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Abstract—Today, building automation is advancing from simple
monitoring and control tasks of lightning and heating towards more
and more complex applications that require a dynamic perception
and interpretation of different scenes occurring in a building. Current
approaches cannot handle these newly upcoming demands. In this
article, a bionically inspired approach for multimodal, dynamic scene
perception and interpretation is presented, which is based on neurosci-
entific and neuro-psychological research findings about the perceptual
system of the human brain. This approach bases on data from diverse
sensory modalities being processed in a so-called neuro-symbolic
network. With its parallel structure and with its basic elements being
information processing and storing units at the same time, a very
efficient method for scene perception is provided overcoming the
problems and bottlenecks of classical dynamic scene interpretation
systems.

Keywords—building automation, biomimetrics, dynamic scene in-
terpretation, human-like perception, neuro-symbolic networks.

I. INTRODUCTION

MODERN building automation is advancing from sim-
ple monitoring and control tasks (like lightning and

heating) to more and more complex requirements. Desired
future applications are for instance in the field of safety and
security surveillance of public and private buildings and in the
observation of the activity and the state of health of persons in
homes for elderly people and hospitals [2], [14]. Additionally,
it is aimed to enable elderly and disabled persons to live longer
independently in their own homes [4], [8], [11] and to increase
the comfort of occupants by perceiving their needs.

All these issues require the perception of what is currently
happening in a building – they require a dynamic scene
interpretation. Classical approaches of scene interpretation are
generally only based on video data [3]. A major bottleneck
in dynamic scene interpretation is the search that is required
through a database to find a model that best matches the
observed data [19]. Scene perception today only achieves ac-
ceptable results for well defined and constrained surroundings.
When considering real world situations, the performance is
still very limited and can in most cases not substitute a human
observer with his cognitive capabilities.

As humans can perceive and interpret their environment
that efficiently, the human perceptual system seems to be a
good archetype for developing a model for dynamic scene
perception and interpretation. To develop such a technical
system was the aim of the project NeuroSym. This article gives
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Fig. 1. Overview of Perceptual Model

an overview about this bionic model and points out the used
information processing principles.

II. BIONIC MODEL FOR DYNAMIC, MULTIMODAL SCENE
PERCEPTION AND INTERPRETATION

With the model proposed in this section, it is aimed to
provide technical systems with similarly effective and efficient
perception abilities as humans have in order to be capable
of dynamic scene interpretation in buildings. In figure 1, an
overview about the developed model is given. The model
is based on neuroscientific and neuro-psychological research
findings about the perceptual system of the human brain.

Input data for the model are sensor data. Unlike in classical
technical approaches [18] but similar as in human perception,
the detection of objects, events, and situations is not only
based on data from one sensor type (mainly vision) [12]
but on a larger number of different sensor types. The sensor
values are processed by a so-called neuro-symbolic network
[16] and result in a perception of the environment – the
scene interpretation. Additionally, the perception process is
facilitated by mechanisms called memory symbols, knowledge,
and focus of attention. In the following, the different modules
of the model are described.

A. Neuro-symbolic Network
The central element of the model is the neuro-symbolic

network responsible for neuro-symbolic information process-
ing. Its basic information processing units, its structure and
information flow, and its learning principle are described in
this section.
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Fig. 2. Neuro-symbols Combine Neural and Symbolic Information Process-
ing Principles

1) Neuro-symbols – The Basic Information Processing
Units: The basic information processing units of the neuro-
symbolic network are so-called neuro-symbols. From the fact
that neuro-symbols are the basic elements of the model, the
project NeuroSym – the abbreviation for NeuroSymbols – got
its name. The idea for using neuro-symbols came from the
following consideration: In the brain, information is processed
by neurons, which are interconnected and therefore interact
with each other. However, we do not think in terms of action
potentials and firing nerve cells but in terms of symbols [17].
Examples for symbols are a color, a shape, a person, a face, a
sound, a voice, or a melody. Neural and symbolic information
processing can be considered as information processing in
the brain at different abstraction levels. An interesting and
important question is if there exists a connection or interface
between the neural and symbolic level. Considering neurosci-
entific literature, we suggest to answer this question positively.
There have actually been found neurons in the brain which
react for example exclusively to the perception of faces [7],
[10]. This fact allows the conclusion that there must exist a
connection between the neural and the symbolic information
processing level. This was our inspiration to design neuro-
symbols as basic information processing units of the model.
Neuro-symbols combine characteristics of neural and symbolic
information processing (see figure 2).

Neuro-symbols represent perceptual images – symbolic in-
formation – like for instance a color, a shape, a person, a face,
a sound, a voice, or a melody. Furthermore, neuro-symbols
show a number of analogies to neurons. Each neuro-symbol
has a number of inputs, one output, and a so-called activation
grade AG with a value between 0 and 1. The activation grade
indicates if the perceptual image the neuro-symbol represents
is currently present in the environment or not.

Via the inputs, among others, information about the acti-
vation grade of other connected neuro-symbols is collected.
These activation grades are then summed up and normalized
to the number of inputs n resulting in the activation grade of
the current neuro-symbol (see equation 1).

AG =
1
n

n∑

i=1

AGofInputi (1)

If this sum exceeds a certain threshold value, the neuro-
symbol is activated meaning that the perceptual image it
represents was perceived in the environment. In contrast, an
activation grade value below the threshold value indicates
that the particular perceptual image has not been perceived.

Information about the activation grade of a neuro-symbol is
transmitted via its output to other connected neuro-symbols
whenever its value changes:

if (changeInActivationGrade)
if (ActivationGrade>=ThresholdValue)

Activation of Neuro-Symbol
Transmit ActivationGrade

else if (ActivationGrade<ThresholdValue)
No Activation of Neuro-Symbol
Transmit ActivationGrade

end
end

Activation grades coming from different inputs can also be
weighted differently. Unlike in neural networks, for neuro-
symbols, the weights of different inputs represent the relia-
bility of the sensory modality (or cognitive unit) they come
from in comparison to the other inputs. This concept is
in accordance with the neuroscientific concept of perceptual
dominance of a certain sensory modality (most times vision)
over the others [5]. Neuroscience is not yet sure whether
perceptual dominance is inborn or formed by experience. In
the current version of the model, the reliability of different
units is predefined in accordance with the suggestion from
neuro-science that perceptual dominance is inborn. However,
for later versions, it could be acquired by evaluating the
outcome of the perceived data. In case that the weights of the
inputs of a neuro-symbol differ, equation 1 has to be changed
to equation 2. In this formula, the sum of the activation grades
is normalized to the sum of the weights of all inputs.

AG =
1∑n

i=1 Weighti
•

n∑

i=1

(Weighti • AGofInputi) (2)

Weights of inputs can be positive or negative, depending on
the source they come from (see section II-A3).

By a neuro-symbol, it cannot only be processed information
that is received via the inputs concurrently, but it can also be
processed information which arrives asynchronously within
a certain time window or in a certain temporal succession.
Furthermore, a neuro-symbol can comprise so-called proper-
ties, which specify it in more detail. One property of neuro-
symbols is the location property, which indicates where in the
environment a perceptual image was perceived. The usage of
properties corresponds to the principle of population coding
[7] according to which related perceptual images are not
represented always by separate neurons, but by a group of
neurons. For details about the processing of asynchronous
information, temporal successions, and of properties, see [15].

2) Modular Hierarchical Interconnection of Neuro-
symbols: For performing complex tasks, a single neuro-
symbol is not sufficient. Neuro-symbols have to be
interconnected and need to exchange information. The
question that has to be answered is how these interconnections
shall look like. For this purpose, the structural organization
of the perceptual system of the human brain is taken as
archetype. According to [10] and [13], the perceptual system
of the human brain is organized as illustrated in figure 3.
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The starting point for perception are sensory receptors of
different sensory modalities. This information is then pro-
cessed in three stages. The primary cortex is responsible
for the first stage, the secondary cortex for the second, and
the tertiary cortex for the third one. Each sensory modality
has its own primary and secondary cortex. This means that
in the first two steps, information of different modalities is
processed separately and in parallel. In the tertiary cortex, the
information of all modalities is merged, which results in a
unitary multimodal (modality-independent) perception of the
environment.

The primary cortex has a topographic structure. This means
that spatially neighboring receptors of sensory modalities
project their information on neighboring neurons in the pri-
mary cortex. Perceptions on this level are highly location
dependent. Examples for perceptual images perceived in the
primary cortex of the visual system would be simple features
like edges, lines, colors, or movements of a certain velocity
and in a certain direction. Results of information processing in
the primary auditory cortex are sounds of a certain frequency.

Neurons in the secondary cortex fire as reaction to the
perception of complex images independent of the location
of the images in the perceptual field. A perceptual image of
the secondary visual cortex is for example a face. Perceptual
images of the secondary auditory cortex could be a voice or
a melody. Considering the somatosensory system of the brain
– in common parlance also referred to as tactile system – this
system consists in fact of a whole group of sensory systems
like the actual tactile sense, the body sense, the temperature
sense, etc.

On the multimodal level, the complex modality-specific
perceptions of the different secondary cortices are merged
and result in a unified perception. An example would be
the assignment of the visual image of a face to the acoustic
perception of a voice resulting in the perception that a person
is currently speaking.

In analogy to this modular hierarchical organization of the
perceptual system of the human brain, neuro-symbols are
structured to so-called neuro-symbolic networks (see figure
4).

In the first level, feature symbols are extracted from sensory
raw data. Information processing in this level has its analog
in the processing performed in the primary cortices of the
different sensory modalities. This layer has a topographic
structure and is therefore highly location dependent. It can in

Fig. 3. Modular Hierarchical Structure of the Perceptual System of the
Human Brain

fact consist of a number of sub-layers representing increasing
complex features from level to level. For more details about
the information processing principles of this layer see [15].

In the next two processing stages, sub-unimodal and uni-
modal symbols are derived from feature symbols. These two
layers correspond to the functions of the secondary cortices of
the brain. For the somatosensory system it was mentioned that
sensory modalities can consist of a number of sub-modalities.
Similarly, there can exist a sub-unimodal level between the
feature symbol level and the unimodal symbol level. On the
sub-unimodal levels, all perceptual aspects of the particular
sub-modalities are processed. The unimodal level of each
modality then combines these aspects to a unitary unimodal
perception.

The multimodal level and the scenario level correspond to
information processing taking place in the tertiary cortex of the
human perceptual system. In the multimodal layer, information
of all unimodal neuro-symbols is combined and merged to
multimodal symbols. On the scenario symbol level, sequences
of multimodal symbols are combined to scenario symbols to
represent longer temporal sequences of events in scenes. The
multimodal level and the scenario symbol level provide the
output information of the system. An activated neuro-symbol
of these levels corresponds to a detected scene.

Neuro-symbols of a lower level can be considered as symbol
alphabet for the next higher level. One and the same neuro-
symbol of a certain level can contribute to the activation of
different neuro-symbols of the next level. The higher the level,
the more comprehensible and interpretable the meaning of the
neuro-symbols gets for a human interpreter.

As already mentioned, the presented bionic model for
dynamic scene perception and interpretation bases on in-
formation from different sensory modalities. Concerning the
sensory modalities, there can be used sensor types that have
their analogy in the human sense organs like video cam-
eras and microphones for visual and auditory perception,
tactile floor sensors, light barriers, or motion detectors for
tactile perception, or chemical sensors for olfactory perception.
Furthermore, there can be used sensor types which have
no correspondence to human sense organs like sensors for
perceiving electrical energy consumption, electro-magnetism,
ultrasound, and infrared radiation.

3) Neuro-symbolic Information Flow: Having explained the
modular hierarchical organization of neuro-symbolic networks,
it is now about to described how the flow of information
between neuro-symbols looks like. Similar as in the human
brain, in the model, it is differentiated between bottom-up
information flow, feedbacks, and top-down information flow.

Bottom-up information processing is depicted in figure
5. Connections are directed from lower-level to higher-level
neuro-symbols. Processing starts with sensor data, which are
then processed level by level to more and more complex
neuro-symbolic information until they result in the activation
of multimodal symbols and scenario symbols, which are the
outputs of the system. Weights of bottom-up connections are
always positive.

Additionally, there exist feedback connections within neuro-
symbolic levels (see figure 6). In neuroscience, the function of
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Fig. 4. Modular Hierarchical Structure of Neuro-symbolic Network

Fig. 5. Bottom-up Information Flow in Neuro-symbolic Network

Fig. 6. Feedbacks within Neuro-symbolic Network
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Fig. 7. Top-down Information Flow in Neuro-symbolic Network

feedbacks within in the brain is still not very well understood.
In the suggested neuro-symbolic model, feedback connections
are necessary to inhibit the undesired activation of neuro-
symbols. It is very likely that in the brain – besides other
functionalities – the inhibition of undesired neural activations
is one utility of feedbacks. In order to have an inhibitory
function, weights of feedback connections are always negative.
For a more detailed explanation of the function of feedbacks
see [15].

Top-down information processing is based on stored knowl-
edge and focus of attention (see figure 7). These mechanisms
can influence the activation of neuro-symbols in a top-down
manner. A more detailed description of these two mechanisms
will be given in section II-B and section II-C. Top-down
connections can principally be either positive or negative.

The connections between neuro-symbols depicted in fig-
ure 5 to 7 show what interactions between neuro-symbols
and other modules, respectively, are principally possible. The
connections are depicted only schematically in a bus-like
way. In fact, however, they are point to point connections
between different units. In a configured system, depending on
the application domain, there will not exist all the depicted
connections but only a subset of them.

4) Learning in Neuro-symbolic Networks: Neuro-symbolic
networks are no rigid structures but offer the possibility to
learn correlations and connections between the different neuro-
symbols from examples. For this purpose, again, the perceptual
system of the human brain is taken as archetype. According to
[1], certain neural structures need to be already connected at

birth, because it is not possible to start from a “tabula rasa”.
Furthermore, it is described in [10] that higher neural levels
can only evolve after lower levels have already developed.

Similarly, in the proposed bionic model, the lowest neuro-
symbolic levels have to be predefined. This means that the
correlations between sensor data and feature symbols and for
certain modalities also connections between feature symbols
and sub-unimodal symbols (or unimodal symbols if there
exist no corresponding sub-unimodal levels) are fixed before
system start-up. Correlations between higher levels are learned
in different stages during a number of learning phases. At
initial system start-up, neuro-symbols of these levels are
unconnected. During different learning phases, forward con-
nections are first learned between feature symbols and sub-
unimodal symbols. Secondly, feedback connections between
sub-unimodal symbols are learned. Next, forward connec-
tions between sub-unimodal symbols and unimodal symbols
are determined followed by feedback connections between
unimodal symbols. Afterwards, forward connections between
unimodal symbols and multimodal symbols and feedback
connections within the multimodal layer are set. Finally, there
are established connections between multimodal symbols and
scenario symbols and feedbacks within the scenario symbol
level.

In the following, the learning principle used for deriving
correlations between neuro-symbols from examples will be
explained by means of the unimodal tactile modality (see
figure 8). For the other modalities and other hierarchical
levels, the same principle is applicable. To learn correlations,
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Fig. 8. Learning in Neuro-symbolic Networks

examples have to be available that comprise all objects, events,
and situations that shall be perceived by a certain modality
and level. To allow generalization, not only one but a certain
number of examples has to be available for each particular
object, event, and situation. The used learning concept is a
supervised learning principle. Examples include input data
and target data. Input data are sensor data of sensors that
are triggered when certain objects, events, or situations occur
in the surrounding. Before the learning phase of a certain
layer starts, the lower-level connections have already been
set. Therefore, certain lower-level neuro-symbols are activated
based on these sensor values. These activated neuro-symbols
serve as actual input data for the learning process. The target
data indicate the meaning of the input data. They specify the
object, event, or situation that is currently occurring and assign
it to a certain neuro-symbol of the current level.

For each neuro-symbolic level, the learning process consists
of two phases: learning phase A and learning phase B. For
the unimodal tactile modality, in learning phase A, forward
connections between sub-unimodal and unimodal symbols are
determined. After that, the same input-target-data-pairs as used
in learning phase A are presented to the system a second
time in learning phase B to determine feedback connections.
In learning phase B, a comparison is made between what
unimodal symbols are activated based on the sensor data
and forward connections set in learning phase A and what
unimodal symbol should actually be activated according to the
target data. To avoid undesired activations, feedback connec-
tions are set between unimodal tactile symbols accordingly.

During the learning phases, besides forward and feedback
connections, there can also be determined values of properties,
location information, and temporal correlations between data
from examples. Additionally, the used learning algorithms
offer the possibility to eliminate redundant neuro-symbols
and to detect perceptual images, which are represented by
one and the same neuro-symbol but should better be further
distinguished and therefore assigned to more than one neuro-
symbol.

The pseudocode below shows the basic steps of the learning
algorithm of learning phase A. For details about its underlying
mathematical principles and a systematic formulation of the
algorithm of learning phase B it is referred to [15].

For each modality
Determine which neuro-symbols occur
most often

If one neuro-symbol of one modality occurs
in more than c1 percent of all cases

Set connection
If two neuro-symbols of one modality occur
in more than c2 percent of all cases

Use two separate higher-level
neuro-symbols and set connections

For each neuro-symbol type connected
Calculate average x- and y-location
Calculate average x- and y-location-
deviation
Determine property values

Calculate x- and y-inter-modality location
deviations between neuro-symbols
If necessary

Consider temporal character of data

B. Memory Symbols and Knowledge

The focus of the description of the bionic model was so far
set on the explanation of the sensory information processing
within the neuro-symbolic network. However, in the brain, per-
ception does not only base on sensor information but also on
stored knowledge. This knowledge can be factual knowledge
like that objects generally fall down, context knowledge like
that certain objects and events generally occur at certain places
or at a certain time of day, or the expectation that certain events
and situations are likely to happen after particular other events
and situation. The influence of knowledge on perception is
considered as a top-down process. To make such predictions,
a mechanism is needed to store what happened in the past to
use this information later on.

To realize the principles just mentioned, so-called memory
symbols interact with stored knowledge. Memory symbols
have the function to store information about occurring events
or consequences of events that are relevant for future percep-
tions. Memory symbols are needed, because neuro-symbols
only represent what is going on in the environment at a
particular moment or within a certain time interval. As soon
as the sensors that trigger this information are deactivated
again, also the corresponding neuro-symbols are deactivated.
An example would be to memorize that when a person entered
a room, because it means that from now on a person is
present in the room. In the knowledge module, a reasoning
process is taking place based on stored knowledge, activated
memory symbols, and activated neuro-symbols. It is decided
what neuro-symbols to influence in what way (increase, de-
crease, or inhibit the activation grade and activation of neuro-
symbols). By means of stored knowledge, it can for instance
be concluded that a person cannot carry out activities in a
room if there has not entered a person before. In figure 7,
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it is depicted on which levels the interaction between neuro-
symbols, memory symbols and knowledge takes place. Neuro-
symbols of the multimodal level and the scenario level can
activate and deactivate memory symbols to store information
about perceptual images or their consequences, respectively, to
facilitate future perceptions. Memory-symbols tightly interact
with the knowledge module, which can send information to
neuro-symbols from the sub-unimodal level upwards in order
to influence their activation grade.

C. Focus of Attention

A second top-down process involved into perception is focus
of attention. Like in every information processing system, also
in the brain, the processing capacity is constrained. This can
pose a problem if too many different events happen at the same
time. To overcome this problem in the brain, focus of attention
restricts the spatial area that is considered when binding
sensory information [6]. In [9], it is described that focus of
attention inhibits the further processing of information, which
has no relevance in the current situation. Accordingly, in the
model, focus of attention influences the activation of neuro-
symbols on the feature symbol level (see figure 7). This level
is topographic in structure meaning that feature symbols have
a strong correlation to the position of the sensors they are
derived from. On the feature symbol level, different events
happening concurrently in the environment are represented
by feature symbols of different locations. From the sub-
unimodal level upwards, location information is contained only
as property of neuro-symbols and the number of concurrent
events that can be coded is restricted. By focus of attention,
feature symbols are bound to higher-level neuro-symbols that
lie within the focus of attention. The activation of feature
symbols is reduced in a way that they get below the threshold
value of activation if the perceptual images they represent lie
outside the spatial area that is currently covered by the focus
of attention. With this method, the number of concurrently
activated neuro-symbols can be reduced.

After information within a certain spatial area has been
processed, the focus of attention has to switch to another area
to process the information of feature symbols being active
at the same time. This “switching” of the focus of attention
requires a certain steering and control process to decide what
to focus on. In the model, information from the sub-unimodal
level upwards as well as the knowledge module can provide
input information for the focus of attention module for this
purpose (for more details see [15]).

III. IMPLEMENTATION AND USE CASES

To evaluate the developed model, it was implemented in the
simulation environment AnyLogic and tested with a number of
use cases. The use cases were different activities going on in
a building. For this purpose, an office building was equipped
with different sensors.

Figure 9 shows one of the rooms of the building and the
sensors, which were installed in it. There are used 416 tactile
floor sensors, three motion detectors, two light barriers, a door
contact sensor, a video camera, and a micropohne.

Fig. 9. Room Equipped with Sensors

In figure 10, the neuro-symbolic configuration is depicted
for one use case set of this room. In this particular case,
different activities of persons in the room have to be perceived.
In the picture, the neuro-symbolic network is shown from
the sub-unimodal level upwards. Lower-level symbols are not
depicted, because in these layers, connections are predefined
and not subject to learning and therefore of less interest.
Furthermore, these lowest level comprise information that is
difficult to interpret for humans. Before learning, none of the
depicted neuro-symbols is interconnected. During the learning
process, the interconnections are determined and reach a
final form as depicted in the figure. Looking at the different
connections, it can be seen what neuro-symbols of the different
hierarchical levels are finally responsible for the activation of
different multimodal and scenario symbols, which provide the
output information and constitute the final scene perception.

IV. RESULTS AND CONCLUSION

In this article, a bionic approach for dynamic, multimodal
scene perception and interpretation in buildings was presented.
The proposed model provides a powerful and flexible tool for
information processing of sensor data to perceive and interpret
objects, events, scenarios, and situations in an environment.
The developed model was inspired by neuroscientific and
neuro-psychological research findings about the perceptual
system of the human brain. By emulating the organizational
structure and the information processing principles within the
brain, it was aimed to equip a technical system with similarly
effective and efficient scene perception capabilities as humans
have. As simulation results show, besides the fact that the pro-
posed system presents a workable solution to dynamic scene
perception, the suggested information processing scheme ac-
tually proved to be very fast and efficient. This efficiency is
achieved by the parallel information processing structure of
the neuro-symbolic network and the fact that neuro-symbols
are both information storing units and information processing
units at the same time. This saves time for explicit memory
(or database) access and comparison operations in relation
to classical computer architectures. To take advantage of the
parallel distributed structure of the model, the next step that
has to be taken is to implement the model into a chip to
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Fig. 10. Neuro-symbol Hierarchy of Test Set after Learning

perform real parallel processing instead of merely simulated
parallel processing. Furthermore, it is planned to develop a
neuro-symbolic network toolbox to allow fast and comfortable
development and testing of neuro-symbolic network structures
in order to make this information processing principle attrac-
tive to a broader group of users.
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