Search results for: Wind environment.
3148 Optimization of a Hybrid Wind-Pv-Diesel Standalone System: Case Chlef, Algeria
Authors: T. Tahri, A. Bettahar, M. Douani
Abstract:
In this work, an attempt is made to design an optimal wind/pv/diesel hybrid power system for a village of Ain Merane, Chlef, Algeria, where the wind speed and solar radiation measurements were made. The aim of this paper is the optimization of a hybrid wind/solar/diesel system applied in term of technical and economic feasibility by simulation using HOMER. A comparison was made between the performance of wind/pv/diesel system and the classic connecting system.Keywords: Chlef-Algeria, Homer, Renewable energy, Wind-pvdiesel hybrid system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30503147 Prediction of Basic Wind Speed for Ayeyarwady
Authors: Chaw Su Mon
Abstract:
Abstract— The paper presents a preliminary study on modeling and estimation of basic wind speed ( extreme wind gusts ) for the consideration of vulnerability and design of building in Ayeyarwady Region. The establishment of appropriate design wind speeds is a critical step towards the calculation of design wind loads for structures. In this paper the extreme value analysis of this prediction work is based on the anemometer data (1970-2009) maintained by the department of meteorology and hydrology of Pathein. Statistical and probabilistic approaches are used to derive formulas for estimating 3-second gusts from recorded data (10-minute sustained mean wind speeds).
Keywords: Basic Wind Speed, Building, Gusts, Statistical and probabilistic approaches
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12783146 Steady State Analysis of Distribution System with Wind Generation Uncertainity
Authors: Zakir Husain, Neem Sagar, Neeraj Gupta
Abstract:
Due to the increased penetration of renewable energy resources in the distribution system, the system is no longer passive in nature. In this paper, a steady state analysis of the distribution system has been done with the inclusion of wind generation. The modeling of wind turbine generator system and wind generator has been made to obtain the average active and the reactive power injection into the system. The study has been conducted on a IEEE-33 bus system with two wind generators. The present research work is useful not only to utilities but also to customers.
Keywords: Distributed generation, distribution network, radial network, wind turbine generating system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10623145 Wind Farm Power Performance Verification Using Non-Parametric Statistical Inference
Authors: M. Celeska, K. Najdenkoski, V. Dimchev, V. Stoilkov
Abstract:
Accurate determination of wind turbine performance is necessary for economic operation of a wind farm. At present, the procedure to carry out the power performance verification of wind turbines is based on a standard of the International Electrotechnical Commission (IEC). In this paper, nonparametric statistical inference is applied to designing a simple, inexpensive method of verifying the power performance of a wind turbine. A statistical test is explained, examined, and the adequacy is tested over real data. The methods use the information that is collected by the SCADA system (Supervisory Control and Data Acquisition) from the sensors embedded in the wind turbines in order to carry out the power performance verification of a wind farm. The study has used data on the monthly output of wind farm in the Republic of Macedonia, and the time measuring interval was from January 1, 2016, to December 31, 2016. At the end, it is concluded whether the power performance of a wind turbine differed significantly from what would be expected. The results of the implementation of the proposed methods showed that the power performance of the specific wind farm under assessment was acceptable.
Keywords: Canonical correlation analysis, power curve, power performance, wind energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10353144 Investigating the Impact of Wind Speed on Active and Reactive Power Penetration to the Distribution Network
Authors: Sidhartha Panda, N.P.Padhy
Abstract:
Wind power is among the most actively developing distributed generation (DG) technology. Majority of the wind power based DG technologies employ wind turbine induction generators (WTIG) instead of synchronous generators, for the technical advantages like: reduced size, increased robustness, lower cost, and increased electromechanical damping. However, dynamic changes of wind speed make the amount of active/reactive power injected/drawn to a WTIG embedded distribution network highly variable. This paper analyzes the effect of wind speed changes on the active and reactive power penetration to the wind energy embedded distribution network. Four types of wind speed changes namely; constant, linear change, gust change and random change of wind speed are considered in the analysis. The study is carried out by three-phase, non-linear, dynamic simulation of distribution system component models. Results obtained from the investigation are presented and discussed.
Keywords: Wind turbine induction generator, distribution network, active and reactive power, wind speed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24463143 An Experimental Helicopter Wind Envelope for Ship Operations
Authors: R. Bardera Mora
Abstract:
Launch and recovery helicopter wind envelope for a ship type was determined as the first step to the helicopter qualification program. Flight deck velocities data were obtained by means of a two components laser Doppler anemometer testing a 1/50th model in the wind tunnel stream. Full-scale flight deck measurements were obtained on board the ship using a sonic anemometer. Wind tunnel and full-scale measurements were compared, showing good agreement and finally, a preliminary launch and recovery helicopter wind envelope for this specific ship was built.Keywords: Flight deck flow, relative wind, ship airwake, wind envelope
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32483142 Wind Load Characteristics in Libya
Authors: Mohammed B. Abohedma, Milad M. Alshebani
Abstract:
Recent trends in building constructions in Libya are more toward tall (high-rise) building projects. As a consequence, a better estimation of the lateral loading in the design process is becoming the focal of a safe and cost effective building industry. Byin- large, Libya is not considered a potential earthquake prone zone, making wind is the dominant design lateral loads. Current design practice in the country estimates wind speeds on a mere random bases by considering certain factor of safety to the chosen wind speed. Therefore, a need for a more accurate estimation of wind speeds in Libya was the motivation behind this study. Records of wind speed data were collected from 22 metrological stations in Libya, and were statistically analysed. The analysis of more than four decades of wind speed records suggests that the country can be divided into four zones of distinct wind speeds. A computer “survey" program was manipulated to draw design wind speeds contour map for the state of Libya. The paper presents the statistical analysis of Libya-s recorded wind speed data and proposes design wind speed values for a 50-year return period that covers the entire country.Keywords: Ccontour map, return period, wind speed, and zone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37013141 Using Manipulating Urban Layouts to Enhance Ventilation and Thermal Comfort in Street Canyons
Authors: Su Ying-Ming
Abstract:
High density of high rise buildings in urban areas lead to a deteriorative Urban Heat Island Effect, gradually. This study focuses on discussing the relationship between urban layout and ventilation comfort in street canyons. This study takes Songjiang Nanjing Rd. area of Taipei, Taiwan as an example to evaluate the wind environment comfort index by field measurement and Computational Fluid Dynamics (CFD) to improve both the quality and quantity of the environment. In this study, different factors including street blocks size, the width of buildings, street width ratio and the direction of the wind were used to discuss the potential of ventilation. The environmental wind field was measured by the environmental testing equipment, Testo 480. Evaluation of blocks sizes, the width of buildings, street width ratio and the direction of the wind was made under the condition of constant floor area with the help of Stimulation CFD to adjust research methods for optimizing regional wind environment. The results of this study showed the width of buildings influences the efficiency of outdoor ventilation; improvement of the efficiency of ventilation with large street width was also shown. The study found that Block width and H/D value and PR value has a close relationship. Furthermore, this study showed a significant relationship between the alteration of street block geometry and outdoor comfortableness.
Keywords: Urban ventilation path, ventilation efficiency indices, CFD, building layout.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10463140 Robust Fault Diagnosis for Wind Turbine Systems Subjected to Multi-Faults
Authors: Sarah Odofin, Zhiwei Gao, Sun Kai
Abstract:
Operations, maintenance and reliability of wind turbines have received much attention over the years due to the rapid expansion of wind farms. This paper explores early fault diagnosis technique for a 5MW wind turbine system subjected to multiple faults, where genetic optimization algorithm is employed to make the residual sensitive to the faults, but robust against disturbances. The proposed technique has a potential to reduce the downtime mostly caused by the breakdown of components and exploit the productivity consistency by providing timely fault alarms. Simulation results show the effectiveness of the robust fault detection methods used under Matlab/Simulink/Gatool environment.
Keywords: Disturbance robustness, fault monitoring and detection, genetic algorithm and observer technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25583139 Starting Torque Study of Darrieus Wind Turbine
Authors: M. Douak, Z. Aouachria
Abstract:
The aim of our study is to project an optimized wind turbine of Darrieus type. This type of wind turbine is characterized by a low starting torque in comparison with the Savonius rotor allowing them to operate for a period greater than wind speed. This led us to reconsider the Darrieus rotor to optimize a design which will increase its starting torque. The study of a system of monitoring and control of the angle of attack of blade profile, which allows an auto start to wind speeds as low as possible is presented for the straight blade of Darrieus turbine. The study continues to extend to other configurations namely those of parabolic type.
Keywords: Darrieus turbine, pitch angle, self-stating, wind energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46593138 Influence of Wind Induced Fatigue Damage in the Reliability of Wind Turbines
Authors: Emilio A. Berny-Brandt, Sonia E. Ruiz
Abstract:
Steel tubular towers serving as support structures for large wind turbines are subjected to several hundred million stress cycles caused by the turbulent nature of the wind. This causes highcycle fatigue, which could govern the design of the tower. Maintaining the support structure after the wind turbines reach its typical 20-year design life has become a common practice; however, quantifying the changes in the reliability on the tower is not usual. In this paper the effect of fatigue damage in the wind turbine structure is studied whit the use of fracture mechanics, and a method to estimate the reliability over time of the structure is proposed. A representative wind turbine located in Oaxaca, Mexico is then studied. It is found that the system reliability is significantly affected by the accumulation of fatigue damage.
Keywords: Crack growth, fatigue, Monte Carlo simulation, structural reliability, wind turbines
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23253137 A Retrospective of Wind Turbine Architectural Integration in the Built Environment
Authors: Stefano Degrassi, Marco Raciti Castelli, Ernesto Benini
Abstract:
Since the European renewable energy directives set the target for 22.1% of electricity generation to be supplied by 2010 [1], there has been increased interest in using green technologies also within the urban enviroment. The most commonly considered installations are solar thermal and solar photovoltaics. Nevertheless, as observed by Bahaj et al. [2], small scale turbines can reduce the built enviroment related CO2 emissions. Thus, in the last few years, an increasing number of manufacturers have developed small wind turbines specifically designed for the built enviroment. The present work focuses on the integration into architectural systems of such installations and presents a survey of successful case studies.Keywords: Wind turbines, architectural integration, wind resources, urban areas, built enviroment, renewable technologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27813136 Wind Farm Modeling for Steady State and Dynamic Analysis
Authors: G.Kabashi, K.Kadriu, A.Gashi, S.Kabashi, G, Pula, V.Komoni
Abstract:
This paper focuses on PSS/E modeling of wind farms of Doubly-fed Induction Generator (DFIG) type and their impact on issues of power system operation. Since Wind Turbine Generators (WTG) don-t have the same characteristics as synchronous generators, the appropriate modeling of wind farms is essential for transmission system operators to analyze the best options of transmission grid reinforcements as well as to evaluate the wind power impact on reliability and security of supply. With the high excepted penetration of wind power into the power system a simultaneous loss of Wind Farm generation will put at risk power system security and reliability. Therefore, the main wind grid code requirements concern the fault ride through capability and frequency operation range of wind turbines. In case of grid faults wind turbines have to supply a definite reactive power depending on the instantaneous voltage and to return quickly to normal operation.Keywords: Power System transients, PSS/E dynamic simulationDouble-fed Induction Generator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46233135 Wireless Communicated Smart Wind Sensor
Authors: Zdenek Bohuslavek
Abstract:
Development of microprocessor controlled sensor for measurement of wind speed and direction is the aim of this study. Electrical circuits and software were developed to the existing electromechanical part of the sensor TM-W2 becoming the properties of so-called smart sensor. The measured data about wind speed (sensitivity 0.01 m/s) and direction (0-360° by step 10°) are transmitted as 16-bit information. The connection between sensor and control unit is realized by radio communication (FM 433 MHz). Transition range is 220 m if used Quad type antenna. This concept provides substitution of actual cable systems by wireless ones.
Keywords: smart wind sensor, anemometer, wind speed, wireless communication
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19693134 Experimental Study on the Hysteresis Properties in Operation of Vertical Axis Wind Turbines
Authors: Ching-Huei Lin, Yao-Pang Hsu, M. Z. Dosaev, Yu. D. Selyutskii, L. A. Klimina
Abstract:
Hysteresis phenomenon has been observed in the operations of both horizontal-axis and vertical-axis wind turbines (HAWTs and VAWTs). In this study, wind tunnel experiments were applied to investigate the characters of hysteresis phenomena between the angular speed and the external resistance of electrical loading during the operation of a Darrieus type VAWT. Data of output voltage, output current, angular speed of wind turbine under different wind speeds are measured and analyzed. Results show that the range of external resistance changes with the wind speed. The range decreases as the wind speed increases following an exponential decay form. Experiments also indicate that the maximum output power of wind turbines is always inside the range where hysteresis happened. These results provide an important reference to the design of output control system of wind turbines.Keywords: Hysteresis phenomenon, Angular speed, Range ofexternal resistance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24623133 Numerical Simulation of the Aerodynamic Loads acting on top of the SMART Centre for PV Applications
Authors: M. Raciti Castelli, S. Toniato, E. Benini
Abstract:
The flow filed around a flatted-roof compound has been investigated by means of 2D and 3D numerical simulations. A constant wind velocity profile, based both on the maximum reference wind speed in the building site (peak gust speed worked out for a 50- year return period) and on the local roughness coefficient, has been simulated in order to determine the wind-induced loads on top of the roof. After determining the influence of the incoming wind directions on the induced roof loads, a 2D analysis of the most severe load condition has been performed, achieving a numerical quantification of the expected wind-induced forces on the PV panels on top of the roof.Keywords: CFD, wind-induced loads, flow around buildings, photovoltaic system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15643132 A Stochastic Approach to Extreme Wind Speeds Conditions on a Small Axial Wind Turbine
Authors: Nkongho Ayuketang Arreyndip, Ebobenow Joseph
Abstract:
In this paper, to model a real life wind turbine, a probabilistic approach is proposed to model the dynamics of the blade elements of a small axial wind turbine under extreme stochastic wind speeds conditions. It was found that the power and the torque probability density functions even-dough decreases at these extreme wind speeds but are not infinite. Moreover, we also fund that it is possible to stabilize the power coefficient (stabilizing the output power)above rated wind speeds by turning some control parameters. This method helps to explain the effect of turbulence on the quality and quantity of the harness power and aerodynamic torque.Keywords: Probability, Stochastic, Probability density function, Turbulence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17443131 Analysis on Iranian Wind Catcher and Its Effect on Natural Ventilation as a Solution towards Sustainable Architecture(Case Study: Yazd)
Authors: Mahnaz Mahmoudi Zarandi (Qazvin Islamic Azad University)
Abstract:
wind catchers have been served as a cooling system, used to provide acceptable ventilation by means of renewable energy of wind. In the present study, the city of Yazd in arid climate is selected as case study. From the architecture point of view, learning about wind catchers in this study is done by means of field surveys. Research method for selection of the case is based on random form, and analytical method. Wind catcher typology and knowledge of relationship governing the wind catcher's architecture were those measures that are taken for the first time. 53 wind catchers were analyzed. The typology of the wind-catchers is done by the physical analyzing, patterns and common concepts as incorporated in them. How the architecture of wind catcher can influence their operations by analyzing thermal behavior are the archetypes of selected wind catchers. Calculating fluids dynamics science, fluent software and numerical analysis are used in this study as the most accurate analytical approach. The results obtained from these analyses show the formal specifications of wind catchers with optimum operation in Yazd. The knowledge obtained from the optimum model could be used for design and construction of wind catchers with more improved operation
Keywords: Fluent Software, Iranian architecture, wind catcher
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44923130 Numerical Analysis of Wind Loads on a Hemicylindrical Roof Building
Authors: Marco Raciti Castelli, Sergio Toniato, Ernesto Benini
Abstract:
The flow field over a three dimensional pole barn characterized by a cylindrical roof has been numerically investigated. Wind pressure and viscous loads acting on the agricultural building have been analyzed for several incoming wind directions, so as to evaluate the most critical load condition on the structure. A constant wind velocity profile, based on the maximum reference wind speed in the building site (peak gust speed worked out for 50 years return period) and on the local roughness coefficient, has been simulated. In order to contemplate also the hazard due to potential air wedging between the stored hay and the lower part of the ceiling, the effect of a partial filling of the barn has been investigated. The distribution of wind-induced loads on the structure have been determined, allowing a numerical quantification of the effect of wind direction on the induced stresses acting on a hemicylindrical roof.Keywords: CFD, wind, building, hemicylindrical roof.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29993129 Effect of Porous Multi-Layer Envelope System on Effective Wind Pressure of Building Ventilation
Authors: Ying-Chang Yu, Yuan-Lung Lo
Abstract:
Building ventilation performance is an important indicator of indoor comfort. However, in addition to the geometry of the building or the proportion of the opening, the ventilation performance is also very much related to the actual wind pressure of the building. There are more and more contemporary building designs built with multi-layer exterior envelope. Due to ventilation and view observatory requirement, the porous outer layer of the building is commonly adopted and has a significant wind damping effect, causing the phenomenon of actual wind pressure loss. However, the relationship between the wind damping effect and the actual wind pressure is not linear. This effect can make the indoor ventilation of the building rationalized to reasonable range under the condition of high wind pressure, and also maintain a good amount of ventilation performance under the condition of low wind pressure. In this study, wind tunnel experiments were carried out to simulate the different wind pressures flow through the porous outer layer, and observe the actual wind pressure strength engage with the window layer to find the decreasing relationship between the damping effect of the porous shell and the wind pressure. Experiment specimen scale was designed to be 1:50 for testing real-world building conditions; the study found that the porous enclosure has protective shielding without affecting low-pressure ventilation. Current study observed the porous skin may damp more wind energy to ease the wind pressure under high-speed wind. Differential wind speed may drop the pressure into similar pressure level by using porous skin. The actual mechanism and value of this phenomenon will need further study in the future.
Keywords: Renault number, porous media, wind damping, wind tunnel test, building ventilation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5973128 Wind Fragility for Soundproof Wall with the Variation of Section Shape of Frame
Authors: Seong Do Kim, Woo Young Jung
Abstract:
Recently, damages due to typhoons and strong wind are on the rise. Considering this issue, we evaluated the performance of soundproofing walls based on the strong wind fragility by means of numerical analysis. Among the components of the soundproof wall, aluminum frame was the most vulnerable member, thus we have considered different section of aluminum frame in the determination of wind fragility. Wind load was randomly generated using Monte Carlo Simulation method. Moreover, limit state was based on the test standard of road construction soundproofing wall. In this study, the strong wind fragility was determined by considering the influence factors of wind exposure category, soundproof wall’s installation position, and shape of aluminum frame section. Results of this study could be used to determine the section shape of the frame that has high resistance to the wind during construction of the soundproofing wall.
Keywords: Aluminum frame soundproofing wall, Monte Carlo Simulation, numerical simulation, wind fragility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8873127 Dynamic Modeling of Wind Farms in the Jeju Power System
Authors: Dae-Hee Son, Sang-Hee Kang, Soon-Ryul Nam
Abstract:
In this paper, we develop a dynamic modeling of wind farms in the Jeju power system. The dynamic model of wind farms is developed to study their dynamic effects on the Jeju power system. PSS/E is used to develop the dynamic model of a wind farm composed of 1.5-MW doubly fed induction generators. The output of a wind farm is regulated based on pitch angle control, in which the two controllable parameters are speed and power references. The simulation results confirm that the pitch angle is successfully controlled, regardless of the variation in wind speed and output regulation.
Keywords: Dynamic model, Jeju power system, pitch angle control, PSS/E, wind farm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17683126 Neural Networks for Short Term Wind Speed Prediction
Authors: K. Sreelakshmi, P. Ramakanthkumar
Abstract:
Predicting short term wind speed is essential in order to prevent systems in-action from the effects of strong winds. It also helps in using wind energy as an alternative source of energy, mainly for Electrical power generation. Wind speed prediction has applications in Military and civilian fields for air traffic control, rocket launch, ship navigation etc. The wind speed in near future depends on the values of other meteorological variables, such as atmospheric pressure, moisture content, humidity, rainfall etc. The values of these parameters are obtained from a nearest weather station and are used to train various forms of neural networks. The trained model of neural networks is validated using a similar set of data. The model is then used to predict the wind speed, using the same meteorological information. This paper reports an Artificial Neural Network model for short term wind speed prediction, which uses back propagation algorithm.Keywords: Short term wind speed prediction, Neural networks, Back propagation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30643125 Development of Condition Monitoring System with Control Functions for Wind Turbines
Authors: Joon-Young Park, Beom-Joo Kim, Jae-Kyung Lee
Abstract:
As an effort to promote wind power industry in Korea, Korea South-East Power Corporation has been developing 22MW YeungHeung wind farm consisting of nine 2 to 3MW wind turbines supplied by three manufacturers. To maximize its availability and reliability and to solve the difficulty of operating three kinds of SCADA systems, Korea Electric Power Corporation has been developing a condition monitoring system integrated with control functions. This paper presents the developed condition monitoring system and its application to YeungHeung wind test bed, and the design of its control functions.Keywords: condition monitoring, control function, reliability, wind turbine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24313124 Real Time Remote Monitoring and Fault Detection in Wind Turbine
Authors: Saad Chakkor, Mostafa Baghouri, Abderrahmane Hajraoui
Abstract:
In new energy development, wind power has boomed. It is due to the proliferation of wind parks and their operation in supplying the national electric grid with low cost and clean resources. Hence, there is an increased need to establish a proactive maintenance for wind turbine machines based on remote control and monitoring. That is necessary with a real-time wireless connection in offshore or inaccessible locations while the wired method has many flaws. The objective of this strategy is to prolong wind turbine lifetime and to increase productivity. The hardware of a remote control and monitoring system for wind turbine parks is designed. It takes advantage of GPRS or Wi-Max wireless module to collect data measurements from different wind machine sensors through IP based multi-hop communication. Computer simulations with Proteus ISIS and OPNET software tools have been conducted to evaluate the performance of the studied system. Study findings show that the designed device is suitable for application in a wind park.
Keywords: Embedded System, Monitoring, Wind Turbine, Faults Diagnosis, TCP/IP Protocol, Real Time, Web.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39773123 Experimental Validation of the Predicted Performance of a Wind Driven Venturi Ventilator
Authors: M. A. Serag-Eldin
Abstract:
The paper presents the results of simple measurements conducted on a model of a wind-driven venturi-type room ventilator. The ventilator design is new and was developed employing mathematical modeling. However, the computational model was not validated experimentally for the particular application considered. The paper presents the performance of the ventilator model under laboratory conditions, for five different wind tunnel speeds. The results are used to both demonstrate the effectiveness of the new design and to validate the computational model employed to develop it.Keywords: Venturi-flow, ventilation, Wind-energy, Wind flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13553122 Thermal Assessment of Outer Rotor Direct Drive Gearless Small-Scale Wind Turbines
Authors: Yusuf Yasa, Erkan Mese
Abstract:
This paper investigates the thermal issue of permanent magnet synchronous generator which is frequently used in direct drive gearless small-scale wind turbine applications. Permanent Magnet Synchronous Generator (PMSG) is designed with 2.5 kW continuous and 6 kW peak power. Then considering generator geometry, mechanical design of wind turbine is performed. Thermal analysis and optimization is carried out considering all wind turbine components to reach realistic results. This issue is extremely important in research and development (R&D) process for wind turbine applications.Keywords: Direct drive, gearless wind turbine, permanent magnet synchronous generator (PMSG), small-scale wind turbine, thermal management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23643121 Visualized Flow Patterns around and inside a Two-Sided Wind-Catcher in the Presence of Upstream Structures
Authors: M. Afshin, A. Sohankar, M. Dehghan Manshadi, M. R. Daneshgar, G. R. Dehghan Kamaragi
Abstract:
In this paper, the influence of upstream structures on the flow patternaround and inside the wind-catcher is experimentally investigated by smoke flow visualization techniques. Wind-catchers are an important part of natural ventilation in residential buildings or public places such as shopping centers, libraries, etc. Wind-catchers might be also used in places of high urban densities; hence their potential to provide natural ventilation is dependent on the presence of upstream structures. In this study, the two-sided wind-catcher model was based on a real wind-catcher observed in the city of Yazd, Iran. The present study focuses on the flow patterns around and inside the isolated two-sided wind-catcher, and on a two-sided wind-catcher in the presence of an upstream structure. The results show that the presence of an upstream structure influences the airflow pattern force and direction. Placing a high upstream structure reverses the airflow direction inside the wind-catcher.
Keywords: Natural Ventilation, Smoke Flow Visualization, Two-Sided Wind-Catcher.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19883120 Application of RP Technology with Polycarbonate Material for Wind Tunnel Model Fabrication
Authors: A. Ahmadi Nadooshan, S. Daneshmand, C. Aghanajafi
Abstract:
Traditionally, wind tunnel models are made of metal and are very expensive. In these years, everyone is looking for ways to do more with less. Under the right test conditions, a rapid prototype part could be tested in a wind tunnel. Using rapid prototype manufacturing techniques and materials in this way significantly reduces time and cost of production of wind tunnel models. This study was done of fused deposition modeling (FDM) and their ability to make components for wind tunnel models in a timely and cost effective manner. This paper discusses the application of wind tunnel model configuration constructed using FDM for transonic wind tunnel testing. A study was undertaken comparing a rapid prototyping model constructed of FDM Technologies using polycarbonate to that of a standard machined steel model. Testing covered the Mach range of Mach 0.3 to Mach 0.75 at an angle-ofattack range of - 2° to +12°. Results from this study show relatively good agreement between the two models and rapid prototyping Method reduces time and cost of production of wind tunnel models. It can be concluded from this study that wind tunnel models constructed using rapid prototyping method and materials can be used in wind tunnel testing for initial baseline aerodynamic database development.Keywords: Polycarbonate, Fabrication, FDM, Model, RapidPrototyping, Wind Tunnel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24453119 Validation of the WAsP Model for a Terrain Surrounded by Mountainous Region
Authors: Mohammadamin Zanganeh, Vahid Khalajzadeh
Abstract:
The problems associated with wind predictions of WAsP model in complex terrain are already the target of several studies in the last decade. In this paper, the influence of surrounding orography on accuracy of wind data analysis of a train is investigated. For the case study, a site with complex surrounding orography is considered. This site is located in Manjil, one of the windiest cities of Iran. For having precise evaluation of wind regime in the site, one-year wind data measurements from two metrological masts are used. To validate the obtained results from WAsP, the cross prediction between each mast is performed. The analysis reveals that WAsP model can estimate the wind speed behavior accurately. In addition, results show that this software can be used for predicting the wind regime in flat sites with complex surrounding orography.Keywords: Complex terrain, Meteorological mast, WAsPmodel, Wind prediction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1789