Search results for: Weighted Centroid Modified Simplex Method
8901 A Mahalanobis Distance-based Diversification and Nelder-Mead Simplex Intensification Search Scheme for Continuous Ant Colony Optimization
Authors: Sasadhar Bera, Indrajit Mukherjee
Abstract:
Ant colony optimization (ACO) and its variants are applied extensively to resolve various continuous optimization problems. As per the various diversification and intensification schemes of ACO for continuous function optimization, researchers generally consider components of multidimensional state space to generate the new search point(s). However, diversifying to a new search space by updating only components of the multidimensional vector may not ensure that the new point is at a significant distance from the current solution. If a minimum distance is not ensured during diversification, then there is always a possibility that the search will end up with reaching only local optimum. Therefore, to overcome such situations, a Mahalanobis distance-based diversification with Nelder-Mead simplex-based search scheme for each ant is proposed for the ACO strategy. A comparative computational run results, based on nine nonlinear standard test problems, confirms that the performance of ACO is improved significantly with the integration of the proposed schemes in the ACO.Keywords: Ant Colony Optimization, Diversification Scheme, Intensification, Mahalanobis Distance, Nelder-Mead Simplex.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17458900 Content Based Image Retrieval of Brain MR Images across Different Classes
Authors: Abraham Varghese, Kannan Balakrishnan, Reji R. Varghese, Joseph S. Paul
Abstract:
Magnetic Resonance Imaging play a vital role in the decision-diagnosis process of brain MR images. For an accurate diagnosis of brain related problems, the experts mostly compares both T1 and T2 weighted images as the information presented in these two images are complementary. In this paper, rotational and translational invariant form of Local binary Pattern (LBP) with additional gray scale information is used to retrieve similar slices of T1 weighted images from T2 weighted images or vice versa. The incorporation of additional gray scale information on LBP can extract more local texture information. The accuracy of retrieval can be improved by extracting moment features of LBP and reweighting the features based on users feedback. Here retrieval is done in a single subject scenario where similar images of a particular subject at a particular level are retrieved, and multiple subjects scenario where relevant images at a particular level across the subjects are retrieved.
Keywords: Local Binary pattern (LBP), Modified Local Binary pattern (MOD-LBP), T1 and T2 weighted images, Moment features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23818899 Convergence and Comparison Theorems of the Modified Gauss-Seidel Method
Authors: Zhouji Chen
Abstract:
In this paper, the modified Gauss-Seidel method with the new preconditioner for solving the linear system Ax = b, where A is a nonsingular M-matrix with unit diagonal, is considered. The convergence property and the comparison theorems of the proposed method are established. Two examples are given to show the efficiency and effectiveness of the modified Gauss-Seidel method with the presented new preconditioner.
Keywords: Preconditioned linear system, M-matrix, Convergence, Comparison theorem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15048898 An Advanced Nelder Mead Simplex Method for Clustering of Gene Expression Data
Authors: M. Pandi, K. Premalatha
Abstract:
The DNA microarray technology concurrently monitors the expression levels of thousands of genes during significant biological processes and across the related samples. The better understanding of functional genomics is obtained by extracting the patterns hidden in gene expression data. It is handled by clustering which reveals natural structures and identify interesting patterns in the underlying data. In the proposed work clustering gene expression data is done through an Advanced Nelder Mead (ANM) algorithm. Nelder Mead (NM) method is a method designed for optimization process. In Nelder Mead method, the vertices of a triangle are considered as the solutions. Many operations are performed on this triangle to obtain a better result. In the proposed work, the operations like reflection and expansion is eliminated and a new operation called spread-out is introduced. The spread-out operation will increase the global search area and thus provides a better result on optimization. The spread-out operation will give three points and the best among these three points will be used to replace the worst point. The experiment results are analyzed with optimization benchmark test functions and gene expression benchmark datasets. The results show that ANM outperforms NM in both benchmarks.
Keywords: Spread out, simplex, multi-minima, fitness function, optimization, search area, monocyte, solution, genomes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25588897 Capacitance Models of AlGaN/GaN High Electron Mobility Transistors
Authors: A. Douara, N. Kermas, B. Djellouli
Abstract:
In this study, we report calculations of gate capacitance of AlGaN/GaN HEMTs with nextnano device simulation software. We have used a physical gate capacitance model for III-V FETs that incorporates quantum capacitance and centroid capacitance in the channel. These simulations explore various device structures with different values of barrier thickness and channel thickness. A detailed understanding of the impact of gate capacitance in HEMTs will allow us to determine their role in future 10 nm physical gate length node.
Keywords: AlGaN/GaN, centroid capacitance, gate capacitance, HEMT, quantum capacitance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18998896 The Intuitionistic Fuzzy Ordered Weighted Averaging-Weighted Average Operator and its Application in Financial Decision Making
Authors: Shouzhen Zeng
Abstract:
We present a new intuitionistic fuzzy aggregation operator called the intuitionistic fuzzy ordered weighted averaging-weighted average (IFOWAWA) operator. The main advantage of the IFOWAWA operator is that it unifies the OWA operator with the WA in the same formulation considering the degree of importance that each concept has in the aggregation. Moreover, it is able to deal with an uncertain environment that can be assessed with intuitionistic fuzzy numbers. We study some of its main properties and we see that it has a lot of particular cases such as the intuitionistic fuzzy weighted average (IFWA) and the intuitionistic fuzzy OWA (IFOWA) operator. Finally, we study the applicability of the new approach on a financial decision making problem concerning the selection of financial strategies.Keywords: Intuitionistic fuzzy numbers, Weighted average, OWA operator, Financial decision making
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24408895 Verified Experiment: Intelligent Fuzzy Weighted Input Estimation Method to Inverse Heat Conduction Problem
Authors: Chen-Yu Wang, Tsung-Chien Chen, Ming-Hui Lee, Jen-Feng Huang
Abstract:
In this paper, the innovative intelligent fuzzy weighted input estimation method (FWIEM) can be applied to the inverse heat transfer conduction problem (IHCP) to estimate the unknown time-varying heat flux efficiently as presented. The feasibility of this method can be verified by adopting the temperature measurement experiment. We would like to focus attention on the heat flux estimation to three kinds of samples (Copper, Iron and Steel/AISI 304) with the same 3mm thickness. The temperature measurements are then regarded as the inputs into the FWIEM to estimate the heat flux. The experiment results show that the proposed algorithm can estimate the unknown time-varying heat flux on-line.Keywords: Fuzzy Weighted Input Estimation Method, IHCP andHeat Flux.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15408894 Order Reduction using Modified Pole Clustering and Pade Approximations
Authors: C.B. Vishwakarma
Abstract:
The authors present a mixed method for reducing the order of the large-scale dynamic systems. In this method, the denominator polynomial of the reduced order model is obtained by using the modified pole clustering technique while the coefficients of the numerator are obtained by Pade approximations. This method is conceptually simple and always generates stable reduced models if the original high-order system is stable. The proposed method is illustrated with the help of the numerical examples taken from the literature.
Keywords: Modified pole clustering, order reduction, padeapproximation, stability, transfer function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29808893 The Relative Efficiency of Parameter Estimation in Linear Weighted Regression
Authors: Baoguang Tian, Nan Chen
Abstract:
A new relative efficiency in linear model in reference is instructed into the linear weighted regression, and its upper and lower bound are proposed. In the linear weighted regression model, for the best linear unbiased estimation of mean matrix respect to the least-squares estimation, two new relative efficiencies are given, and their upper and lower bounds are also studied.
Keywords: Linear weighted regression, Relative efficiency, Mean matrix, Trace.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24738892 Physical Properties and Stability of Emulsions as Affected by Native and Modified Yam Starches
Authors: Nor Hayati Ibrahim, Shamini Nair Achudan
Abstract:
This study was conducted in order to determine the physical properties and stability of mayonnaise-like emulsions as affected by modified yam starches. Native yam starch was modified via pre-gelatinization and cross-linking phosphorylation procedures. The emulsions (50% oil dispersed phase) were prepared with 0.3% native potato, native yam, pre-gelatinized yam and cross-linking phosphorylation yam starches. The droplet size of surface weighted mean diameter was found to be significantly (p < 0.05) lower in the sample with cross-linking phosphorylation yam starch as compared to other samples. Moreover, the viscosity of the sample with pregelatinized yam starch was observed to be higher than that of other samples. The phase separation stability was low in the freshly prepared and stored (45 days, 5°C) emulsions containing native yam starch. This study thus generally suggested that modified yam starches were more suitable (i.e. better physical properties and stability) to be used as stabilizers in a similar system i.e. light mayonnaises, rather than a native yam starch.
Keywords: Oil-in-water emulsions, low-fat mayonnaises, modified yam starches, droplet size distribution, viscosity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34548891 Fuzzy Logic Based Improved Range Free Localization for Wireless Sensor Networks
Authors: Ashok Kumar, Vinod Kumar
Abstract:
Wireless Sensor Networks (WSNs) are used to monitor/observe vast inaccessible regions through deployment of large number of sensor nodes in the sensing area. For majority of WSN applications, the collected data needs to be combined with geographic information of its origin to make it useful for the user; information received from remote Sensor Nodes (SNs) that are several hops away from base station/sink is meaningless without knowledge of its source. In addition to this, location information of SNs can also be used to propose/develop new network protocols for WSNs to improve their energy efficiency and lifetime. In this paper, range free localization protocols for WSNs have been proposed. The proposed protocols are based on weighted centroid localization technique, where the edge weights of SNs are decided by utilizing fuzzy logic inference for received signal strength and link quality between the nodes. The fuzzification is carried out using (i) Mamdani, (ii) Sugeno, and (iii) Combined Mamdani Sugeno fuzzy logic inference. Simulation results demonstrate that proposed protocols provide better accuracy in node localization compared to conventional centroid based localization protocols despite presence of unintentional radio frequency interference from radio frequency (RF) sources operating in same frequency band.
Keywords: localization, range free, received signal strength, link quality indicator, Mamdani fuzzy logic inference, Sugeno fuzzy logic inference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26318890 Iterative Methods for Computing the Weighted Minkowski Inverses of Matrices in Minkowski Space
Authors: Xiaoji Liu, Yonghui Qin
Abstract:
In this note, we consider a family of iterative formula for computing the weighted Minskowski inverses AM,N in Minskowski space, and give two kinds of iterations and the necessary and sufficient conditions of the convergence of iterations.
Keywords: iterative method, the Minskowski inverse, A
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14208889 Information Filtering using Index Word Selection based on the Topics
Authors: Takeru YOKOI, Hidekazu YANAGIMOTO, Sigeru OMATU
Abstract:
We have proposed an information filtering system using index word selection from a document set based on the topics included in a set of documents. This method narrows down the particularly characteristic words in a document set and the topics are obtained by Sparse Non-negative Matrix Factorization. In information filtering, a document is often represented with the vector in which the elements correspond to the weight of the index words, and the dimension of the vector becomes larger as the number of documents is increased. Therefore, it is possible that useless words as index words for the information filtering are included. In order to address the problem, the dimension needs to be reduced. Our proposal reduces the dimension by selecting index words based on the topics included in a document set. We have applied the Sparse Non-negative Matrix Factorization to the document set to obtain these topics. The filtering is carried out based on a centroid of the learning document set. The centroid is regarded as the user-s interest. In addition, the centroid is represented with a document vector whose elements consist of the weight of the selected index words. Using the English test collection MEDLINE, thus, we confirm the effectiveness of our proposal. Hence, our proposed selection can confirm the improvement of the recommendation accuracy from the other previous methods when selecting the appropriate number of index words. In addition, we discussed the selected index words by our proposal and we found our proposal was able to select the index words covered some minor topics included in the document set.Keywords: Information Filtering, Sparse NMF, Index wordSelection, User Profile, Chi-squared Measure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14568888 Weighted k-Nearest-Neighbor Techniques for High Throughput Screening Data
Authors: Kozak K, M. Kozak, K. Stapor
Abstract:
The k-nearest neighbors (knn) is a simple but effective method of classification. In this paper we present an extended version of this technique for chemical compounds used in High Throughput Screening, where the distances of the nearest neighbors can be taken into account. Our algorithm uses kernel weight functions as guidance for the process of defining activity in screening data. Proposed kernel weight function aims to combine properties of graphical structure and molecule descriptors of screening compounds. We apply the modified knn method on several experimental data from biological screens. The experimental results confirm the effectiveness of the proposed method.
Keywords: biological screening, kernel methods, KNN, QSAR
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22758887 Some Results on Preconditioned Modified Accelerated Overrelaxation Method
Authors: Guangbin Wang, Deyu Sun, Fuping Tan
Abstract:
In this paper, we present new preconditioned modified accelerated overrelaxation (MAOR) method for solving linear systems. We compare the spectral radii of the iteration matrices of the preconditioned and the original methods. The comparison results show that the preconditioned MAOR method converges faster than the MAOR method whenever the MAOR method is convergent. Finally, we give one numerical example to confirm our theoretical results.
Keywords: preconditioned, MAOR method, linear system, convergence, comparison.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16478886 An Effective Algorithm for Minimum Weighted Vertex Cover Problem
Authors: S. Balaji, V. Swaminathan, K. Kannan
Abstract:
The Minimum Weighted Vertex Cover (MWVC) problem is a classic graph optimization NP - complete problem. Given an undirected graph G = (V, E) and weighting function defined on the vertex set, the minimum weighted vertex cover problem is to find a vertex set S V whose total weight is minimum subject to every edge of G has at least one end point in S. In this paper an effective algorithm, called Support Ratio Algorithm (SRA), is designed to find the minimum weighted vertex cover of a graph. Computational experiments are designed and conducted to study the performance of our proposed algorithm. Extensive simulation results show that the SRA can yield better solutions than other existing algorithms found in the literature for solving the minimum vertex cover problem.
Keywords: Weighted vertex cover, vertex support, approximation algorithms, NP-complete problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38828885 Identification of an Mechanism Systems by Using the Modified PSO Method
Authors: Chih-Cheng Kao, Hsin- Hua Chu
Abstract:
This paper mainly proposes an efficient modified particle swarm optimization (MPSO) method, to identify a slidercrank mechanism driven by a field-oriented PM synchronous motor. In system identification, we adopt the MPSO method to find parameters of the slider-crank mechanism. This new algorithm is added with “distance" term in the traditional PSO-s fitness function to avoid converging to a local optimum. It is found that the comparisons of numerical simulations and experimental results prove that the MPSO identification method for the slider-crank mechanism is feasible.Keywords: Slider-crank mechanism, distance, systemidentification, modified particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15078884 Iran’s Gas Flare Recovery Options Using MCDM
Authors: Halle Bakhteeyar, Azadeh Maroufmashat, Abbas Maleki, Sourena Sattari Khavas
Abstract:
In this paper, five options of Iran’s gas flare recovery have been compared via MCDM method. For developing the model, the weighing factor of each indicator an AHP method is used via the Expert-choice software. Several cases were considered in this analysis. They are defined where the priorities were defined always keeping one criterion in first position, while the priorities of the other criteria were defined by ordinal information defining the mutual relations of the criteria and the respective indicators. The results, show that amongst these cases, priority is obtained for CHP usage where availability indicator is highly weighted while the pipeline usage is obtained where environmental indicator highly weighted and the injection priority is obtained where economic indicator is highly weighted and also when the weighing factor of all the criteria are the same the Injection priority is obtained.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34478883 Sample-Weighted Fuzzy Clustering with Regularizations
Authors: Miin-Shen Yang, Yee-Shan Pan
Abstract:
Although there have been many researches in cluster analysis to consider on feature weights, little effort is made on sample weights. Recently, Yu et al. (2011) considered a probability distribution over a data set to represent its sample weights and then proposed sample-weighted clustering algorithms. In this paper, we give a sample-weighted version of generalized fuzzy clustering regularization (GFCR), called the sample-weighted GFCR (SW-GFCR). Some experiments are considered. These experimental results and comparisons demonstrate that the proposed SW-GFCR is more effective than the most clustering algorithms.
Keywords: Clustering; fuzzy c-means, fuzzy clustering, sample weights, regularization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17668882 OWA Operators in Generalized Distances
Authors: José M. Merigó, Anna M. Gil-Lafuente
Abstract:
Different types of aggregation operators such as the ordered weighted quasi-arithmetic mean (Quasi-OWA) operator and the normalized Hamming distance are studied. We introduce the use of the OWA operator in generalized distances such as the quasiarithmetic distance. We will call these new distance aggregation the ordered weighted quasi-arithmetic distance (Quasi-OWAD) operator. We develop a general overview of this type of generalization and study some of their main properties such as the distinction between descending and ascending orders. We also consider different families of Quasi-OWAD operators such as the Minkowski ordered weighted averaging distance (MOWAD) operator, the ordered weighted averaging distance (OWAD) operator, the Euclidean ordered weighted averaging distance (EOWAD) operator, the normalized quasi-arithmetic distance, etc.Keywords: Aggregation operators, Distance measures, Quasi- OWA operator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16618881 Resource Leveling in Construction Projects using Re- Modified Minimum Moment Approach
Authors: Abhay Tawalare, Rajesh Lalwani
Abstract:
An attempt in this paper proposes a re-modification to the minimum moment approach of resource leveling which is a modified minimum moment approach to the traditional method by Harris. The method is based on critical path method. The new approach suggests the difference between the methods in the selection criteria of activity which needs to be shifted for leveling resource histogram. In traditional method, the improvement factor found first to select the activity for each possible day of shifting. In modified method maximum value of the product of Resources Rate and Free Float was found first and improvement factor is then calculated for that activity which needs to be shifted. In the proposed method the activity to be selected first for shifting is based on the largest value of resource rate. The process is repeated for all the remaining activities for possible shifting to get updated histogram. The proposed method significantly reduces the number of iterations and is easier for manual computations.Keywords: Re-Modified, Resource Leveling, Resources Rate, Free Float, Resource Histogram
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38278880 Improved K-Modes for Categorical Clustering Using Weighted Dissimilarity Measure
Authors: S.Aranganayagi, K.Thangavel
Abstract:
K-Modes is an extension of K-Means clustering algorithm, developed to cluster the categorical data, where the mean is replaced by the mode. The similarity measure proposed by Huang is the simple matching or mismatching measure. Weight of attribute values contribute much in clustering; thus in this paper we propose a new weighted dissimilarity measure for K-Modes, based on the ratio of frequency of attribute values in the cluster and in the data set. The new weighted measure is experimented with the data sets obtained from the UCI data repository. The results are compared with K-Modes and K-representative, which show that the new measure generates clusters with high purity.
Keywords: Clustering, categorical data, K-Modes, weighted dissimilarity measure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36908879 Mixture Design Experiment on Flow Behaviour of O/W Emulsions as Affected by Polysaccharide Interactions
Authors: Nor Hayati Ibrahim, Yaakob B. Che Man, Chin Ping Tan, Nor Aini Idris
Abstract:
Interaction effects of xanthan gum (XG), carboxymethyl cellulose (CMC), and locust bean gum (LBG) on the flow properties of oil-in-water emulsions were investigated by a mixture design experiment. Blends of XG, CMC and LBG were prepared according to an augmented simplex-centroid mixture design (10 points) and used at 0.5% (wt/wt) in the emulsion formulations. An appropriate mathematical model was fitted to express each response as a function of the proportions of the blend components that are able to empirically predict the response to any blend of combination of the components. The synergistic interaction effect of the ternary XG:CMC:LBG blends at approximately 33-67% XG levels was shown to be much stronger than that of the binary XG:LBG blend at 50% XG level (p < 0.05). Nevertheless, an antagonistic interaction effect became significant as CMC level in blends was more than 33% (p < 0.05). Yield stress and apparent viscosity (at 10 s-1) responses were successfully fitted with a special quartic model while flow behaviour index and consistency coefficient were fitted with a full quartic model (R2 adjusted ≥ 0.90). This study found that a mixture design approach could serve as a valuable tool in better elucidating and predicting the interaction effects beyond the conventional twocomponent blends.Keywords: O/W emulsions, flow behavior, polysaccharideinteraction, mixture design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22208878 Construction Technology of Modified Vacuum Pre-Loading Method for Slurry Dredged Soil
Authors: Ali H. Mahfouz, Gao Ming-Jun, Mohamad Sharif
Abstract:
Slurry dredged soil at coastal area has a high water content, poor permeability, and low surface intensity. Hence, it is infeasible to use vacuum preloading method to treat this type of soil foundation. For the special case of super soft ground, a floating bridge is first constructed on muddy soil and used as a service road and platform for implementing the modified vacuum preloading method. The modified technique of vacuum preloading and its construction process for the super soft soil foundation improvement is then studied. Application of modified vacuum preloading method shows that the technology and its construction process are highly suitable for improving the super soft soil foundation in coastal areas.
Keywords: Super soft foundation, dredger fill, vacuum preloading, foundation treatment, construction technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19228877 Bootstrap and MLS Methods-based Individual Bioequivalence Assessment
Authors: Kongsheng Zhang, Li Ge
Abstract:
It is a one-sided hypothesis testing process for assessing bioequivalence. Bootstrap and modified large-sample(MLS) methods are considered to study individual bioequivalence(IBE), type I error and power of hypothesis tests are simulated and compared with FDA(2001). The results show that modified large-sample method is equivalent to the method of FDA(2001) .
Keywords: Individual bioequivalence, bootstrap, Bayesian bootstrap, modified large-sample.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15848876 A New Weighted LDA Method in Comparison to Some Versions of LDA
Authors: Delaram Jarchi, Reza Boostani
Abstract:
Linear Discrimination Analysis (LDA) is a linear solution for classification of two classes. In this paper, we propose a variant LDA method for multi-class problem which redefines the between class and within class scatter matrices by incorporating a weight function into each of them. The aim is to separate classes as much as possible in a situation that one class is well separated from other classes, incidentally, that class must have a little influence on classification. It has been suggested to alleviate influence of classes that are well separated by adding a weight into between class scatter matrix and within class scatter matrix. To obtain a simple and effective weight function, ordinary LDA between every two classes has been used in order to find Fisher discrimination value and passed it as an input into two weight functions and redefined between class and within class scatter matrices. Experimental results showed that our new LDA method improved classification rate, on glass, iris and wine datasets, in comparison to different versions of LDA.Keywords: Discriminant vectors, weighted LDA, uncorrelation, principle components, Fisher-face method, Bootstarp method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15238875 Financing Decision and Productivity Growth for the Venture Capital Industry Using High-Order Fuzzy Time Series
Authors: Shang-En Yu
Abstract:
Human society, there are many uncertainties, such as economic growth rate forecast of the financial crisis, many scholars have, since the the Song Chissom two scholars in 1993 the concept of the so-called fuzzy time series (Fuzzy Time Series)different mode to deal with these problems, a previous study, however, usually does not consider the relevant variables selected and fuzzy process based solely on subjective opinions the fuzzy semantic discrete, so can not objectively reflect the characteristics of the data set, in addition to carrying outforecasts are often fuzzy rules as equally important, failed to consider the importance of each fuzzy rule. For these reasons, the variable selection (Factor Selection) through self-organizing map (Self-Organizing Map, SOM) and proposed high-end weighted multivariate fuzzy time series model based on fuzzy neural network (Fuzzy-BPN), and using the the sequential weighted average operator (Ordered Weighted Averaging operator, OWA) weighted prediction. Therefore, in order to verify the proposed method, the Taiwan stock exchange (Taiwan Stock Exchange Corporation) Taiwan Weighted Stock Index (Taiwan Stock Exchange Capitalization Weighted Stock Index, TAIEX) as experimental forecast target, in order to filter the appropriate variables in the experiment Finally, included in other studies in recent years mode in conjunction with this study, the results showed that the predictive ability of this study further improve.
Keywords: Heterogeneity, residential mortgage loans, foreclosure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13888874 Approximating Maximum Weighted Independent Set Using Vertex Support
Authors: S. Balaji, V. Swaminathan, K. Kannan
Abstract:
The Maximum Weighted Independent Set (MWIS) problem is a classic graph optimization NP-hard problem. Given an undirected graph G = (V, E) and weighting function defined on the vertex set, the MWIS problem is to find a vertex set S V whose total weight is maximum subject to no two vertices in S are adjacent. This paper presents a novel approach to approximate the MWIS of a graph using minimum weighted vertex cover of the graph. Computational experiments are designed and conducted to study the performance of our proposed algorithm. Extensive simulation results show that the proposed algorithm can yield better solutions than other existing algorithms found in the literature for solving the MWIS.Keywords: weighted independent set, vertex cover, vertex support, heuristic, NP - hard problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20348873 A Cooperative Weighted Discriminator Energy Detector Technique in Fading Environment
Authors: Muhammad R. Alrabeiah, Ibrahim S. Alnomay
Abstract:
The need in cognitive radio system for a simple, fast, and independent technique to sense the spectrum occupancy has led to the energy detection approach. Energy detector is known by its dependency on noise variation in the system which is one of its major drawbacks. In this paper, we are aiming to improve its performance by utilizing a weighted collaborative spectrum sensing, it is similar to the collaborative spectrum sensing methods introduced previously in the literature. These weighting methods give more improvement for collaborative spectrum sensing as compared to no weighting case. There is two method proposed in this paper: the first one depends on the channel status between each sensor and the primary user while the second depends on the value of the energy measured in each sensor.
Keywords: Cognitive radio, Spectrum sensing, Collaborative sensors, Weighted Decisions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17318872 Second-order Time Evolution Scheme for Time-dependent Neutron Transport Equation
Authors: Zhenying Hong, Guangwei Yuan, Xuedong Fu, Shulin Yang
Abstract:
In this paper, the typical exponential method, diamond difference and modified time discrete scheme is researched for self adaptive time step. The second-order time evolution scheme is applied to time-dependent spherical neutron transport equation by discrete ordinates method. The numerical results show that second-order time evolution scheme associated exponential method has some good properties. The time differential curve about neutron current is more smooth than that of exponential method and diamond difference and modified time discrete scheme.
Keywords: Exponential method, diamond difference, modified time discrete scheme, second-order time evolution scheme.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582