Search results for: fuel assembly
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 825

Search results for: fuel assembly

795 Effect of Fuel Lean Reburning Process on NOx Reduction and CO Emission

Authors: Changyeop Lee, Sewon Kim

Abstract:

Reburning is a useful technology in reducing nitric oxide through injection of a secondary hydrocarbon fuel. In this paper, an experimental study has been conducted to evaluate the effect of fuel lean reburning on NOx/CO reduction in LNG flame. Experiments were performed in flames stabilized by a co-flow swirl burner, which was mounted at the bottom of the furnace. Tests were conducted using LNG gas as the reburn fuel as well as the main fuel. The effects of reburn fuel fraction and injection manner of the reburn fuel were studied when the fuel lean reburning system was applied. The paper reports data on flue gas emissions and temperature distribution in the furnace for a wide range of experimental conditions. At steady state, temperature distribution and emission formation in the furnace have been measured and compared. This paper makes clear that in order to decrease both NOx and CO concentrations in the exhaust when the pulsated fuel lean reburning system was adapted, it is important that the control of some factors such as frequency and duty ratio. Also it shows the fuel lean reburning is also effective method to reduce NOx as much as reburning.

Keywords: Fuel lean reburn, NOx, CO, LNG flame.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2173
794 Thermo Mechanical Design and Analysis of PEM Fuel cell Plate

Authors: Saravana Kannan Thangavelu

Abstract:

Fuel and oxidant gas delivery plate, or fuel cell plate, is a key component of a Proton Exchange Membrane (PEM) fuel cell. To manufacture low-cost and high performance fuel cell plates, advanced computer modeling and finite element structure analysis are used as virtual prototyping tools for the optimization of the plates at the early design stage. The present study examines thermal stress analysis of the fuel cell plates that are produced using a patented, low-cost fuel cell plate production technique based on screen-printing. Design optimization is applied to minimize the maximum stress within the plate, subject to strain constraint with both geometry and material parameters as design variables. The study reveals the characteristics of the printed plates, and provides guidelines for the structure and material design of the fuel cell plate.

Keywords: Design optimization, FEA, PEM fuel cell, Thermal stress

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2175
793 Optimization Model for Identification of Assembly Alternatives of Large-Scale, Make-to-Order Products

Authors: Henrik Prinzhorn, Peter Nyhuis, Johannes Wagner, Peter Burggräf, Torben Schmitz, Christina Reuter

Abstract:

Assembling large-scale products, such as airplanes, locomotives, or wind turbines, involves frequent process interruptions induced by e.g. delayed material deliveries or missing availability of resources. This leads to a negative impact on the logistical performance of a producer of xxl-products. In industrial practice, in case of interruptions, the identification, evaluation and eventually the selection of an alternative order of assembly activities (‘assembly alternative’) leads to an enormous challenge, especially if an optimized logistical decision should be reached. Therefore, in this paper, an innovative, optimization model for the identification of assembly alternatives that addresses the given problem is presented. It describes make-to-order, large-scale product assembly processes as a resource constrained project scheduling (RCPS) problem which follows given restrictions in practice. For the evaluation of the assembly alternative, a cost-based definition of the logistical objectives (delivery reliability, inventory, make-span and workload) is presented.

Keywords: Assembly scheduling, large-scale products, make-to-order, rescheduling, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412
792 A Comparison of Fuel Usage and Harvest Capacity in Self-Propelled Forage Harvesters

Authors: Brian H. Marsh

Abstract:

Self-propelled forage harvesters in the 850 horsepower range were tested over three years for fuel consumption, throughput and quality of chop for corn silage. Cut length had a significant effect on fuel consumption, throughput and some aspects of chop quality. Measure cut length was often different than theoretical length of cut. Where cut length was equivalent fuel consumption and throughput were equivalent across brands. Shortening cut length from 17 to 11mm increases fuel consumption 53 percent measured as Mg of silage harvested per gallon of fuel used and a 42 percent decrease in capacity as tons of fresh material per hour run time.

Keywords: Corn silage, forage harvester, fuel use, length of cut.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5026
791 Determination of the Economic Planning Depth for Assembly Process Planning

Authors: A. Kampker, P. Burggräf, Y. Bäumers

Abstract:

In order to be competitive, companies have to reduce their production costs while meeting increasing quality requirements. Therefore, companies try to plan their assembly processes as detailed as possible. However, increasing product individualization leading to a higher number of variants, smaller batch sizes and shorter product life cycles raise the question to what extent the effort of detailed planning is still justified. An important approach in this field of research is the concept of determining the economic planning depth for assembly process planning based on production specific influencing factors. In this paper first solution hypotheses as well as a first draft of the resulting method will be presented.

Keywords: Assembly process planning, economic planning depth, planning benefit, planning effort.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2087
790 Irreversibility and Electrochemical Modeling of GT-SOFC Hybrid System and Parametric Analysis on Performance of Fuel Cell

Authors: R. Mahjoub, K. Maghsoudi Mehraban

Abstract:

Since the heart of the hybrid system is the fuel cell and it has vital impact on efficiency and performance of cycle, in this study, the major modeling of electrochemical reaction within the fuel cell is analyzed. Also, solid oxide fuel cell is integrated with the gas turbine and thermodynamic analysis on different elements of hybrid system is applied. Next, in predefined operational points of hybrid cycle, the simulation results are obtained. Then, different source of irreversibility in fuel cell is modeled and influence of different major parameters on different irreversibility is computed and applied. Then, the effect of important parameters such as thickness and surface of electrolyte fuel cell are simulated in fuel cell and its dependency to these parameters is explained. At the end of the paper, different impact of parameters on fuel cell with a gas turbine and current density and voltage of fuel cell are simulated.

Keywords: Electrochemical analysis, Gas turbine, Hybrid system, Irreversibility analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469
789 The Fuel Consumption and Non Linear Model Metropolitan and Large City Transportation System

Authors: Mudjiastuti Handajani

Abstract:

The national economy development affects the vehicle ownership which ultimately increases fuel consumption. The rise of the vehicle ownership is dominated by the increasing number of motorcycles. This research aims to analyze and identify the characteristics of fuel consumption, the city transportation system, and to analyze the relationship and the effect of the city transportation system on the fuel consumption. A multivariable analysis is used in this study. The data analysis techniques include: a Multivariate Multivariable Analysis by using the R software. More than 84% of fuel on Java is consumed in metropolitan and large cities. The city transportation system variables that strongly effect the fuel consumption are population, public vehicles, private vehicles and private bus. This method can be developed to control the fuel consumption by considering the urban transport system and city tipology. The effect can reducing subsidy on the fuel consumption, increasing state economic.

Keywords: city, consumption, fuel, transportation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911
788 Framework Study on Single Assembly Line to Improve Productivity with Six Sigma and Line Balancing Approach

Authors: Inaki Maulida Hakim, T. Yuri M. Zagloel, Astari Wulandari

Abstract:

Six sigma is a framework that is used to identify inefficiency so that the cause of inefficiency will be known and right improvement to overcome cause of inefficiency can be conducted. This paper presents result of implementing six sigma to improve piston assembly line in Manufacturing Laboratory, Universitas Indonesia. Six sigma framework will be used to analyze the significant factor of inefficiency that needs to be improved which causes bottleneck in assembly line. After analysis based on six sigma framework conducted, line balancing method was chosen for improvement to overcome causative factor of inefficiency which is differences time between workstation that causes bottleneck in assembly line. Then after line balancing conducted in piston assembly line, the result is increase in efficiency. Efficiency is shown in the decreasing of Defects per Million Opportunities (DPMO) from 900,000 to 700,000, the increasing of level of labor productivity from 0.0041 to 0.00742, the decreasing of idle time from 121.3 seconds to 12.1 seconds, and the increasing of output, which is from 1 piston in 5 minutes become 3 pistons in 5 minutes.

Keywords: Assembly line, efficiency, improvement, line balancing, productivity, six sigma, workstation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
787 Design and Simulation of Air-Fuel Ratio Control System for Distributorless CNG Engine

Authors: Ei Ei Moe, Zaw Min Aung, Kyawt Khin

Abstract:

This paper puts forward one kind of air-fuel ratio control method with PI controller. With the help of MATLAB/SIMULINK software, the mathematical model of air-fuel ratio control system for distributorless CNG engine is constructed. The objective is to maintain cylinder-to-cylinder air-fuel ratio at a prescribed set point, determined primarily by the state of the Three- Way-Catalyst (TWC), so that the pollutants in the exhaust are removed with the highest efficiency. The concurrent control of airfuel under transient conditions could be implemented by Proportional and Integral (PI) controller. The simulation result indicates that the control methods can easily eliminate the air/fuel maldistribution and maintain the air/fuel ratio at the stochiometry within minimum engine events.

Keywords: Distributorless CNG Engine, Mathematical Modelof Air-fuel control, MATLAB/SIMULINK, PI controller

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4452
786 A New Heuristic Approach to Solving U-shape Assembly Line Balancing Problems Type-1

Authors: M. Fathi, M. J. Alvarez, V. Rodríguez

Abstract:

Assembly line balancing is a very important issue in mass production systems due to production cost. Although many studies have been done on this topic, but because assembly line balancing problems are so complex they are categorized as NP-hard problems and researchers strongly recommend using heuristic methods. This paper presents a new heuristic approach called the critical task method (CTM) for solving U-shape assembly line balancing problems. The performance of the proposed heuristic method is tested by solving a number of test problems and comparing them with 12 other heuristics available in the literature to confirm the superior performance of the proposed heuristic. Furthermore, to prove the efficiency of the proposed CTM, the objectives are increased to minimize the number of workstation (or equivalently maximize line efficiency), and minimizing the smoothness index. Finally, it is proven that the proposed heuristic is more efficient than the others to solve the U-shape assembly line balancing problem.

Keywords: Critical task method, Heuristic, Line balancingproblem, U-shape

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2435
785 An Empirical Dynamic Fuel Cell Model Used for Power System Verification in Aerospace

Authors: Giuliano Raimondo, Jörg Wangemann, Peer Drechsel

Abstract:

In systems development involving Fuel Cells generators, it is important to have from an early stage of the project a dynamic model for the electrical behavior of the stack to be shared between involved development parties. It allows independent and early design and tests of fuel cell related power electronic. This paper presents an empirical Fuel Cell system model derived from characterization tests on a real system. Moreover, it is illustrated how the obtained model is used to build and validate a real-time Fuel Cell system emulator which is used for aerospace electrical integration testing activities.

Keywords: Fuel cell dynamics, real time simulation, fuel cell, modelling, testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1046
784 Investigation on Performance and Emission Characteristics of CI Engine Fuelled with Producer Gas and Esters of Hingan (Balanites)Oil in Dual Fuel Mode

Authors: Samir J. Deshmukh, Lalit B. Bhuyar, Shashank B. Thakre

Abstract:

Partial combustion of biomass in the gasifier generates producer gas that can be used for heating purposes and as supplementary or sole fuel in internal combustion engines. In this study, the virgin biomass obtained from hingan shell is used as the feedstock for gasifier to generate producer gas. The gasifier-engine system is operated on diesel and on esters of vegetable oil of hingan in liquid fuel mode operation and then on liquid fuel and producer gas combination in dual fuel mode operation. The performance and emission characteristics of the CI engine is analyzed by running the engine in liquid fuel mode operation and in dual fuel mode operation at different load conditions with respect to maximum diesel savings in the dual fuel mode operation. It was observed that specific energy consumption in the dual fuel mode of operation is found to be in the higher side at all load conditions. The brake thermal efficiency of the engine using diesel or hingan oil methyl ester (HOME) is higher than that of dual fuel mode operation. A diesel replacement in the tune of 60% in dual fuel mode is possible with the use of hingan shell producer gas. The emissions parameters such CO, HC, NOx, CO2 and smoke are higher in the case of dual fuel mode of operation as compared to that of liquid fuel mode.

Keywords: Esters, performance, producer gas, vegetable oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
783 Evaluation of Model and Performance of Fuel Cell Hybrid Electric Vehicle in Different Drive Cycles

Authors: Fathollah Ommi, Golnaz Pourabedin, Koros Nekofa

Abstract:

In recent years fuel cell vehicles are rapidly appearing all over the globe. In less than 10 years, fuel cell vehicles have gone from mere research novelties to operating prototypes and demonstration models. At the same time, government and industry in development countries have teamed up to invest billions of dollars in partnerships intended to commercialize fuel cell vehicles within the early years of the 21st century. The purpose of this study is evaluation of model and performance of fuel cell hybrid electric vehicle in different drive cycles. A fuel cell system model developed in this work is a semi-experimental model that allows users to use the theory and experimental relationships in a fuel cell system. The model can be used as part of a complex fuel cell vehicle model in advanced vehicle simulator (ADVISOR). This work reveals that the fuel consumption and energy efficiency vary in different drive cycles. Arising acceleration and speed in a drive cycle leads to Fuel consumption increase. In addition, energy losses in drive cycle relates to fuel cell system power request. Parasitic power in different parts of fuel cell system will increase when power request increases. Finally, most of energy losses in drive cycle occur in fuel cell system because of producing a lot of energy by fuel cell stack.

Keywords: Drive cycle, Energy efficiency, energy consumption, Fuel cell system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
782 Performance and Emission Study of Linseed Oilas a Fuel for CI Engine

Authors: Ashutosh Kumar Rai, Naveen Kumar, Bhupendra Singh Chauhan

Abstract:

Increased energy demand and the concern about environment friendly technology, renewable bio-fuels are better alternative to petroleum products. In the present study linseed oil was used as alternative source for diesel engine fuel and the results were compared with baseline data of neat diesel. Performance parameters such as brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) and emissions parameters such as CO, unburned hydro carbon (UBHC), NOx, CO2 and exhaust temperature were compared. BTE of the engine was lower and BSFC was higher when the engine was fueled with Linseed oil compared to diesel fuel. Emission characteristics are better than diesel fuel. NOx formation by using linseed oil during the experiment was lower than diesel fuel. Linseed oil is non edible oil, so it can be used as an extender of diesel fuel energy source for small and medium energy needs.

Keywords: Bio-fuel, exhaust emission, linseed oil, triglyceride.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3817
781 Thermo-chemical Characteristics of Powder Fabricated by Oxidation of Spent PWR Fuel

Authors: Geun-Il Park, Jae-Won Lee, Dou-Youn Lee, Jung-Won Lee, Kwang-Wook Kim, Kee-Chan Song

Abstract:

Thermochemcial characteristics of powder fabricated using oxidation treatment of spent PWR fuel and SIMFUEL were evaluated for recycling of spent fuel such as DUPIC process. Especially, the influence of spent fuel burn-ups on the powder fabrication characteristics was experimentally evaluated, ranging from 27,300 to 65,000 MWd/tU. Densities of powder manufactured from an oxidation, OREOX and the milling processes at the same process conditions were compared as a function of the fuel burn-ups respectively. Also, based on chemical analysis results, homogeneity of fissile elements in oxidized powder was confirmed.

Keywords: Spent PWR fuel, DUPIC, Oxidation, OREOX, Powder, Chemical analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676
780 Study of Temperature Distribution in Coolant Channel of Nuclear Power with Fuel Cylinder Element Using Fluent Software

Authors: Elham Zamiri

Abstract:

In this research, we have focused on numeral simulation of a fuel rod in order to examine distribution of heat temperature in components of fuel rod by Fluent software by providing steady state, single phase fluid flow, frequency heat flux in a fuel rod in nuclear reactor to numeral simulation. Results of examining different layers of a fuel rod consist of fuel layer, gap, pod, and fluid cooling flow, also examining thermal properties and fluids such as heat transition rate and pressure drop. The obtained results through analytical method and results of other sources have been compared and have appropriate correspondence. Results show that using heavy water as cooling fluid along with few layers of gas and pod have the ability of reducing the temperature from above 300 C to 70 C. This investigation is developable for any geometry and material used in the nuclear reactor.

Keywords: Nuclear fuel fission, numberal simulation, fuel rod, reactor, fluent software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 672
779 Information Technologies in Automotive Assembly Industry in Thailand

Authors: Jirarat Teeravaraprug, Usawadee Inklay

Abstract:

This paper gave an attempt in prioritizing information  technologies that organizations should give concentration. The case  study was organizations in the automotive assembly industry in  Thailand. Data were first collected to gather all information  technologies known and used in the automotive assembly industry in  Thailand. Five experts from the industries were surveyed based on  the concept of fuzzy DEMATEL. The information technologies were  categorized into six groups, which were communication, transaction,  planning, organization management, warehouse management, and  transportation. The cause groups of information technologies for each  group were analyzed and presented. Moreover, the relationship  between the used and the significant information technologies was  given. Discussions based on the used information technologies and  the research results are given.

 

Keywords: Information technology, automotive assembly industry, fuzzy DEMATEL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
778 A New OvS Approach in an Assembly Line Balancing Problem

Authors: P. Azimi, B. Behtoiy

Abstract:

One of the most famous techniques which affect the efficiency of a production line is the assembly line balancing (ALB) technique. This paper examines the balancing effect of a whole production line of a real auto glass manufacturer in three steps. In the first step, processing time of each activity in the workstations is generated according to a practical approach. In the second step, the whole production process is simulated and the bottleneck stations have been identified, and finally in the third step, several improvement scenarios are generated to optimize the system throughput, and the best one is proposed. The main contribution of the current research is the proposed framework which combines two famous approaches including Assembly Line Balancing and Optimization via Simulation technique (OvS). The results show that the proposed framework could be applied in practical environments, easily.

Keywords: Assembly line balancing problem, optimization via simulation, production planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1775
777 Hysteresis Control of Power Conditioning Unit for Fuel Cell Distributed Generation System

Authors: Kanhu Charan Bhuyan, Subhransu Padhee, Rajesh Kumar Patjoshi, Kamalakanta Mahapatra

Abstract:

Fuel cell is an emerging technology in the field of renewable energy sources which has the capacity to replace conventional energy generation sources. Fuel cell utilizes hydrogen energy to produce electricity. The electricity generated by the fuel cell can’t be directly used for a specific application as it needs proper power conditioning. Moreover, the output power fluctuates with different operating conditions. To get a stable output power at an economic rate, power conditioning circuit is essential for fuel cell. This paper implements a two-staged power conditioning unit for fuel cell based distributed generation using hysteresis current control technique.

Keywords: Fuel cell, power conditioning unit, hysteresis control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2397
776 Mobile Assembly of Electric Vehicles: Decentralized, Low-Invest and Flexible

Authors: Achim Kampker, Kai Kreiskoether, Johannes Wagner, Sarah Fluchs

Abstract:

The growing speed of innovation in related industries requires the automotive industry to adapt and increase release frequencies of new vehicle derivatives which implies a significant reduction of investments per vehicle and ramp-up times. Emerging markets in various parts of the world augment the currently dominating established main automotive markets. Local content requirements such as import tariffs on final products impede the accessibility of these micro markets, which is why in the future market exploitation will not be driven by pure sales activities anymore but rather by setting up local assembly units. The aim of this paper is to provide an overview of the concept of decentralized assembly and to discuss and critically assess some currently researched and crucial approaches in production technology. In order to determine the scope in which complementary mobile assembly can be profitable for manufacturers, a general cost model is set up and each cost driver is assessed with respect to varying levels of decentralization. One main result of the paper is that the presented approaches offer huge cost-saving potentials and are thus critical for future production strategies. Nevertheless, they still need to be further exploited in order for decentralized assembly to be profitable for companies. The optimal level of decentralization must, however, be specifically determined in each case and cannot be defined in general.

Keywords: Automotive assembly, e-mobility, production technology, small series assembly.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1438
775 Speed Optimization Model for Reducing Fuel Consumption Based on Shipping Log Data

Authors: Ayudhia P. Gusti, Semin

Abstract:

It is known that total operating cost of a vessel is dominated by the cost of fuel consumption. How to reduce the fuel cost of ship so that the operational costs of fuel can be minimized is the question that arises. As the basis of these kinds of problem, sailing speed determination is an important factor to be considered by a shipping company. Optimal speed determination will give a significant influence on the route and berth schedule of ships, which also affect vessel operating costs. The purpose of this paper is to clarify some important issues about ship speed optimization. Sailing speed, displacement, sailing time, and specific fuel consumption were obtained from shipping log data to be further analyzed for modeling the speed optimization. The presented speed optimization model is expected to affect the fuel consumption and to reduce the cost of fuel consumption.

Keywords: Maritime transportation, reducing fuel, shipping log data, speed optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669
774 Micro-Controller Based Oxy-Fuel Profile Cutting System

Authors: A. P. Kulkarni, P. Randive, A. R. Mache

Abstract:

In today-s era of plasma and laser cutting, machines using oxy-acetylene flame are also meritorious due to their simplicity and cost effectiveness. The objective to devise a Computer controlled Oxy-Fuel profile cutting machine arose from the increasing demand for metal cutting with respect to edge quality, circularity and lesser formation of redeposit material. The System has an 8 bit micro controller based embedded system, which assures stipulated time response. A new window based Application software was devised which takes a standard CAD file .DXF as input and converts it into numerical data required for the controller. It uses VB6 as a front end whereas MS-ACCESS and AutoCAD as back end. The system is designed around AT89C51RD2, powerful 8 bit, ISP micro controller from Atmel and is optimized to achieve cost effectiveness and also maintains the required accuracy and reliability for complex shapes. The backbone of the system is a cleverly designed mechanical assembly along with the embedded system resulting in an accuracy of about 10 microns while maintaining perfect linearity in the cut. This results in substantial increase in productivity. The observed results also indicate reduced inter laminar spacing of pearlite with an increase in the hardness of the edge region.

Keywords: Computer-Control, Profile, Oxy-Fuel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2550
773 A Review on Design and Fabrication of Fuel Fired Crucible Furnace

Authors: Oluwaseyi O. Taiwo, Adeolu A. Adediran, Abayomi A. Akinwande, Frank C. Okoyeh

Abstract:

The use of fuel fired crucible furnace is essential in the foundries of developing countries owing to the luxury of electricity. Fuel fired crucible furnace are commonly used in recycling, casting, research and training activities in tertiary institutions, therefore, several attempts are being made to improve the performance and service life of fuel fired crucible. The current study reviews the sequential stages involved in the designs and fabrication of fuel fired crucible furnace which include; design, material selection, modelling and simulation as well as performance evaluation. The study shows that selecting appropriate materials for the different units in the fabrication process is important to the efficiency and service life of fuel fired crucible furnaces. Also, efficiency and performance of fuel fired furnaces are independent of cost of fabrication and their capacity. The importance of modelling and simulation tools in the fabrication process are identified while their non-frequent usage in several works is observed. The need to widen performance evaluations in further studies beyond efficiency determination to give a more detailed assessment of fuel fired crucible furnaces is also observed.

Keywords: Crucible furnace, furnace design, fabrication, fuel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 405
772 Influence of Driving Strategy on Power and Fuel Consumption of Lightweight PEM Fuel Cell Vehicle Powertrain

Authors: Suhadiyana Hanapi, Alhassan Salami Tijani, W. A. N Wan Mohamed

Abstract:

In this paper, a prototype PEM fuel cell vehicle integrated with a 1 kW air-blowing proton exchange membrane fuel cell (PEMFC) stack as a main power sources has been developed for a lightweight cruising vehicle. The test vehicle is equipped with a PEM fuel cell system that provides electric power to a brushed DC motor. This vehicle was designed to compete with industrial lightweight vehicle with the target of consuming least amount of energy and high performance. Individual variations in driving style have a significant impact on vehicle energy efficiency and it is well established from the literature. The primary aim of this study was to assesses the power and fuel consumption of a hydrogen fuel cell vehicle operating at three difference driving technique (i.e. 25 km/h constant speed, 22-28 km/h speed range, 20-30 km/h speed range). The goal is to develop the best driving strategy to maximize performance and minimize fuel consumption for the vehicle system. The relationship between power demand and hydrogen consumption has also been discussed. All the techniques can be evaluated and compared on broadly similar terms. Automatic intelligent controller for driving prototype fuel cell vehicle on different obstacle while maintaining all systems at maximum efficiency was used. The result showed that 25 km/h constant speed was identified for optimal driving with less fuel consumption.

Keywords: Prototype fuel cell electric vehicles, energy efficient, control/driving technique, fuel economy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026
771 Mixed Model Assembly Line Sequencing In Make to Order System with Available to Promise Consideration

Authors: N. Manavizadeh, A. Dehghani, M. Rabbani

Abstract:

Mixed model assembly lines (MMAL) are a type of production line where a variety of product models similar in product characteristics are assembled. The effective design of these lines requires that schedule for assembling the different products is determined. In this paper we tried to fit the sequencing problem with the main characteristics of make to order (MTO) environment. The problem solved in this paper is a multiple objective sequencing problem in mixed model assembly lines sequencing using weighted Sum Method (WSM) using GAMS software for small problem and an effective GA for large scale problems because of the nature of NP-hardness of our problem and vast time consume to find the optimum solution in large problems. In this problem three practically important objectives are minimizing: total utility work, keeping a constant production rate variation, and minimizing earliness and tardiness cost which consider the priority of each customer and different due date which is a real situation in mixed model assembly lines and it is the first time we consider different attribute to prioritize the customers which help the company to reduce the cost of earliness and tardiness. This mechanism is a way to apply an advance available to promise (ATP) in mixed model assembly line sequencing which is the main contribution of this paper.

Keywords: Available to promise, Earliness & Tardiness, GA, Mixed-Model assembly line Sequencing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2503
770 Electrical Performance of a Solid Oxide Fuel Cell Unit with Non-Uniform Inlet Flow and High Fuel Utilization

Authors: Ping Yuan, Mu-Sheng Chiang, Syu-Fang Liu, Shih-Bin Wang, Ming-Jun Kuo

Abstract:

This study investigates the electrical performance of a planar solid oxide fuel cell unit with cross-flow configuration when the fuel utilization gets higher and the fuel inlet flow are non-uniform. A software package in this study solves two-dimensional, simultaneous, partial differential equations of mass, energy, and electro-chemistry, without considering stack direction variation. The results show that the fuel utilization increases with a decrease in the molar flow rate, and the average current density decreases when the molar flow rate drops. In addition, non-uniform Pattern A will induce more severe happening of non-reaction area in the corner of the fuel exit and the air inlet. This non-reaction area deteriorates the average current density and then deteriorates the electrical performance to –7%.

Keywords: Performance, Solid oxide fuel cell, non-uniform, fuelutilization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1279
769 Reducing Energy Consumption and GHG Emission by Integration of Flare Gas with Fuel Gas Network in Refinery

Authors: N. Tahouni, M. Gholami, M. H. Panjeshahi

Abstract:

Gas flaring is one of the most GHG emitting sources in the oil and gas industries. It is also a major way for wasting such an energy that could be better utilized and even generates revenue. Minimize flaring is an effective approach for reducing GHG emissions and also conserving energy in flaring systems. Integrating waste and flared gases into the fuel gas networks (FGN) of refineries is an efficient tool. A fuel gas network collects fuel gases from various source streams and mixes them in an optimal manner, and supplies them to different fuel sinks such as furnaces, boilers, turbines, etc. In this article we use fuel gas network model proposed by Hasan et al. as a base model and modify some of its features and add constraints on emission pollution by gas flaring to reduce GHG emissions as possible. Results for a refinery case study showed that integration of flare gas stream with waste and natural gas streams to construct an optimal FGN can significantly reduce total annualized cost and flaring emissions.

Keywords: Flaring, Fuel gas network, GHG emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1350
768 A Scatter Search and Help Policies Approaches for a New Mixed Model Assembly Lines Sequencing Problem

Authors: N. Manavizadeh , M. Rabbani , H. Sotudian , F. Jolai

Abstract:

Mixed Model Production is the practice of assembling several distinct and different models of a product on the same assembly line without changeovers and then sequencing those models in a way that smoothes the demand for upstream components. In this paper, we consider an objective function which minimizes total stoppage time and total idle time and it is presented sequence dependent set up time. Many studies have been done on the mixed model assembly lines. But in this paper we specifically focused on reducing the idle times. This is possible through various help policies. For improving the solutions, some cases developed and about 40 tests problem was considered. We use scatter search for optimization and for showing the efficiency of our algorithm, experimental results shows behavior of method. Scatter search and help policies can produce high quality answers, so it has been used in this paper.

Keywords: mixed model assembly lines, Scatter search, help policies, idle time, Stoppage time

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464
767 Expert System for Sintering Process Control based on the Information about solid-fuel Flow Composition

Authors: Yendiyarov Sergei, Zobnin Boris, Petrushenko Sergei

Abstract:

Usually, the solid-fuel flow of an iron ore sinter plant consists of different types of the solid-fuels, which differ from each other. Information about the composition of the solid-fuel flow usually comes every 8-24 hours. It can be clearly seen that this information cannot be used to control the sintering process in real time. Due to this, we propose an expert system which uses indirect measurements from the process in order to obtain the composition of the solid-fuel flow by solving an optimization task. Then this information can be used to control the sintering process. The proposed technique can be successfully used to improve sinter quality and reduce the amount of solid-fuel used by the process.

Keywords: sintering process, particle swarm optimization, optimal control, expert system, solid-fuel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
766 Experimental Investigations on the Use of Preheated Neat Karanja Oil as Fuel in a Compression Ignition Engine

Authors: Sagar Pramodrao Kadu, Rajendra H. Sarda

Abstract:

The concerns about clean environment and high oil prices driving forces for the research on alternative fuels. The research efforts directed towards improving the performance of C.I engines using vegetable oil as fuel. The paper deals results of performance of a four stroke, single cylinder C.I. engine by preheated neat Karanja oil is done from 30 o C to 100 o C. The performance of the engine was studied for a speed range between 1500 to 4000 rpm, with the engine operated under full load conditions. The performance parameters considered for comparing are brake specific fuel consumption, thermal efficiency, brake power, Nox emission of the engine. The engine offers lower thermal efficiency when it is powered by preheated neat Karanja oil at higher speed. The power developed and Nox emission increase with the increase in the fuel inlet temperature and the specific fuel consumption is higher than diesel fuel operation at all elevated fuel inlet temperature.

Keywords: Alternative fuel, Compression ignition engine, neatKaranja oil, preheating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184