
 

 

  
Abstract—In the recent works related with mixture discriminant 

analysis (MDA), expectation and maximization (EM) algorithm is 
used to estimate parameters of Gaussian mixtures. But, initial values 
of EM algorithm affect the final parameters’ estimates. Also, when 
EM algorithm is applied two times, for the same data set, it can be 
give different results for the estimate of parameters and this affect the 
classification accuracy of MDA. Forthcoming this problem, we use 
Self Organizing Mixture Network (SOMN) algorithm to estimate 
parameters of Gaussians mixtures in MDA that SOMN is more robust 
when random the initial values of the parameters are used [5]. We 
show effectiveness of this method on popular simulated waveform 
datasets and real glass data set. 
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Discriminant Analysis, Waveform Datasets, Glass Identification, 
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I. INTRODUCTION 

IXTURE discriminant analysis (MDA) is a method for 
classifying observations into known pre-existing non-
normal class. This method firstly proposed by Hastie 

and Tibshirani [1] in which Gaussian mixtures is used to 
obtain density estimation for each non-normal class. For the 
Gaussian mixtures, expectation and maximization (EM) 
algorithm [6] is used to determine number of components and 
estimate parameters. Xu and Jordan[11], improved the EM 
algorithm for the Gaussian mixtures and demonstrated its 
advantages and disadvantages over other algorithms. Choosing 
initial values of parameters in EM algorithm are very 
important [12]. EM algorithm can be give different results for 
the same initial values. In the MDA, classifications of the 
training observations to the true classes are very important for 
classification of the test data which is affect the classification 
rate. Therefore, parameters of the training data must be 
estimated truly. As an alternative to the EM algorithm Yin and 
Allinson [13], proposed Self Organizing Mixture Network 
(SOMN) algorithm for density modelling. Also, Yin and 
Allinson [5] showed that initial conditions effects convergent 
results of EM algorithm greater than the SOMN algorithm 
which is more robust when random initial values are used. 
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 In this study when applying MDA, we estimate parameters 
of Gaussians mixtures using EM and SOMN algorithms for 
simulation and real data sets. Then we compare results 
according to classification accuracy rate. In Section 2 and 
Section 3, we give some notations and estimation of 
parameters’ with MDA and SOMN algorithm, respectively. In 
Section 4 we apply these algorithms to simulation and reel data 
sets; also we give the comparison results in Section 4.  

II.  MIXTURE DISCRIMINANT ANALYSIS 

In the mixture discriminant analysis, suppose we have 
training observation jn  from population j  for Gj ,...,1= . 

Each class j  is divided into jR  artificial subclasses denoted 

by jrc . According to this clustered approach, each subclass 

has a multivariate normal distribution ),N(~ jr jrix Σµ with its 

own mean vector jrµ  and jrΣ  is covariance matrix for the 

r th subclass n j th class. The prior probability for class j  is 

jπ  and jrπ  is the mixing probability for the r th subclass in 

j th class, such that 1
1

=∑
=

jR

r
jrπ . Then mixture density for class 

j  is 
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where )()()( 1
jrjr

T
jrjr xxxD µµµ −Σ−=− −  is Mahalanobis 

distance. The posterior probabilities are obtained, base on 
Bayes rule, such that  
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where jπ  is the prior probability for class j . An observation 

is classified into the class j which has the highest posterior 
probability. The discrimination rules depend on the unknown 
parameters which are to be estimated from the training data. 

III.   SELF ORGANIZING MIXTURE NETWORK 

Extending self organizing map (SOM) to a mixture density 
model, Yin and Allinson[13]  proposed the self organizing 
mixture network (SOMN) algorithm. Yin and Allinson 
[13]describe a new parameter estimation technique minimizing 
Kullback-Leibler information metric [7] by using Robins-
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Monro stochastic approximation method [8]. Structure of 
SOMN algorithm based on mixture distribution is illustrated in 
Figure 1. 

 

 
Fig.1. Structure of SOMN algorithm based on mixture distribution 

[13]. 
 

In SOMN algorithm, mean vector jrµ  and covariance 

matrix jrΣ  are also called learning weights. The output of 

neural Network or upper level is equal to summation of prior 
probabilities or learning weights and component densities 
weighted with jrπ . The updating process of SOM algorithm is 

described below. 
 

)](ˆ)()[(ˆ)()(ˆ)1(ˆ nnxnznnn jrjrjrjr µαµµ −+=+                    (3) 
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T
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where cη  is neighborhood of c th winner 

component, ( ) 10 << nα  monotone decreasing ( )nα  is 

learning rate in the n th iteration and  jrẑ  is defined as 

follows 
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IV.   APPLICATIONS 

4.1. Simulation with Random Waveform Datasets  
 

We show effectiveness of SOMN algorithm in mixture 
model discriminant analysisis method on popular simulated 
dataset, taken from Breiman et al. [10]. It is three- class 
problem with 21 variables and is considered to be a difficult 
pattern recognition problem. The predictors are defined by 
 

ii ihuiuhx ε+−+= )()1()( 21   (class 1) 

ii ihuiuhx ε+−+= )()1()( 31   (class 2) 

ii ihuiuhx ε+−+= )()1()( 32   (class 3) 

 

where 21,...,2,1=i , u  is uniformly distributed on )1,0( , iε  

are standard normal variates and the ih  are the shifted 

triangular waveforms: )0,116max()(1 −−= iih ,  

)4()( 12 −= ihih  and )4()( 13 += ihih . Each training sample has 

600 observations, and equal priors were used, so there are 200 
observations in each class. We used different 10,000 test 
samples of size 600. Firstly each classes of a training data is 
divided into 3 subgroups. In other words each class of a 
training sample is modeled by a Gaussian mixture model with 
3 components. Parameters of the mixture model are calculated 
by SOMN.  The evaluated mixture models are used for 
discrimination. Each of the observation in test sample is 
classified into one of 3 classes which has the highest 
probability in. Classification error rates according to 
discriminant functions obtained with SOMN-MDA for 
simulated 10000 independent test data sets are shown by 
Figure 2 and also the descriptive statistics of them are 
summarized on Table 1. Mean of misclassification rate after 
10000 independent simulations is 21.23%. The minimum and 
maximum misclassification rates after 10000 independent 
simulations are 15% and 29% respectively.  

 
Fig. 2. Misclassification error rates for 10000 independent simulated 

data sets 
 

 
4.2. Glass Data 
 

This example is from forensic testing of glass. The glass 
data were obtained from the UCI Machine Learning 
Repository maintained by Murphy and Aha [9]. A subset of 
the original data set was used for convenience. The training 

TABLE I 
DESCRIPTIVE STATISTICS OF MISCLASSIFICATION RATES 

AFTER 10000 INDEPENDENT TEST SAMPLES 

 Statistic Std. Error 

Mean 0.2123 0.00017 

Median 0.2117  

Variance 0.000  

Std. Deviation 0.01729  

Minimum 0.15  

Maximum 0.29  

Range 0.14  

Skewness 0.066 0.024 

Kurtosis -0.014 0.049 
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data consisted of two groups and seven predictors. The two 
groups are window float glass and window non-float glass. 
The variables measured are weight proportions of different 
oxides. A sample of 80 observations with equal priors for the 2 
groups was chosen as the training set, while the test data were 
of size 83.  Variables 8 and 9 are not used in analysis because 
these variables consist of lots of zero values, moreover five of 
the other variables which coefficient of variation (CV) is high 
are selected to analysis. Bashir and Carter [4] compared full 
rank and reduced rank discriminant method for glass data with 
three subgroups. The solution of their work on 
misclassification error rates of Glass data given in Table 2. 

 

 
 

Bashir and Carter [4] found the robust reduced rank MDA 
at 10.0=v was the best model with minimum error of 0.3167. 
We evaluate the misclassification error rate based on linear 
discriminant analysis is 0.245 for Glass data with 5 variables 
chosen for the analysis. 

Three subgroups per group of the training data taken from 
Glass data is used for the analysis. Each group of training data 
is divided into 3 subgroups. Mixture of normal distribution 
model is constructed for each group. Form of mixture models 
for float processed and non float processed groups are given 
by  
 
Float: 
 

)ˆ,ˆ;(ˆ)ˆ,ˆ;(ˆ)ˆ,ˆ;(ˆ);( 1313131312121212111111111 Σ+Σ+Σ= µπµπµπ xxxθx mmmm

 
Non Float: 
 

)ˆ,ˆ;(ˆ)ˆ,ˆ;(ˆ)ˆ,ˆ;(ˆ);( 2323232322222222212121212 Σ+Σ+Σ= µπµπµπ xxxθx mmmm

 
where jrµ   and jrΣ  is mean vector and covariance matrix of 

j th class and r th subclass for  1=j  float process, 2=j  

non-float process 3,2,1=j  respectively. jrπ  is mixing weight. 

 
In Glass data set, number of float processed observations is 

87 out of 163 so mixture weight of float processed is 
163871 =π  and for non float processed is 163762 =π .  

Mixture model for train data is given by 
),(ˆ),(ˆ),( 2211 θxθxθx mmm ππ += . Parameter estimations 

which computed with SOMN in mixture models for two 
groups of training data are given by Table 3. The graphs of   

Mixture pdf of float processed window glasses, non window 
glasses and mixture form of them is given Figure 3 (a-c) 
respectively. 
 
 
 

 
(a) );(1 θxm  

 
 
 

 
(b) );(2 θxm  

 
 
 

 
(c) );( θxm  

 
Fig. 3. (a) The pdf of mixture of normal with 3 components of float 
processed group in train dataset (b) The pdf of mixture of normal 
with 3 components of non-float processed group in train dataset (c) 
The pdf of mixture of two mixture normal with 3 components of train 
dataset. 

TABLE II 
MISCLASSIFICATION ERRORS, GLASS DATA THREE 

SUBGROUPS/GROUP [4] 

v  Full rank mda Reduced rank mda 
0.05 0.4167 0.4167 
0.10 0.4167 0.3167 
0.15 0.4167 0.4167 
0.20 0.4167 0.4167 
0.25 0.4167 0.3333 
0.30 0.4167 0.3333 
mda 0.4000 0.4000 
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TABLE III 
 PARAMETER ESTIMATIONS OF THE MIXTURE MODELS FOR EACH GROUP IN TRAIN DATASET. 

 

 
 

In test data set, each observation is assigned into one of 
groups namely float processed window and non-float 
processed window. After classification, 41 out of 47 
observations in float processed window group and 30 out of 36 
observations in non-float processed window group are 
correctly assigned. So general misclassification rate for test 
data is 14.5%. After the classification, scatter plot of  
observations according to magnesium variable and silicon 
variable is given Figure 4. 
 

 
Fig. 4. Scatter plot of observations in test data after the classification. 

V.  CONCLUSIONS  

In this study, SOMN algorithm is suggested for parameter 
estimation in mixture discriminant analysis. We show 
effectiveness of this method on popular simulated waveform 
datasets and real glass data set. Although for glass data set, 
Bashir and Carter [4] found the robust reduced rank MDA at 

10.0=v was the best model with minimum error of 0.3167, we 

evaluate misclassification rate is 0.145 in this approach. 
Classification results of proposed approximation is much 
better than Bashir and Carter  for glass data. 
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