
 

 

  
Abstract—This paper considers inference under progressive type 

II censoring with a compound Rayleigh failure time distribution. The 
maximum likelihood (ML), and Bayes methods are used for 
estimating the unknown parameters as well as some lifetime 
parameters, namely reliability and hazard functions. We obtained 
Bayes estimators using the conjugate priors for two shape and scale 
parameters. When the two parameters are unknown, the closed-form 
expressions of the Bayes estimators cannot be obtained. We use 
Lindley.s approximation to compute the Bayes estimates. Another 
Bayes estimator has been obtained based on continuous-discrete joint 
prior for the unknown parameters. An example with the real data is 
discussed to illustrate the proposed method. Finally, we made 
comparisons between these estimators and the maximum likelihood 
estimators using a Monte Carlo simulation study. 
 

Keywords—Progressive type II censoring; Compound Rayleigh 
failure time distribution; Maximum likelihood estimation; Bayes 
estimation; Lindley's approximation method; Monte Carlo 
simulation. 

I. INTRODUCTION 
N the past several decades, censoring is very common in 
reliability data analysis. It is usually applies when the exact 

lifetimes are known for only a portion of the products and the 
remainder of the lifetimes has only partial information. The 
most common censoring schemes are type I and type II 
censoring. One important characteristic of these two censoring 
schemes is that they do not allow for units to be removed from 
the test at any other point other than the final termination 
point. However, if an experimenter desires to remove 
surviving units at points other than the final termination point 
of the life test, these two traditional censoring schemes will 
not be of use to the experimenter. The allowance of removing 
surviving units from the test before the final termination point 
is desirable, as in the case of studies of wear, in which the 
study of the actual aging process requires units to be fully 
disassembled at different stages of the experiment. In addition, 
when a compromise between the reduced time of 
experimentation and the observation of at least some extreme 
lifetimes is sought, such an allowance is also desirable. These 
reasons lead us into the area of progressive censoring. The 
scheme of progressive type-II right censoring arises naturally 
in life-testing experimentation, as it is often desirable to 
remove live items from experimentation at points other than 
the final termination point. In this scheme, we begin the test at 
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time zero with n  independent live items on test. Immediately 
following the first observed failure, a fixed number 1R  of 
surviving items are removed at random from the test. 
Immediately following the next observed failure, a fixed 
number 2R  of surviving items are removed at random from 
the test. This process continues until, immediately following 
the time of the thm  observed failure, the remaining 

1211 −−⋅⋅⋅−−−= mRRRnR  items are removed from 
the test. We will denote the ordered observed failure times by 

miX mRRR
nmi ,.....,1,),.....,,(

;;;
21 = and cal1 them the progressive 

type-II right censored order statistics of size m  from a sample 
of size n  with progressive censoring scheme. It is clear that 

∑+= =
m
i iRmn 1 the special case when === ...21 RR  

,01 =−mR  so that mnRm −=  is the case of conventional 
type-II right censored sampling. Also when 

,0... 121 ==== −mRRR  so that ,nm =  the progressively 
type-II right censoring scheme reduces to the case of no 
censoring (ordinary order statistics). Many authors have 
discussed inference under progressive type-II censored using 
different lifetime distributions, see for example [5] – [7], [9] 
and [12]. A thorough overview of the subject of progressive 
censoring is given in [4], and in the excellent review article by 
[3]. 

The two-parameter compound Rayleigh distribution (which 
is denoted by CRD )),( βα provides a population model which 
is useful in several areas of statistics, including life testing and 
reliability. The probability density function (pdf), and the 
cumulative distribution function (cdf) of the CRD ),( βα are 
given, respectively, by 
 

0,,0,)()2(),,( )1(2 >>+= +− βαββαβα αα xxxxf          (1) 
and 

0,,0,)1(1),,(
2

>>+−= − βα
β

βα α xxxF                           (2) 

where α  and β  are the shape and the scale parameters 
respectively. The compound Rayleigh distribution (CRD) is a 
special case of the 3-parameter Burr type XII distribution. The 
two-parameter version of this distribution was studied by 
several authors, such as [1], [2] among others. 
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The reliability function )(tS and hazard (instantaneous failure 
rate) function )(tH at mission time t  for the CRD ),( βα  are 
given respectively by 

α
β

−+= )1()(
2ttS                               (3) 

2
2)(

t
ttH

+
=

β
α                                    (4) 

In this paper, we assume that the lifetimes have a two-
parameter CRD. Based on progressively type-II censoring 
order statistics arising from it, we obtain and discuss MLE's 
and Bayesian estimation for the parameters, and some lifetime 
parameters such as reliability and hazard functions. The 
remaining of this paper is organized as follows. In Section II, 
progressively censored samples, the corresponding likelihood 
function, estimation of the parameters, reliability and hazard 
functions based on the maximum likelihood method are 
obtained and discussed. We also, drive the expression for the 
observed Fisher information of parameters based on standard 
normal approximation of the distribution of the MLE's. 
Section III provides Bayes estimation using two types of prior 
distributions, the first one is the informative continues 
bivariate prior and using Lindley.s approximation form. The 
second one is the continuous-discrete prior for the two 
parameters. In Section IV, for illustrative purposes, we 
performed a real data analysis. Comparisons among estimators 
are investigated through Monte Carlo simulations and 
presented in Section V. Finally, we conclude the paper in 
Section VI. 

II.  MAXIMUM LIKELIHOOD ESTIMATORS (MLE)  
If the failure times of the items originally on test with 

progressive censoring scheme ),....,( 21 mRRR are from a 
continuous population with cumulative distribution function 

)(xF and probability density function )(xf , then the joint 
probability density function of a progressively type-II 
censored sample 

),....,,( ),,
::

),,
::2

),,
::1

212121 mmm RRR
nmm

RRR
nm

RRR
nm XXXx =  is given by 

[ ];)),(1)(,(),....,,(
1

21,.....2,1 ∏ −=
=

m

i

R
iimm ixFxfcxxxf θθ  

                                              ∞<<<<<−∞ mxxx ....21   (5) 
 

where ix  is used instead of ),...,2,1(,0,),,(
::

21 miRX i
RRR

nmi
m =≥  

and 
)...1)...(2)(1( 11211 −−−−+−−−−−−= mRRmnRRnRnnc  

In this paper, we assume that the underlying failure times 
follow a two-parameter compound Rayleigh distribution, with 
pdf and cdf given by (1) and (2) respectively. Substituting (1) 
and (2) in (5), the likelihood function can be written as 
 

)(exp)2(),( TuCxL m ααβα −=                                        (6) 

where 

.)(
1 2∏

+
=

=

m

i i

i

x
x

u
β

    and   ).1()1(
2

1 β
im

i
i

x
InRT ++∑=

=
             (7) 

 
The log-likelihood function may then be written as 

)ln(),(ln),( αβαβα mxLx ∝=  

      ).1ln()1()ln()ln(
2

11

2

1 β
αβ im

i
i

m

i
i

m

i
i

x
Rxx ++∑−∑ +−∑+

===

     (8) 

 
Assuming that the parameters α and β  are unknown, the 

MLE MLα̂ and MLβ̂ of α and β  can be obtained respectively 

by solving the following likelihood equations; 

    0)1(ln)1(
),( 2

1
=++∑−=

∂

∂

= βαα

βα
im

i
i

xRmx
                  (9) 

 

0
)/(1

/
)1(1),(

1 22

22

1 2 =∑
+

++∑
+

−=
∂

∂

==

m

i i

i
i

m

i i x
x

R
x

x

β

β
α

ββ

βα
 (10) 

 
from (9) we obtain the MLE MLα̂ as 

∑ ++

=

=
m
i

ML

i
i

ML
x

R

m

1

2
)ˆ1ln()1(

ˆ

β

α                                  (11) 

Where MLβ̂  can be obtained by eliminating α between (9) 

and (10) , and solve the following resulting equation numeric-
ally 

0

)ˆ(ˆ
)1(

ˆ
1

)ˆ1ln()1( 1 2

2

1 2

1

2
=

∑
+

+

∑
+

−

∑ ++ =

=

=
m
i

iMLML

i
i

m
i

iML

m
i

ML

i
i

x

x
R

x

x
R

m

ββ

β

β
 (12) 

 
The solution of (12) can be obtained by using the Newton- 

Raphson method. 
For a given t , the MLE of the reliability and hazard 

functions )(ˆ tR ML and )(ˆ tR ML  can be obtained by replacing 

α and β  by MLα̂  and MLβ̂ in (3) and (4), respectively. 
The asymptotic variance-covariance matrix of the MLE for 
parameters α and β  is given by the elements of the Fisher 
information matrix 

        2,1,,
,(2

, =⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂∂

∂
−= ji

x
EI ji βα

βα
.                           (13) 

 
But, the exact mathematical expressions for the above 

expectation in (12) do not have exact forms. Therefore, we 
take the approximate asymptotic variance-covariance matrix 
for the MLE.  

The asymptotic variance-covariance matrix is given by 
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⎢

⎣

⎡

∂

∂
−

∂∂
∂

−
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−
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∂
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βα
αβ
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                                        ⎥
⎦

⎤
⎢
⎣

⎡
=

)(),(
),()(
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22

2 ),(
αα

βα m
−=

∂

∂
−                                       (15) 

          ∑
+

+−=
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∂
−

=
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i i

i
i

x
x

R
1 2

222

)/(1
/

)1(),(
β

β
βα
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∑
+

−=
∂

∂
−

=

m

i ix1 22

2 1),(

ββ
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2

2
3 2 2 2

1

/ 2( 1)[ ]
(1 ( / )) 1 ( / )

m
i

i i
i i i

xx R
x x

βα
β β β=

− + −
+ +∑ (17) 

 
The asymptotic normality of the MLE can be used to 

compute the approximate confidence intervals for the 
parameters α and β .  The )1(100 γ− approximate confidence 
intervals for α and β are, respectively 
 

)(ˆ)(ˆ
22

ββαα γγ VarzandVarz MLML ±±          (18) 

 
where 

2
γz is a standard normal variate. 

III. BAYES ESTIMATION 
In this section, we deal with the problem of Bayes 

estimation for the parameters βα , reliability and hazard 
functions under squared error loss (SEL) function. For the 
prior believes about the scale and shape parameters of the 
model we consider two cases. The first is the informative 
continues bivariate prior for the two parameters and the 
second is the continuous-discrete prior for the two parameters. 

A. Informative Continues Bivariate Prior 
The prior distribution for the parameters of the model has 

been taken as a natural conjugate prior. Since the parameter 
α and β are assumed to be unknown, we suggested a bivariate 
prior density as the following forms 
         )(.)|(),( 111 ββαβαπ gg=                                     (19) 

where 

,
)(

)/exp(
)|(

1

1 ζ
βααβ

βα
ςς

Γ
−

=
−−

g 0,, >ςβα  

is a gamma prior density function when β  is known and 

                    0,),/(exp1)(2 >−= δβδβ
δ

βg  

is an exponential density function. Here, ζ and δ are assumed 
to be known and are chosen to reflect prior knowledge about 
α and β .  Therefore, the bivariate prior density function of 
α and β  in (19) can be written as 

,)](exp[*),( 1
1 δ

β
β
ααββαπ ζζ +−= −−A                          (20) 

where  )(/1* ζΓ∂=A  
It follows from (6) and (20) that the joint posterior density 

function of α and β given x  is proportion to 

 ),(),(),( 1
*
1 βαπβαβαπ ⋅∝ xLx        

 ],)1(exp[1)(
δ
β

β
ααβ ζζ −+−∝ −+− Tu m            (21) 

where T  and u are given in (7). 
Under the squared error loss function (SEL), the Bayes 

estimate of a function ),( βαgg = denoted by BSĝ  is the 
posterior mean of g given by 

∫ ∫ ⋅

∫ ∫ ⋅
=

∞ ∞

∞ ∞

0 0 1

0 0 1

),(),(

),(),(),(
)(ˆ

βαβαπβα

βαβαπβαβα

ddxl

ddxLg
xgEg BS      (22) 

In general, the ratio of integrals in (22) can be written in 
another form as follows 

∫ ∫ +

∫ ∫ +
=

∞ ∞

∞ ∞

0 0

0 0

)],(),(exp[

)],(),(exp[),(
)(

βαβαρβα

βαβαρβαβα

ddl

ddlg
xgE           (23) 

where )],(ln[),( βαβα xLl =   and )).,(ln(),( 1 βαπβαρ =   
The ratio of the two integrals given by (23) cannot be 

obtained in a closed form. Therefore, we resort to use of a 
numeric integration technique such as Lindley's 
approximation. Reference [10] developed approximate 
procedures for the evaluation of the ratio such that (23). For 
the two-parameter case ),( βα  Lindley's approximation form 
can be written as 

12211230[
2
1)ˆ,ˆ(),(ˆ ZLWLVgg +++= βαβα  

 21212121032112 ] VVWLZL ρρ ++++                            (24) 
where 

,
2

1

2

1
ijij

ii
gV σ∑∑=

==
 ,

),(
sd

sd

ds
l

L
βα

βα

∂∂

∂
=

+
 

3,3,2,1,0, =+= sdsd  

β
ρρ

α
ρρ

∂
∂

=
∂
∂

= 21 , ,   
βα ∂

∂
=

∂
∂

=
gggg 21 ,  

βαβα ∂∂
∂

==
∂

∂
=

∂

∂
=

ggggggg
2

2

2

2

2

21122211
,,  

,jijiiiij ggV σσ +=    ,)( iiijjiiiij ggW σσσ +=  

2,1,, =≠ jiji  
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and 

2,1,,),2(3 2 =≠++= jijiggZ ijjjiijijiiiij σσσσσ .  

where ijσ  is the thji ),(  element of the inverse of the Fisher 

information matrix. Moreover, â and β̂ are the MLEs of 
α and β  and all of the quantities in (24) are evaluated at 

).ˆ,ˆ( βa Therefore, the elements ijσ  can be obtained as 

following 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

ΨΨ

ΨΨ=
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⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= α

η

σσ

σσ
σ /1
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2221

1211
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O

                                       (25)                                                      
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β
η   ,112 S−= αηη    ,2

122
Om

−=Ψ η
α

 

,
)(1 2

2
∑

+
=

=

m

i i

i
i

x

x

ββ
ϖ   ,)1(

1
1 ∑ +=

=

m

i
iiRO ϖ  

,)1(,)1( 3

1
3

2

1
2 i

m

i
ii

m

i
i RORO ϖϖ ∑ +=∑ +=

==
 

321
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)(
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i x
S
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+
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== ββ
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In our case of CRD ),( βα using the prior density (20), we 
obtain 

δ
β

β
ααζ

βζβαπβαρ

−−−+

−==

)(ln)1(

)(*)ln()),(ln(),( 1 InA
                        (26)                        

and then we get 

,11
1 βα

ζρ −
−

=  and  
δβ

ζ

β

αρ 1
22 −−=  

Also, the values of   ,),(
ζη

ςη

ηζ
βα

βα

∂∂

∂
=

+ lL  ,3,2,1,0, =ζη  

,3=+ ζη  can be obtained as follows 

,2
303

α

mL =  ,012 =L  and ,
2 1

221 β
O

OL −=  

.2266
2321230 SOOOL −+−= α

β
α

β
α  

It follows from (24) that the Bayes estimate of ),( βαg  
relative to the SEL is 

( ) 21),(),(ˆ Ω+Ω+Φ+== βαβα ggEg                          (27)                                                               
Where 

],2[
2
1

222121112 gmgOg
α

η ++
Ψ

=Φ  

[ ],)()(1
2121 2121211 gmgOgOg

α
ρηρ +++

Ψ
=Ω  

[

].))(()
3

)

2(()(
2

2
1

21

2

2
2124212122

2
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2
2322

gmgOmgO
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η
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η

α

ηηη
α

++++

−+
Ψ

=Ω

 

and  

2343123 2,266
2

SOOO −=+−= αηη
ββ

η . 

All of the functions of the right-hand side of Eq. (24) are to 
be evaluated at ).ˆ,ˆ( βa    From Eq. (24), we can deduce the 
values of the Bayes estimates under SEL of various 
parameters in what follows. 
(I) If ,),( αβα =g  then 

[ ])(1ˆ
21 12 ρρηαα OBS +

Ψ
+=

[
2

2 2
2 1 4 3 1 22 2

1 2 2( ( ))]
2

m O O
m
αη η η η

α α
+ + − +

Ψ
  (28) 

(II) If ,),( ββα =g  then 
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[ ))]32(
2

1

)1ˆ

11214222

221 1

ηη
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η
αα
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ρββ

OOmm

mOBS

−+
Ψ

+

+
Ψ

+=

    (29)  

(III) If ,)1()(),(
2

α
β

βα −+==
ttSg  then 

2212211 ()([11{)(ˆ ω
α

ρωηωαρ mOtSS BS +−
Ψ
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)]1()2)1(
2

)] 1211232
2
211 αωωωηωωωα

α
ω −++−−+− OmO

                                                              

[ 2 1 1 42 2 3

1 2 2 1 2 1 1 1

2
1 2 12

1 2( )
2

3( ) {

(2 ) }]}

m m mO

mO O

mO

ω ω η
α α α

α ω η ω η η ω
α

η ω
α

−
+ − +

Ψ

− − −

−

        (30) 

(IV) If ,2)(),( 2t
ttHg

+
==

β
αβα  then 

[ ])()(11{)(ˆ
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where 

)/(1
)/()],/(1log[ 2

2

2
2

1
β

βωβω
t

tt
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=+=  and  
23

1
t+

=
β

ω . 

B.  Continuous-Discrete Prior 
It is clear from the previous section that specifying a 

general joint prior for α  and β  leads to computational 
complexities. In trying to solve this problem and simplify the 
Bayesian analysis, we assume that the scale parameter β  has 
a discrete prior, while the conditional distribution of α given 

jββ = has a conjugate gamma prior. Now, we suppose that 

the parameter is β  restricted to a .finite number of values, say 
,,..., 21 vβββ  i.e., 

vklP kkkr ,....2,1,)()( ==== βπββ  

where 10,11 ≤≤=∑ = k
v
k k ll .   

Further, suppose that conditional upon  ,kββ =  
,,....2,1 vk =  α has a natural conjugate gamma ),( kk ba prior, 

with density 

 0],exp[
)(

),( 1
2 >−

Γ
= − ααααπ k

a

k
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k

kk b
a

b
ba k                (32) 

Combining the likelihood function in (6), and prior density 
(32), we obtain the marginal posterior probability of α  
conditional on kββ =  

0],exp[
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where 
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i
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x
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On applying the discrete version of Bayes theorem, the 
marginal posterior probability distribution of β  is given by 
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The joint posterior density of α and β  is  

0],exp[
)(

),(* 1 >−
Γ

= − αααβαπ k
A

k
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k

k B
A

B
Px k        (35) 

Using the fact that the Bayes estimate of the parameter 
relative to SEL function BS)(⋅  is the posterior mean, we 
obtain the Bayes estimates for different parameters as follows: 

BSα̂ = αββαπαα dPxE k
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and 
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IV.  DATA ANALYSIS AND DISCUSSION 
To illustrate and to compare the above different estimation 

procedures, we present the analysis of one real data set 
represent the survival times of a group of patients given 
chemotherapy treatments. The computations are performed 
using Mathematica (ver. 8.0). 

Example:  In this example, the original data is a subset of 
data which was reported by [8] and represents the survival 
times in years of a group of patients given chemotherapy 
treatment. The data consisting of 46 survival times (in years) 
for 46 patients are: 0.047, 0.115, 0.121, 0.132, 0.164, 0.197, 
0.203, 0.260, 0.282, 0.296, 0.334, 0.395, 0.458, 0.466, 
0.501,0.507, 0.529, 0.534, 0.540, 0.570, 0.641, 0.644, 0.696, 
0.841, 0.863, 1.099, 1.219, 1.271, 1.326, 1.447, 1.485, 1.553, 
1.581, 1.589, 2.178, 2.343, 2.416, 2.444, 2.825, 2.830, 3.578, 
3.658, 3.743, 3.978, 4.003, 4.033. 
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Reference [8] shows that the Compound Rayleigh model is 
acceptable for these data. To illustrate the use of the proposed 
methods, we have a previous data consisting of 46 survival 
times from the Compound Rayleigh distribution. Suppose that 
the predetermined progressively type-II censoring scheme is 
given by 321 ,20( RRR ==  ),0... 25 === R for simplicity 

we denoted to this censoring scheme (C.S) by )24,20( . 
Then a progressively type-II censored sample of size 25 out of 
46 survival times is obtained as =),....,( 251 XX 0.047, 0.121, 
0.132, 0.260, 0.282, 0.334, 0.395, 0.458, 0.540, 0.570, 0.641, 
0.644, 0.863, 1.099, 1.326, 1.485, 1.553, 2.178, 2.343, 2.416, 
3.578, 3.658, 3.743, 3.978, 4.033. For this example, 21 
patient’s survival times are censored, and 25 times are 
observed.  

Maximum likelihood estimates: The MLE’s MLML βα ˆ,ˆ of 
the parameters α and β using the Newton-Raphson method 
when solving (11) and (12) are obtained. The MLE’s 

)(ˆ tRML and )(ˆ tH ML of the reliability and hazard functions are 

obtained at )5.1( =t by substituted the resulting MLE’s of 
the parameters into (3) and (4). We also compute the local 
estimate of the variance-covariance matrix by inverting the 
observed Fisher information matrix (14), and used that to 
construct two-sided approximate 95% confidence intervals 
(C.I) for the parameters using (17). The results are obtained to 
be:

672.0)(ˆ,282.0)(ˆ),428.0,114.0(.%95

,266.0ˆ);0829,334.0(.%95,563.0ˆ

===

===

tHtRIC

IC

MLML

MLML βα

 
Bayes estimates: For the Bayesian approach we consider 

two case: 
(i) Informative continuous bivariate prior. We assume that 

1=ζ  and ,2=δ The Bayes point estimates under 
SEL BS(.) of )(,, tSβα  and )(tH are calculated using 
Lindley’s approximation forms in (28-31) and to be.  

743.0)(ˆ,271.0)(ˆ,322.0ˆ,638.0ˆ ==== tHtR BSBSBSBS βα
  

(ii) Continuous-discrete prior. To implement the 
calculations in this case, it is first necessary to elicit the values 
of the hyperparameters ),( kk ba  in the prior (32), for 

,,....,2,1 vk =  It is necessary to condition prior beliefs about 
α on each kβ in turn, and this can be difficult in practice. An 
alternative method for obtaining the values ),( kk ba  can be 
based on the expected value of the reliability 
function )(tS conditional on vkk ,..2,1, == ββ , which is 
given using (3) and (32) by 

ααπ
β

β α
ββα dbattSE kk

k
kk

),()1()]([ 20

2
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)])1(ln(exp[
)(

2
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1 ++−∫
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= ∞ −  
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bt
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k ,.....,2,1,

))1(ln
2

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡
++

=

−α

β
             (40) 

Now, suppose that prior beliefs about the lifetime 
distribution enable one to specify values )),((),),(( 2211 ttSttS . 
Thus, for the two prior values )( 1ttS = and )( 2ttS = the 

values of ka and kb for each value kβ , can be obtained 
numerically from (51). If there is no prior beliefs, a 
nonparametric procedure can be use to estimate the 
corresponding two different values of )(tS , see [11]. In this 
example, a nonparametric procedure can be used as follows 
1. based on the above 46 survival times, we estimate two 

values of the reliability function using a nonparametric 
procedure ,46,....2,1),1/(1)( =+−= initS i as follows, 
see [11]. 

,979.0)47/1(1)1/(1)047.0( 1 =−=+−== nitS and 
.426.0)47/27(1)219.1( 2 =−==tS              (41) 

 
2. concerning the value of the MLE of the parameter 

),266.0ˆ(, =MLββ , we assume that 
)5,....,2,1( =kkβ takes the values, 0.1, 0.2, 0.28, 0.35, 

0.40, with equal probability (0.2) for each. 
3. the two prior values obtained in step 1 are substituted into 

(40), where ka and kb  are solved numerically for each 
given 5,...2,1, =kk , using the Newton-Raphson method. 
Table I gives the values of the hyperparameters and the 
posterior probabilities derived for each kβ .The Bayes 
estimators under SEL BS(.)  for the parameters α and β  
reliability function )(tS and hazard function )(tH are 
computed using results outlined in subsection (4.2). The 
results are 

717.0)(ˆ,289.0)(ˆ,306.0ˆ,612.0ˆ ==== tHtR BSBSBSBS βα
 

TABLE I 
PRIOR INFORMATION, HYPER PARAMETER VALUES AND THE POSTERIOR 

PROBABILITIES 

k  1 2 3 4 5 

kl  0.2 0.2 0.2 0.2 0.2 

kβ  0.10 0.20 0.28 0.35 0.40 

ka  6.536 2.881 6.032 5.094 5.637 

kb  5.536 2.221 6.835 5.447 5.447 

kT  102.175 80.456 70.581 65.117 61.762 

ku  
510

6.6
−×

 910

8.4
−×

 1110

7.1
−×

 
10

9.2

×
 

1410

3.2
−×

 

kP  0.012 0.309 0.309 0.281 0.289 
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V.  SIMULATION STUDY  
To see how the MLEs and the Bayes estimators compare, 

we carried out a Monte Carlo simulation. We compared the 
Bayes estimators to the MLEs in terms of bias and means 
squared error (MSE), for different sample sizes and censoring 
schemes. For a particular mn, and a censoring scheme R , we 
generate a progressively censored sample from the C.R 
distribution with 000=α  and 000=β  using the algorithm 
presented in [4] according to the following steps: 
1. Generate m  independent Uniform )1,0( observations 

mWWW ,...,, 21 . 
2. Determine the values of the censored scheme iR  for 

.,...,2,1 mi =  

3. Set )/(1 1∑+= +−=
m

imj ji RiE  for  .,...,2,1 mi =  

4. Set iE
ii WV =    for  .,...,2,1 mi =   

5. Set 11,, ....1 +−−−=≡ immminmi VVVUU  for 

.,...,2,1 mi = Then, .,..., 21 mUUU  is the required 
progressively type-II right censored sample from the 
Uniform )1,0(  distribution. 

6. Finally, for ),.5.0,3( == βα we set )(1
,, iinmi UFXX −=≡  

,)])1(1([ 2
1

/1 αβ −−−= iU  for mi ,...,2,1= .  
The resulting sample mXXX ,...,, 21 is the required 
progressively type-II right censored sample from the CRD. 

Using the algorithm described above, random progressively 
type-II censored samples of various sizes & censoring 
schemes are generated from the CRD with ).5.0,5.2( == βα  
In each case, we compute the MLEs and the Bayes estimators 
of the parameters α and β reliability function )(tS and hazard 
function )(tH . We replicate the process 1000 times and 

compute the estimated risks )(ER computed by averaging the 
squared deviations over the repetitions. The results, up to 
three decimal places, are reported in Tables II and III. 

 
TABLE II 

THE ER OF THE ESTIMATES FOR α  AND β WITH 50=n  

m  Scheme α  β  α  β  α β  
ML       Bayes 

 Lindley Continuous-
discrete prior 

30 
)29,20(

0*  
0.089 0.082 0.051 0.044 0.037 0.022 

30 
)20,29(

0*  
0.100 0.094 0.077 0.056 0.042 0.036 

30 
)14,20,15( 0*0*

 

0.101 0.096 0.083 0.066 0.063 0.054 

20 
)19,30(

0*  
0.118 0.110 0.104 0.095 0.078 0.066 

20 
)30,19(

0*  
0.126 0.121 0.111 0.100 0.096 0.072 

20 )9,30,10( 0*0*

 

0.137 0.129 0.117 0.112 0.106 0.091 

 
TABLE III 

THE ER OF THE ESTIMATES FOR )(tS  AND )(tH WITH T=1.5 AND N=50 

m  Scheme )(tS  )(tH  )(tS  )(tH  )(tS  )(tH  

ML       Bayes 
 Lindley Continuous-

discrete prior 
30 

)29,20(
0*  

0.088 0.012 0.007 0.009 0.007 0.008 

30 
)20,29(

0*  
0.016 0.024 0.022 0.013 0.021 0.011 

30 
)14,20,15( 0*0*

 

0.021 0.046 0.031 0.018 0.028 0.012 

20 
)19,30(

0*  
0.025 0.110 0.017 0.018 0.014 0.016 

20 
)30,19(

0*  
0.041 0.121 0.024 0.027 0.020 0.021 

20 )9,30,10( 0*0*

 

0.059 0.129 0.036 0.040 0.031 0.035 

VI.  CONCLUSIONS 
Censoring is a common phenomenon in life-testing, and 

reliability studies. The subject of progressive censoring has 
received considerable attention in the past few years, due in 
part to the availability of high speed computing resources, 
which make it both a feasible topic for simulation studies for 
researchers, and a feasible method of gathering lifetime data 
for practitioners. It has been illustrated by [13], that the 
inference is feasible, and practical when the sample data are 
gathered according to a type-II progressively censored 
experimental scheme. In this article, we have considered the 
maximum likelihood (ML), and Bayes estimates for some 
survival time parameters, reliability function, and hazard 
function, as well as the parameters of the CRD using 
progressively type-II censored data. MLEs, and the 
corresponding variance-covariance matrix, are obtained. We 
have also proposed a Bayesian approach to estimating the 
model parameters. Compared the MLEs and Bayes estimates 
obtained by numerical simulation in terms of the estimated 
risks (ER) for different censoring schemes. It is observed that 
overall, the Bayes estimators perform better, when compared 
with the MLEs. From the results, we observe the following: 
i. All of the results obtained in this article can be 

specialized to both the complete sample case by taking 
),,...3,2,1,0,( mirnm i ===  and the type-II right 

censored sample for ,1,...,3,2,1,0( −== miri  
).mnrm −=  

ii. The use of a discrete distribution for parameter c  
resulted in a closed form expression for the posterior 
pdf, and the equal probabilities in the discrete 
distribution cased an element of uncertainly, which can 
be desirable in some cases. 
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iii. From Tables II and III, as the effective sample 
proportion nm /  increases, the estimated risk of the 
estimators, reduce significantly. For a fixed n  and 

,m we can determine the censoring scheme which is 
most efficient; for example, we observe that the 
censoring scheme ,1 mnr −=  ,0...2 === mrr   seems 
to provide the smallest variance for the estimate of the 
reliability, and hazard functions. 

iv. The type-II progressive censoring scheme described in 
this paper can be generalized to accommodate censoring 
on the left as well. We may assume that the observation 
of failures begins at the time of the ths )1( + failure, at 
which time 1+sr surviving units are removed from the 
sample. The exact failure times of the s  units which are 
known to have failed before this starting time are 
unknown. 
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