. Computational results prove the effectiveness of the proposed model and optimization procedure.
Keywords: AWJ machining, Mathematical modeling, Simulated Annealing, Optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17733704 The Influence of Preprocessing Parameters on Text Categorization
Authors: Jan Pomikalek, Radim Rehurek
Abstract:
Text categorization (the assignment of texts in natural language into predefined categories) is an important and extensively studied problem in Machine Learning. Currently, popular techniques developed to deal with this task include many preprocessing and learning algorithms, many of which in turn require tuning nontrivial internal parameters. Although partial studies are available, many authors fail to report values of the parameters they use in their experiments, or reasons why these values were used instead of others. The goal of this work then is to create a more thorough comparison of preprocessing parameters and their mutual influence, and report interesting observations and results.
Keywords: Text categorization, machine learning, electronic documents, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15743703 The Multi-objective Optimization for the SLS Process Parameters Based on Analytic Hierarchy Process
Authors: Yang Laixia, Deng Jun, Li Dichen, Bai Yang
Abstract:
The forming process parameters of Selective Laser Sintering(SLS) directly affect the forming efficiency and forming quality. Therefore, to determine reasonable process parameters is particularly important. In this paper, the weight of each target of the forming quality and efficiency is firstly calculated with the Analytic Hierarchy Process. And then the size of each target is measured by orthogonal experiment. Finally, the sum of the product of each target with the weight is compared to the process parameters in each group and obtained the optimal molding process parameters.Keywords: Analytic Hierarchy Process, Multi-objective optimization, Orthogonal test, Selective Laser Sintering
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20443702 Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) Parameters for Propane, Ethylene, and Hydrogen under Supercritical Conditions
Authors: Ilke Senol
Abstract:
Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) equation of state (EOS) is a modified SAFT EOS with three pure component specific parameters: segment number (m), diameter (σ) and energy (ε). These PC-SAFT parameters need to be determined for each component under the conditions of interest by fitting experimental data, such as vapor pressure, density or heat capacity. PC-SAFT parameters for propane, ethylene and hydrogen in supercritical region were successfully estimated by fitting experimental density data available in literature. The regressed PCSAFT parameters were compared with the literature values by means of estimating pure component density and calculating average absolute deviation between the estimated and experimental density values. PC-SAFT parameters available in literature especially for ethylene and hydrogen estimated density in supercritical region reasonably well. However, the regressed PC-SAFT parameters performed better in supercritical region than the PC-SAFT parameters from literature.
Keywords: Equation of state, perturbed-chain, PC-SAFT, super critical.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 69913701 Optimization of End Milling Process Parameters for Minimization of Surface Roughness of AISI D2 Steel
Authors: Pankaj Chandna, Dinesh Kumar
Abstract:
The present work analyses different parameters of end milling to minimize the surface roughness for AISI D2 steel. D2 Steel is generally used for stamping or forming dies, punches, forming rolls, knives, slitters, shear blades, tools, scrap choppers, tyre shredders etc. Surface roughness is one of the main indices that determines the quality of machined products and is influenced by various cutting parameters. In machining operations, achieving desired surface quality by optimization of machining parameters, is a challenging job. In case of mating components the surface roughness become more essential and is influenced by the cutting parameters, because, these quality structures are highly correlated and are expected to be influenced directly or indirectly by the direct effect of process parameters or their interactive effects (i.e. on process environment). In this work, the effects of selected process parameters on surface roughness and subsequent setting of parameters with the levels have been accomplished by Taguchi’s parameter design approach. The experiments have been performed as per the combination of levels of different process parameters suggested by L9 orthogonal array. Experimental investigation of the end milling of AISI D2 steel with carbide tool by varying feed, speed and depth of cut and the surface roughness has been measured using surface roughness tester. Analyses of variance have been performed for mean and signal-to-noise ratio to estimate the contribution of the different process parameters on the process.
Keywords: D2 Steel, Orthogonal Array, Optimization, Surface Roughness, Taguchi Methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27683700 Energy Efficiency Analysis of Crossover Technologies in Industrial Applications
Authors: W. Schellong
Abstract:
Industry accounts for one-third of global final energy demand. Crossover technologies (e.g. motors, pumps, process heat, and air conditioning) play an important role in improving energy efficiency. These technologies are used in many applications independent of the production branch. Especially electrical power is used by drives, pumps, compressors, and lightning. The paper demonstrates the algorithm of the energy analysis by some selected case studies for typical industrial processes. The energy analysis represents an essential part of energy management systems (EMS). Generally, process control system (PCS) can support EMS. They provide information about the production process, and they organize the maintenance actions. Combining these tools into an integrated process allows the development of an energy critical equipment strategy. Thus, asset and energy management can use the same common data to improve the energy efficiency.
Keywords: Crossover technologies, data management, energy analysis, energy efficiency, process control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9613699 Experimental Design and Performance Analysis in Plasma Arc Surface Hardening
Authors: M.I.S. Ismail, Z. Taha
Abstract:
In this paper, the experimental design of using the Taguchi method is employed to optimize the processing parameters in the plasma arc surface hardening process. The processing parameters evaluated are arc current, scanning velocity and carbon content of steel. In addition, other significant effects such as the relation between processing parameters are also investigated. An orthogonal array, signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to investigate the effects of these processing parameters. Through this study, not only the hardened depth increased and surface roughness improved, but also the parameters that significantly affect the hardening performance are identified. Experimental results are provided to verify the effectiveness of this approach.Keywords: Plasma arc, hardened depth, surface roughness, Taguchi method, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23603698 Physicochemical Parameters of Tap Water in Dhahran, Saudi Arabia: An Empirical Assessment
Authors: Ahmed A. Hassan, Bassam Tawabini
Abstract:
In this study, the physicochemical parameters of Dhahran tap water were assessed to determine its suitability for drinking purposes. A total of 45 water samples were collected from different locations. The results indicate temperature ranges of 19.76 to 22.86 °C, pH (6.5 to 8.23), dissolved oxygen (4.21 to 8.32 mg/L), conductivity (232 to 2586 uS/cm), turbidity (0.17 to 0.37 Nephelometric Turbidity unit (NTU)), total dissolved solids (93 to 1671 mg/L), total alkalinity (4.11 to 24.04 mg/L), calcium (0.02 to 164 mg/L), magnesium (0 .6 to 77.9 mg/L), chloride (32.7 to 568.7 mg/L), nitrate (0.02 to 3 mg/L), fluoride (0.001 to 0.591 mg/L), sodium (18.4 to 232 mg/L), potassium (0.5 to 26.4 mg/L), and sulphate (2.39 to 258 mg/L). The results were compared with the drinking water standards recommended by the World Health Organization (WHO) and the United States Environmental Protection Agency (USEPA). The study determined that though the levels of most of the physicochemical parameters comply with the standards, however, slight deviations exist. This is evident in the values of the physical parameters (conductivity and total dissolved solids), and the chemical parameters (sulphate, chloride, and sodium) recorded at a few sample sites.
Keywords: Physicochemical parameters, tap water, water quality, Dhahran.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5263697 Simultaneous Optimization of Machining Parameters and Tool Geometry Specifications in Turning Operation of AISI1045 Steel
Authors: Farhad Kolahan, Mohsen Manoochehri, Abbas Hosseini
Abstract:
Machining is an important manufacturing process used to produce a wide variety of metallic parts. Among various machining processes, turning is one of the most important one which is employed to shape cylindrical parts. In turning, the quality of finished product is measured in terms of surface roughness. In turn, surface quality is determined by machining parameters and tool geometry specifications. The main objective of this study is to simultaneously model and optimize machining parameters and tool geometry in order to improve the surface roughness for AISI1045 steel. Several levels of machining parameters and tool geometry specifications are considered as input parameters. The surface roughness is selected as process output measure of performance. A Taguchi approach is employed to gather experimental data. Then, based on signal-to-noise (S/N) ratio, the best sets of cutting parameters and tool geometry specifications have been determined. Using these parameters values, the surface roughness of AISI1045 steel parts may be minimized. Experimental results are provided to illustrate the effectiveness of the proposed approach.
Keywords: Taguchi method, turning parameters, tool geometry specifications, S/N ratio, statistical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23253696 Calculation of the Ceramics Weibull Parameters
Abstract:
The paper deals with calculation of the parameters of ceramic material from a set of destruction tests of ceramic heads of total hip joint endoprosthesis. The standard way of calculation of the material parameters consists in carrying out a set of 3 or 4 point bending tests of specimens cut out from parts of the ceramic material to be analysed. In case of ceramic heads, it is not possible to cut out specimens of required dimensions because the heads are too small (if the cut out specimens were smaller than the normalised ones, the material parameters derived from them would exhibit higher strength values than those which the given ceramic material really has). On that score, a special testing jig was made, in which 40 heads were destructed. From the measured values of circumferential strains of the head-s external spherical surface under destruction, the state of stress in the head under destruction was established using the final elements method (FEM). From the values obtained, the sought for parameters of the ceramic material were calculated using Weibull-s weakest-link theory.Keywords: Hip joint endoprosthesis, ceramic head, FEM analysis, Weibull's weakest-link theory, failure probability, material parameters
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26373695 Integrated ACOR/IACOMV-R-SVM Algorithm
Authors: Hiba Basim Alwan, Ku Ruhana Ku-Mahamud
Abstract:
A direction for ACO is to optimize continuous and mixed (discrete and continuous) variables in solving problems with various types of data. Support Vector Machine (SVM), which originates from the statistical approach, is a present day classification technique. The main problems of SVM are selecting feature subset and tuning the parameters. Discretizing the continuous value of the parameters is the most common approach in tuning SVM parameters. This process will result in loss of information which affects the classification accuracy. This paper presents two algorithms that can simultaneously tune SVM parameters and select the feature subset. The first algorithm, ACOR-SVM, will tune SVM parameters, while the second IACOMV-R-SVM algorithm will simultaneously tune SVM parameters and select the feature subset. Three benchmark UCI datasets were used in the experiments to validate the performance of the proposed algorithms. The results show that the proposed algorithms have good performances as compared to other approaches.Keywords: Continuous ant colony optimization, incremental continuous ant colony, simultaneous optimization, support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8803694 Dissolved Oxygen Prediction Using Support Vector Machine
Authors: Sorayya Malek, Mogeeb Mosleh, Sharifah M. Syed
Abstract:
In this study, Support Vector Machine (SVM) technique was applied to predict the dichotomized value of Dissolved oxygen (DO) from two freshwater lakes namely Chini and Bera Lake (Malaysia). Data sample contained 11 parameters for water quality features from year 2005 until 2009. All data parameters were used to predicate the dissolved oxygen concentration which was dichotomized into 3 different levels (High, Medium, and Low). The input parameters were ranked, and forward selection method was applied to determine the optimum parameters that yield the lowest errors, and highest accuracy. Initial results showed that pH, Water Temperature, and Conductivity are the most important parameters that significantly affect the predication of DO. Then, SVM model was applied using the Anova kernel with those parameters yielded 74% accuracy rate. We concluded that using SVM models to predicate the DO is feasible, and using dichotomized value of DO yields higher prediction accuracy than using precise DO value.
Keywords: Dissolved oxygen, Water quality, predication DO, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22173693 A Bionic Approach to Dynamic, Multimodal Scene Perception and Interpretation in Buildings
Authors: Rosemarie Velik, Dietmar Bruckner
Abstract:
Today, building automation is advancing from simple monitoring and control tasks of lightning and heating towards more and more complex applications that require a dynamic perception and interpretation of different scenes occurring in a building. Current approaches cannot handle these newly upcoming demands. In this article, a bionically inspired approach for multimodal, dynamic scene perception and interpretation is presented, which is based on neuroscientific and neuro-psychological research findings about the perceptual system of the human brain. This approach bases on data from diverse sensory modalities being processed in a so-called neuro-symbolic network. With its parallel structure and with its basic elements being information processing and storing units at the same time, a very efficient method for scene perception is provided overcoming the problems and bottlenecks of classical dynamic scene interpretation systems.Keywords: building automation, biomimetrics, dynamic scene interpretation, human-like perception, neuro-symbolic networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16173692 On the Variability of Tool Wear and Life at Disparate Operating Parameters
Authors: S. E. Oraby, A.M. Alaskari
Abstract:
The stochastic nature of tool life using conventional discrete-wear data from experimental tests usually exists due to many individual and interacting parameters. It is a common practice in batch production to continually use the same tool to machine different parts, using disparate machining parameters. In such an environment, the optimal points at which tools have to be changed, while achieving minimum production cost and maximum production rate within the surface roughness specifications, have not been adequately studied. In the current study, two relevant aspects are investigated using coated and uncoated inserts in turning operations: (i) the accuracy of using machinability information, from fixed parameters testing procedures, when variable parameters situations are emerged, and (ii) the credibility of tool life machinability data from prior discrete testing procedures in a non-stop machining. A novel technique is proposed and verified to normalize the conventional fixed parameters machinability data to suit the cases when parameters have to be changed for the same tool. Also, an experimental investigation has been established to evaluate the error in the tool life assessment when machinability from discrete testing procedures is employed in uninterrupted practical machining.
Keywords: Machinability, tool life, tool wear, wear variability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17973691 The Comparative Investigation and Calculation of Thermo-Neutronic Parameters on Two Gens II and III Nuclear Reactors with Same Powers
Authors: Mousavi Shirazi, Seyed Alireza, Rastayesh, Sima
Abstract:
Whereas in the third generation nuclear reactors, dimensions of core and also the kind of coolant and enrichment percent of fuel have significantly changed than the second generation, therefore in this article the aim is based on a comparative investigation between two same power reactors of second and third generations, that the neutronic parameters of both reactors such as: K∞, Keff and its details and thermal hydraulic parameters such as: power density, specific power, volumetric heat rate, released power per fuel volume unit, volume and mass of clad and fuel (consisting fissile and fertile fuels), be calculated and compared together. By this comparing the efficiency and modification of third generation nuclear reactors than second generation which have same power can be distinguished. In order to calculate the cited parameters, some information such as: core dimensions, the pitch of lattice, the fuel matter, the percent of enrichment and the kind of coolant are used. For calculating the neutronic parameters, a neutronic program entitled: SIXFAC and also related formulas have been used. Meantime for calculating the thermal hydraulic and other parameters, analytical method and related formulas have been applied.Keywords: Nuclear reactor, second generation, third generation, thermo-neutronics parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16193690 Numerical Simulation of Minimum Distance Jet Impingement Heat Transfer
Authors: Aman Agarwal, Georg Klepp
Abstract:
Impinging jets are used in various industrial areas as a cooling and drying technique. The current research is concerned with the means of improving the heat transfer for configurations with a minimum distance of the nozzle to the impingement surface. The impingement heat transfer is described using numerical methods over a wide range of parameters for an array of planar jets. These parameters include varying jet flow speed, width of nozzle, distance of nozzle, angle of the jet flow, velocity and geometry of the impingement surface. Normal pressure and shear stress are computed as additional parameters. Using dimensionless characteristic numbers the parameters and the results are correlated to gain generalized equations. The results demonstrate the effect of the investigated parameters on the flow.Keywords: Heat Transfer Coefficient, Minimum distance jet impingement, Numerical simulation, Dimensionless coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23543689 Identifying Interactions in a Feeding System
Authors: Jan Busch, Sebastian Schneider, Konja Knüppel, Peter Nyhuis
Abstract:
In production processes, assembly conceals a considerable potential for increased efficiency in terms of lowering production costs. Due to the individualisation of customer requirements, product variants have increased in recent years. Simultaneously, the portion of automated production systems has increased. A challenge is to adapt the flexibility and adaptability of automated systems to these changes. The Institute for Production Systems and Logistics developed an aerodynamic orientation system for feeding technology. When changing to other components, only four parameters must be adjusted. The expenditure of time for setting parameters is high. An objective therefore is developing an optimisation algorithm for automatic parameter configuration. Know how regarding the interaction of the four parameters and their effect on the sizes to be optimised is required in order to be able to develop a more efficient algorithm. This article introduces an analysis of the interactions between parameters and their influence on the quality of feeding.
Keywords: Aerodynamic feeding system, design of experiments, interactions between parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17383688 A Review on Process Parameters of Ti/Al Dissimilar Joint Using Laser Beam Welding
Authors: K. Kalaiselvan, K. Sekar, S. Elavarasi
Abstract:
The use of laser beam welding for joining titanium and aluminum offers more advantages compared with conventional joining processes. Dissimilar metal combination is very much needed for aircraft structural industries and research activities. The quality of a weld joint is directly influenced by the welding input parameters. The common problem that is faced by the manufactures is the control of the process parameters to obtain a good weld joint with minimal detrimental. To overcome this issue, various parameters can be preferred to obtain quality of weld joint. In this present study an overall literature review on processing parameters such as offset distance, welding speed, laser power, shielding gas and filler metals are discussed with the effects on quality weldment. Additionally, mechanical properties of welds joint are discussed. The aim of the report is to review the recent progress in the welding of dissimilar titanium (Ti) and aluminum (Al) alloys to provide a basis for follow up research.
Keywords: Laser beam welding, titanium, aluminum, process parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6063687 Interpolation of Geofield Parameters
Authors: A. Pashayev, C. Ardil, R. Sadiqov
Abstract:
Various methods of geofield parameters restoration (by algebraic polynoms; filters; rational fractions; interpolation splines; geostatistical methods – kriging; search methods of nearest points – inverse distance, minimum curvature, local – polynomial interpolation; neural networks) have been analyzed and some possible mistakes arising during geofield surface modeling have been presented.
Keywords: interpolation methods, geofield parameters, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17043686 Self Organizing Mixture Network in Mixture Discriminant Analysis: An Experimental Study
Authors: Nazif Çalış, Murat Erişoğlu, Hamza Erol, Tayfun Servi
Abstract:
In the recent works related with mixture discriminant analysis (MDA), expectation and maximization (EM) algorithm is used to estimate parameters of Gaussian mixtures. But, initial values of EM algorithm affect the final parameters- estimates. Also, when EM algorithm is applied two times, for the same data set, it can be give different results for the estimate of parameters and this affect the classification accuracy of MDA. Forthcoming this problem, we use Self Organizing Mixture Network (SOMN) algorithm to estimate parameters of Gaussians mixtures in MDA that SOMN is more robust when random the initial values of the parameters are used [5]. We show effectiveness of this method on popular simulated waveform datasets and real glass data set.Keywords: Self Organizing Mixture Network, MixtureDiscriminant Analysis, Waveform Datasets, Glass Identification, Mixture of Multivariate Normal Distributions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15173685 Variation of Metrological Parameters as They Affect the Tropospheric Radio Refractivity for Akure South-West Nigeria
Authors: Famoriji J.Oluwole
Abstract:
This research work examines the effect of variations of metrological parameters on the tropospheric radio refractivity during dry and raining seasons for Akure in 2013. The daily averages of radio refractivity during dry (January) and raining (August) seasons were calculated from the data obtained from the Nigeria Metrological Agency (NIMET). The data that was used for the computation of radio refractivity is a daily interval of the variations of metrological parameters for each day in the troposphere for Akure. Consequently, the daily averages of radio refractivity during raining season (August) were greater than the results in dry season (January) as a result of the variations in meteorological parameters such as temperature, humidity and atmospheric pressure in the lower troposphere.
Keywords: Troposphere, Radio refractivity, Akure, Meteorological parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23813684 Inferences on Compound Rayleigh Parameters with Progressively Type-II Censored Samples
Authors: Abdullah Y. Al-Hossain
Abstract:
This paper considers inference under progressive type II censoring with a compound Rayleigh failure time distribution. The maximum likelihood (ML), and Bayes methods are used for estimating the unknown parameters as well as some lifetime parameters, namely reliability and hazard functions. We obtained Bayes estimators using the conjugate priors for two shape and scale parameters. When the two parameters are unknown, the closed-form expressions of the Bayes estimators cannot be obtained. We use Lindley.s approximation to compute the Bayes estimates. Another Bayes estimator has been obtained based on continuous-discrete joint prior for the unknown parameters. An example with the real data is discussed to illustrate the proposed method. Finally, we made comparisons between these estimators and the maximum likelihood estimators using a Monte Carlo simulation study.
Keywords: Progressive type II censoring, compound Rayleigh failure time distribution, maximum likelihood estimation, Bayes estimation, Lindley's approximation method, Monte Carlo simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23903683 Improvement of the Q-System Using the Rock Engineering System: A Case Study of Water Conveyor Tunnel of Azad Dam
Authors: S. Golmohammadi, M. Noorian Bidgoli
Abstract:
Because the status and mechanical parameters of discontinuities in the rock mass are included in the calculations, various methods of rock engineering classification are often used as a starting point for the design of different types of structures. The Q-system is one of the most frequently used methods for stability analysis and determination of support systems of underground structures in rock, including tunnel. In this method, six main parameters of the rock mass, namely, the Rock Quality Designation (RQD), joint set number (Jn), joint roughness number (Jr), joint alteration number (Ja), joint water parameter (Jw) and Stress Reduction Factor (SRF) are required. In this regard, in order to achieve a reasonable and optimal design, identifying the effective parameters for the stability of the mentioned structures is one of the most important goals and the most necessary actions in rock engineering. Therefore, it is necessary to study the relationships between the parameters of a system and how they interact with each other and, ultimately, the whole system. In this research, it has been attempted to determine the most effective parameters (key parameters) from the six parameters of rock mass in the Q-system using the Rock Engineering System (RES) method to improve the relationships between the parameters in the calculation of the Q value. The RES system is, in fact, a method by which one can determine the degree of cause and effect of a system's parameters by making an interaction matrix. In this research, the geomechanical data collected from the water conveyor tunnel of Azad Dam were used to make the interaction matrix of the Q-system. For this purpose, instead of using the conventional methods that are always accompanied by defects such as uncertainty, the Q-system interaction matrix is coded using a technique that is actually a statistical analysis of the data and determining the correlation coefficient between them. So, the effect of each parameter on the system is evaluated with greater certainty. The results of this study show that the formed interaction matrix provides a reasonable estimate of the effective parameters in the Q-system. Among the six parameters of the Q-system, the SRF and Jr parameters have the maximum and minimum impact on the system, respectively, and also the RQD and Jw parameters have the maximum and minimum impact on the system, respectively. Therefore, by developing this method, we can obtain a more accurate relation to the rock mass classification by weighting the required parameters in the Q-system.
Keywords: Q-system, Rock Engineering System, statistical analysis, rock mass, tunnel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 295