Identifying Interactions in a Feeding System
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Identifying Interactions in a Feeding System

Authors: Jan Busch, Sebastian Schneider, Konja Knüppel, Peter Nyhuis

Abstract:

In production processes, assembly conceals a considerable potential for increased efficiency in terms of lowering production costs. Due to the individualisation of customer requirements, product variants have increased in recent years. Simultaneously, the portion of automated production systems has increased. A challenge is to adapt the flexibility and adaptability of automated systems to these changes. The Institute for Production Systems and Logistics developed an aerodynamic orientation system for feeding technology. When changing to other components, only four parameters must be adjusted. The expenditure of time for setting parameters is high. An objective therefore is developing an optimisation algorithm for automatic parameter configuration. Know how regarding the interaction of the four parameters and their effect on the sizes to be optimised is required in order to be able to develop a more efficient algorithm. This article introduces an analysis of the interactions between parameters and their influence on the quality of feeding.

Keywords: Aerodynamic feeding system, design of experiments, interactions between parameters.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1335784

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684

References:


[1] B. Lotter, in: Bruno Lotter und Hans-Peter Wiendahl, “Einführung, Montage in der industriellen Produktion”, Berlin, Heidelberg: Springer Verlag, pp. 1–8, 2012.
[2] G. Spur, „Handbuch der Fertigungstechnik, Fügen Handhaben Montieren“, 5th ed., Munich: Carl Hanser Verlag, 1986.
[3] G. Höhne, A.Schmidt, in: Bruno Lotter und Hans-Peter Wiendahl, „Hochleistungsmontage, Montage in der industriellen Produktion“, Berlin, Heidelberg: Springer Verlag, S. 473–483, 2012.
[4] A. Rybarczyk, „Auslegung aktiver aerodynamischer Zuführverfahren“ Dissertation, Leibniz Universität Hanover, Institut für Fabrikanlagen und Logistik, 2004.
[5] B.-J. Lorenz, „Aerodynamische Zuführtechnik“, Dissertation, Leibniz University Hanover, Hanover, Fachbereich Maschinenbau, 1999.
[6] S. Hesse, „Grundlagen der Handhabungstechnik“, 2nd ed., Munich: Carl Hanser Verlag, 2010.
[7] H.-P. Wiendahl, B.-M. Lorenz, “Aerodynamic Part Feeding: Development of Aerodynamic Orienting Devices”, The International Journal of Advance Manufacturing Technology, Vol. 15, pp. 417-424, 1999.
[8] K. Siebertz, D. T. van Bebber, T. Hochkirchen, „Statistische Versuchsplanung. Design of Experiments (DOE)”, 1st. ed, Heidelberg, Dordrecht, London, New York: Springer Verlag, 2010.
[9] W. Kleppmann, „Taschenbuch Versuchsplanung, Produkte und Prozesse optimieren“. 7th ed., Munich, Wien: Carl Hanser Verlag, 2011.
[10] T. C. Urdan, “Statistics in Plain English”, New York, Hove: Taylor & Francis Group, 2010, ch. 10.
[11] G. A. Churchill, “Fundamentals of design of experiments for cDNA microarrays”, Nature Genetics, Vol. 32, pp. 490-495, 2002.
[12] S. Menard, “Coefficients of Determination for Multiple Logistic Regression Analysis”, The American Statistician, Vol. 54, no. 1, pp. 17- 14, 2000.