Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) Parameters for Propane, Ethylene, and Hydrogen under Supercritical Conditions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) Parameters for Propane, Ethylene, and Hydrogen under Supercritical Conditions

Authors: Ilke Senol

Abstract:

Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) equation of state (EOS) is a modified SAFT EOS with three pure component specific parameters: segment number (m), diameter (σ) and energy (ε). These PC-SAFT parameters need to be determined for each component under the conditions of interest by fitting experimental data, such as vapor pressure, density or heat capacity. PC-SAFT parameters for propane, ethylene and hydrogen in supercritical region were successfully estimated by fitting experimental density data available in literature. The regressed PCSAFT parameters were compared with the literature values by means of estimating pure component density and calculating average absolute deviation between the estimated and experimental density values. PC-SAFT parameters available in literature especially for ethylene and hydrogen estimated density in supercritical region reasonably well. However, the regressed PC-SAFT parameters performed better in supercritical region than the PC-SAFT parameters from literature.

Keywords: Equation of state, perturbed-chain, PC-SAFT, super critical.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1057633

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7003

References:


[1] G. M. Kontogeorgis, G.K. Folas, Thermodynamic Models for Industrial Applications - From Classical and Advanced Mixing Rules to Association Theories, Wiltshire, UK: John Wiley & Sons., 2010, pp 3, 41, 79, 197-198, 221-256.
[2] C.H. Twu, J.E. Coon, M.G. Kusch, A.H. Harvey, Selection of Equation of State Models for Process Simulator, Workbook meeting 27.July.1994.
[3] N. P. Khare, Predictive modeling of metal-catalyzed polyolefin processes, PhD Thesis, 2003.
[4] N. Pedrosa, L.F. Vega, J.A.P. Coutinho, I.M. Marrucho, "Phase Equilibria Calculations of Polyethylene Solutions from SAFT-Type Equations of State", Macromolecules, vol. 39, pp. 4240-4246, 2006.
[5] I.E. Economou, M.D. Donohue, "Equations of state for hydrogen bonding systems", Fluid Phase Equilib., vol. 116(1-2), pp. 518-529, 1996.
[6] M. S. J. Wertheim, "Fluids with highly directional attractive forces. I. Statistical thermodynamics", J. Stat. Phys., vol. 35, pp. 19-34, 1984.
[7] M. S. J. Wertheim, "Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations", J. Stat. Phys., vol. 35, pp. 35-47, 1984.
[8] M. S. J. Wertheim, "Fluids with highly directional attractive forces. III. Multiple attraction sites", J. Stat. Phys., vol. 42, pp. 459-476, 1986.
[9] M. S. J. Wertheim, "Fluids with highly directional attractive forces. IV. Equilibrium polymerization", J. Stat. Phys., vol. 42, pp. 477-492, 1986.
[10] W.G. Chapman, G. Jackson, K.E. Gubbins, "hase equilibria of associating fluids. Chain molecules with multiple bonding sites", Mol. Phys., vol. 65(5), pp. 1057-1079, 1988.
[11] G. Jackson, W.G. Chapman, K.E. Gubbins, "Phase equilibria of associating fluids. Spherical molecules with multiple bonding sites", Mol. Phys., vol. 65(1), pp. 1-31, 1988.
[12] W.G. Chapman, K.E. Gubbins, G. Jackson, M. Radosz, "New reference equation of state for associating liquids", Ind. Eng. Chem. Res., vol. 29(8), pp. 1709-1021, 1990.
[13] S.H. Huang, M. Radosz, "Equation of state for small, large, polydisperse, and associating molecules", Ind. Eng. Chem. Res., vol. 29(11), pp. 2284-2294, 1990.
[14] Y.-H. Fu, S.I. Sandler, "A Simplified SAFT Equation of State for Associating Compounds and Mixtures", Ind. Eng. Chem. Res., vol. 34(5), pp. 1897-1909, 1995.
[15] J. Gross, G. Sadowski, "Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules", Ind. Eng. Chem. Res., vol.40, pp. 1244-1260, 2001.
[16] J. Gross, G. Sadowski, "Modeling Polymer Systems Using the Perturbed-Chain Statistical Associating Fluid Theory Equation of State", Ind. Eng. Chem. Res., vol. 41, pp. 1084-1093, 2002.
[17] J. Gross, G. Sadowski, "Application of the Perturbed-Chain SAFT Equation of State to Associating Systems", Ind. Eng. Chem. Res., vol. 41, pp. 5510-5515, 2002.
[18] J. Gross, O. Spuhl, F. Tumakaka, G. Sadowski, "Modeling Copolymer Systems Using the Perturbed-Chain SAFT Equation of State", Ind. Eng. Chem. Res., vol. 42, pp. 1266-1274, 2003.
[19] R. O-Lenick, X.J. Li, Y.C. Chiew, "Correlation functions of hard-sphere chain mixtures: integral equation theory and simulation results", Mol. Phys., vol. 86(5), pp. 1123-1135, 1995.
[20] D. N. Justo-García, F. García-Sánchez, N.L. Díaz-Ramírez, A. Romero- Martínez, "Calculation of critical points for multicomponent mixtures containing hydrocarbon and nonhydrocarbon components with the PCSAFT equation of state", Fluid Phase Equilib., vol. 265, pp. 192-204 2008.
[21] M.A. Aalto, S.S. Liukkonen, "Liquid Densities of Propane + Linear Low-Density Polyethylene Systems at (354−378) K and (4.00−7.00) MPa", J. Chem. Eng. Dat., vol. 43, pp. 29-32, 1998.
[22] R.H.P. Thomas and R.H. Harrison, "Pressure-volume-temperature relations of propane", J. Chem. Eng. Dat., vol. 27, pp. 1-11, 1982.
[23] B.A.Younglove, "Thermophysical properties of fluids. I. Argon, ethylene, parahydrogen, nitrogen, nitrogen trifluoride, and oxygen", J. Phys. Chem. Ref. Dat., vol. 11(1), pp. 1/1-1/353, 1982.
[24] H.I. Britt, R.H. Lueke, "The estimation of parameters in nonlinear implicit models", Technometrics, vol. 15(2), pp. 233-247, 1973.