
 

 

  
Abstract—Ant colony optimization (ACO) and its variants are 

applied extensively to resolve various continuous optimization 
problems. As per the various diversification and intensification 
schemes of ACO for continuous function optimization, researchers 
generally consider components of multidimensional state space to 
generate the new search point(s).  However, diversifying to a new 
search space by updating only components of the multidimensional 
vector may not ensure that the new point is at a significant distance 
from the current solution. If a minimum distance is not ensured 
during diversification, then there is always a possibility that the 
search will end up with reaching only local optimum. Therefore, to 
overcome such situations, a Mahalanobis distance-based 
diversification with Nelder-Mead simplex-based search scheme for 
each ant is proposed for the ACO strategy. A comparative 
computational run results, based on nine nonlinear standard test 
problems, confirms that the performance of ACO is improved 
significantly with the integration of the proposed schemes in the 
ACO.   
 

Keywords—Ant Colony Optimization, Diversification Scheme, 
Intensification, Mahalanobis Distance, Nelder-Mead Simplex. 

I. INTRODUCTION 
NT colony optimization (ACO) comes under the broad 
spectrum of metaheuristic search strategies [1]-[2]. 
Dorigo [3] first proposed the basic idea of ACO for 

discrete optimization problems. Later on, Dorigo et al. [4] 
claimed that ACO could also provide solutions for hard 
combinatorial optimization problems, such as assignment and 
job shop scheduling problem. With time, researchers also 
proposed different variants of ant colony to determine global 
optima for continuous multimodal problems. ACO has shown 
immense potential to handle higher dimensional state space 
problems with added constraint condition(s). 
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ACO strategy works with a population of simple, independent, 
and asynchronous agents (or ants) which cooperate to find an 
improved solution(s) for a given optimization problem. It uses 
a pheromone model to probabilistically search the feasible 
space. The characteristic of ant system (AS) [4] is to update 
the pheromone value of each ant after iteration. A typical 
pseudo code for ACO is shown in Fig. 1. 
 

 
 

Fig. 1 Pseudo Code of Ant Colony Optimization 
 

Stutzle and Hoos [5] proposed ‘max-min ant system’ 
(MMAS) and claimed its superiority over AS. In case of 
MMAS, only the best ant can update the pheromone trail 
information, and the value of the pheromone is considered to 
be bounded. Dorigo and Gambardella [6] proposed an ant 
colony system (ACS) for higher dimensional problems.  
Bilchev and Parmee [7] first proposed a conceptual 
framework for continuous ant colony optimization (CACO) 
problems. Wodrich and Bilchev [8] introduced a bi-level 
search procedure with a local and global search component for 
continuous function optimization problem. Mathur et al. [9] 
introduced a random walk and trail diffusion component in the 
CACO strategy to improve its performance. Their approach is 
based on global diversification based on inferior solutions, 
and local intensification using superior solution points. 
Crossover and mutation concept was introduced to produce a 
new region with added Gaussian noise. Dreo and Siarry [10] 
developed a new hierarchical algorithm so-called ‘continuous 
interacting ant colony algorithm’ (CIAC). The concept of 
hierarchy is described by a system where global level 
properties influence the local level properties. In case of 
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A

Step 1: Initialization 
- Initialize the pheromone trail 
 

Step 2: Iteration 
- For each ant repeat 
- Construct solution using current 

pheromone trail 
- Evaluate the solution constructed 
- Update the pheromone trail 
- Daemon Actions    (optional) 

         -  Until stopping criteria met 
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CIAC, the information passes through a population of agents, 
and uses two types of communication. This includes the spots 
of pheromone deposited in the search space and direct 
exchange of information between individuals. Socha and 
Dorigo [11] proposed an ant colony optimization strategy in 
real domain (ACOR), where mixture of Gaussian kernel 
probability density function is used to improve the algorithm 
flexibility to handle multimodal functions.  In this approach, 
the ant movement is not restricted to a finite set and a solution 
archive structure stores the values of variables and 
corresponding solution in the form of a table structure. 
Schluter et. al. [12] extended the ACOR, so-called ‘ACOmi’, 
for non-convex mixed integer problems. They use so-called 
‘oracle penalty strategy’ to handle mixed integer and 
constraint conditions.  

As per the literature review, all the ant strategies proposed 
use components of multidimensional state space for the 
diversification scheme. Generating neighbourhood by 
updating the components of vector space will not ensure that 
the new point(s) generated is at significant distance from the 
current point. Researchers also proposed grid and discrete 
points to generate neighbourhood in multidimensional 
continuous search space.  With increase in dimensionality of 
search space, it becomes extremely important to ensure a 
minimum distance before the current point is diversified. In 
case of one dimensional problem it can be a minimum circle 
radius, and for two dimensional problems it can be a minimum 
radius sphere.   This will ensure that the diversification does 
not create points too close to current point and avoid trapped 
to local optima. Based on the above mentioned criticality, for 
higher dimensional state space, a minimum statistical 
Mahalanobis distance [13] concept is proposed for the 
diversification scheme in case of higher dimensional 
problems. Local search in multiple dimensions by the ants, 
based on Nelder-Mead simplex (NM) [14], is also 
incorporated for improving the intensification scheme. The 
overall objective of this paper is to highlight the improvement 
in the existing ant colony strategy by incorporating above 
mentioned schemes and not to propose a new ant strategy.  

The details of the initialization, diversification, 
intensification, and other intrinsic details of parameters are 
provided in section II. Section III  provide the details of 
comparative study of a simple CACO strategy and CACO 
with Mahalanobis distance-based diversification and NM-
based intensification scheme (CACO-MDS) using standard 
test case functions.  

II.  CONTINUOUS ANT COLONY STRATEGY BASED ON 
MAHALANOBIS DISTANCE-BASED DIVERSIFICATION AND 
MULTIDIRECTIONAL NM-BASED INTENSIFICATION SCHEME 

[CACO-MDS] 
 
A typical unconstrained form of nonlinear optimization 
problem is expressed as, 
 

F(X)
X

Minimize ,                                           (1) 

subject to,    

iα  ≤ ix  ≤ iβ          ∀  i  = 1, 2, .  .  .  ., n,            (2) 
where n is the number of independent variables.  In other 
words, X  is n dimensional and F(X) is the nonlinear function. 

iα  and iβ  are lower bound and upper bound of ix (or each 
element of X ), respectively. The proposed CACO-MDS 
strategy for a typical unconstrained minimization problem is 
discussed in detail in subsection A. 
 

A. Basic Characteristics of CACO-MDS  
 
In CACO-MDS, diversifying to a region, which is at a 

significant distance from the current multidimensional point, 
is ensured based on Mahalanobis distance concept.  
Mahalanobis distance (MD) [13] is preferred for 
multidimensional problems as the Euclidean distance does not 
take into consideration the variances-covariance matrix of 
state space [13] for calculating the vector distance between 
two points. However, Mahalanobis distance considers the 
variance-covariance matrix and provides the exact vector 
distance. The expression for MD is 

 

D = ( ) ( )21
1

21 XXSXX T −− − ,                                       (3) 
 
where 1X  and 2X  are two n dimensional vector. S  is the 
variance-covariance matrix of all multidimensional points 
considered for analysis. A typical expression for S is  
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where iis is the variance of thi  variable and ijs is the 

covariance between thi  and thj  variables ( i j∀ ≠ ) . 
 
The inverse of the covariance matrix standardizes all the 
variables to the same variance so as to calculate the exact 
distance.  Therefore, if one random variable has a larger 
variance than another, it will receive relatively lesser weight 
based on this concept. Similarly, two highly correlated 
variables do not contribute as much as another two variables 
that are less correlated. Fig 2 illustrates the elliptical 
distribution of the Mahalanobis distance for a two dimensional 
case situation, where maximum MD is considered as 1.3159 
from the center point [here ( 21 , xx ) is taken as (296.807, 
284.1130)]. The variance-covariance matrix is taken as, 
 

 S = ⎥
⎦

⎤
⎢
⎣

⎡
−

−
136956320
632011531

.                (5) 
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Fig. 2 An Elliptic Distribution of Mahalanobis Distance. 

 
 
The intrinsic details of the proposed schemes are provided 
below. 
 

1. Initialization of the Ants 
 

Let us consider m  number of total ants for a typical 
CACO. Initially, m  number of random points will be 
generated in the n -dimensional state space. The mean vector 
( X ) and the variance-covariance matrix ( S ) of the m  points 
are used for further analysis. The minimum MD value 
(say minD ) from all the m points from  X  is also stored for 
reference.  In this paper, the minimum vector distance that is 
considered to generate new points in the diversification 
scheme is taken as 
 
 D = min*2 D                     (6) 
 
The multiple of minD  is taken as two based on initial trial 
runs. In addition, k  number of nests is considered for this 
study. The first step of iteration is to calculate the number of 
ants for the thr  nest (where r = 1, 2, .  .  ., k ). This is based 
on the fitness values of k  points, and expressed as  

rm  = 

∑
=

k

r
r

r

f

f

1

,                    (7) 

where, r = 1, 2, .  .  , k  and rf  is the fitness value of thr nest. 
These nests are referred here as center point or rc . m ants are 
distributed according to probability rm . From each nest, 

* rm m  number of ants are generated within a local search 

radius of rd .  rd is expressed as 

rd  = ric  ±  Z ×
2

iis
× rand                                        (8) 

where ric  is thi  element of thr  center, Z  is a multiplication 

factor, iis  is thi diagonal element of variance-covariance 
matrix ( S ), and rand  is a random number generator 
between 0 and 1.  
 

2. Movement of the Ants 
Initially, allocated number of ants for the thr  center will 

generate new points to exploit the neighbourhood with a 
search radius of rd  and having Z value equal to one. All ants 
within rd radius will use NM intensification search. It is to be 
noted that all the point generated from (8) will be within the 
ellipsoid. After the local search exploration, the best fitness 
value will be selected and compared with the existing center 
point or nest.  If the best point in local search shows 
improvement than the existing center point, then the new point 
replaces the existing center. However, if there is no 
improvement in local search within rd  radius, the ants will 
again continue to search in greater radius with varied Z  
values. In case there is no improvement for a particular nest in 
local search, then all the ants are diversified to a distance of at 
least D . All the new points also need to satisfy the boundary 
constraint conditions [or iα  ≤ ix  ≤ iβ ].  The new ants will 
again start NM local search.  If the diversification provides a 
better solution, then the center point will be shifted and 
updated.  The ants of each center rc  uses similar ant 
movement scheme for updating the nest position. In the 
subsequent iteration, ants are distributed based on the average 
fitness value and according to a roulette wheel selection 
process. In other words, if at tht  iteration, * rm m ants go to 

center rc , then after the completion of tht iteration using NM, 

there will be * rm m best solutions. The average of the best 

solutions for the thr  center, say rF .  Then, for the tht )1( +  

iteration, the proportion of ants ( rp ) that goes to thr  center 
point is expressed as 

 

rp  = 

∑
=

k

r
r

r

F

F

1

    .                                                                (9) 

 
It is expected that all the search direction finally converges to 
the global optimum. 
 

3. Pheromone Representation in CACO-MDS 
 

In case of discrete optimization problem, movements of 
ants are restricted to countably finite number of feasible 
points. However, for a continuous optimization problem, the 
feasible points are countably infinite. In such situation, it 
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becomes too difficult to represent the pheromone trail concept. 
In this paper, we have assumed that the trail information of 
each center or nest is its fitness value. Hence, a solution 
archive structure is used for k  centers to store the 
independent variable and its corresponding fitness value. 
Therefore, pheromone trail in the form of a list for each center 
is maintained. Any improvement in fitness value at a 
particular center will lead to update the archive. The elite 
solution is the overall best solution among the k different 
centers. 

This archive structure can be very useful to explore 
potential region(s) where trail deposition or fitness value is 
high. In case of no improvement, for say last p  iteration, in 
anyone  among k centers, a center of gravity ( gC ) will be 

calculated.  The expressions to calculate gC  is 

 gC  = ∑
=

k

r
bestrc

k 1

)(1
,                                                         (10) 

where bestrc )(  is the best solution of  the thr  archive and  
 

newrc )(  = ( ) ( )1 2* * ( )g g r bestC rand C c+ − + − ,        (11) 

where newrc )(  is new thr center, and rand is a random 
number generator between 0 and 1. Therefore, k points are 
generated within gC  and bestrc )( . 

 
4. Radius Decrement Factor 

 
The rate at which the search radius ( rd ) is reduced is 

called radius decrement factor. In this context, if the rate of 
decrease is too fast, situations may arise in which ants can no 
longer escape local optima due to small radius size. Such 
situations are undesirable and small decrement is needed for 
efficient search. This will also ensure that the ant strategy does 
not terminate till the ants explore a reasonable search space. In 
this paper we adopted an exponential decay for the radius 
decrement rate. The expression of radius and MD distance for 
diversification at any tht )1( +  iteration is given the following 
equations. 

( ) 1+trd  = ( )trd  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−

b

T
t1 , and                                    (12) 

 ( ) 1+tD  = ( )tD  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−

b

T
t1  ,                                          (13) 

where  ( )trd  is local search radius, and ( )tD diversification 
distance at iteration t , T is the maximum number of 
iterations, and b  is positive constant that control the degree of 
nonlinearity. Fig. 3 illustrates the change in radius with 
respect to number of iteration. 

 
Fig. 3 Exponential decay of radius 

 
The pseudo code of the CACO-MDS strategy with 
intensification and diversification is provided in Fig. 4. 
 

while stopping criterion is not met do 
 for r = 1: k      /* k : number of direction vectors */   
 for Z = 1:3:7    /* Z : local search radius multiplication factor */ 
   for  ants = 1: rm    /* rm : distributed ants for  thr  direction vector */ 
     for  i  = 1: n           /* n: input dimension */ 

      Create new point: ric  + Z ×
2

iis
× (-1+2*rand) 

      endfor 
      Find out new solutions by using Nelder-Mead simplex at each new point. 
      Find out the minimum value point (called minPoint) among the solutions 
   endfor  
   if  Fitness(minPoint) < Fitness(Center) 
          break 

     endif 
   endfor 
  /* Update of center and neighborhood points */ 
    if Fitness(minPoint) < Fitness(Center) 
        newPoints = newSolutions 
        newCenter = minPoint 
    else 
        Create rm  new points outside D distance. Find out new solution using Nelder-  
        Mead simplex method. Find out diversified minimum value point (called min. 
        diversified point). 
            newPoints = newDiversifiedSolutions 
            newCenter = minDiversifiedSolution 
     end 
endfor

 
Fig. 4  Pseudo code of CACO-MDS for a typical minimization 

problem 
 

III.   EXPERIMENTAL SETUP AND RESULTS 
 

In this section, we present the experimental setup for 
evaluating the performance of CACO-MDS with basic 
CACO. The typical benchmark functions as available in open 
literatures are used to compare its performance. In this 
particular study, all the maximization functions are first 
converted to minimization problem by multiplying it with a 
minus one. However, the results and optimal values are 

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:4, No:9, 2010 

1268International Scholarly and Scientific Research & Innovation 4(9) 2010 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:4
, N

o:
9,

 2
01

0 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
02

94
.p

df



 

 

reconverted as per the original maximization problem and 
reported. The test function used, their mathematical 
expression, ranges of the dependent variables, and 
corresponding global optimum solution is provided in the 
Appendix. A basic CACO strategy is proposed by Chen et al. 
[15].  We refer this as CACO-Chen in this paper.  Chen et al. 
[15] also used an adaptive crossover and mutation for the 
intensification and diversification scheme. We will also refer 
CACO-MDS as strategy 1 and CACO-Chen as strategy 2.  
Performance of CACO-MDS and CACO-Chen is based on 30 
simulations run results for each test function. A successful run 
is referred as if the following condition holds true. 
 

|| *ff −  ≤   )(* *
21 fabsεε + ,              (14) 

where f optimum value found by the strategy, *f  is known 
global optimum of the test function, 1ε  and 2ε  are two 
accuracy parameter (where 1ε  and 2ε  is considered as 10-4) 

 
In this analysis, the total number of ants selected for each 

simulation run is 100. The numbers of direction vector for 
generating nest is selected as 3. The stopping criteria used are 
(i) if the difference between best and worst function 
evaluation is smaller than a pre-specified tolerance level, (ii) if 
( )tD  reaches the specified limit, (iii) if pre-defined maximum 
number of iterations is reached, or (iv) if maximum number of 
function evaluations is achieved. All the program and 
simulation run are performed in Matlab 7.1 environment. The 
laptop configuration used to run the program codes is 1.60 
GHz Intel dual core processor with 120 GB hard disk, and 1 
GB RAM.   

To compare the performance of each strategy the success 
rate, average value of the objective function and their sample 
standard deviation are summarized in Table 1 and Table 2. 
Table 1 clearly indicates that the success rate of CACO-MDS 
to determine global optimal solution is consistently higher 
than CACO-Chen for any of the test function selected for 
analysis. The sample standard deviation for CACO-MDS (in 
Table 2) is significantly lesser than CACO-Chen in all test 
situations. These can be attributed to the fact that CACO-Chen 
gets trapped into local optima. Whereas, CACO-MDS reaches 
the global optimum point or near to the point consistently.  

Fig. 5 and Fig. 6 illustrate how CACO-MDS and CACO-
Chen strategy reaches a best solution point in a typical run for 
the GR test function. It is also observed from the results and 
graph that CACO-MDS, as compared to CACO-Chen, is more 
stable and can reach global or near optimal points at a faster 
rate. 
 
 
 
 
 
 
 
 
 

 

TABLE 1 
SUCCESS RATES OF STRATEGIES FOR EACH TEST FUNCTION 

Function  Search 
dimension 

Strategy
** 

Success 
rate (%) 

RC 2 1 100 
2 100 

SF6 2 1 100 
2 0 

AS 2 1 100 
2 0 

MG6 4 1 100 
2 0 

S4 4 1 100 
2 0 

H64 6 1 100 
2 0 

ACL 10 1 100 
2 0 

RGN 10 1 83 
2 0 

GR 10 1 77 
2 0 

 
TABLE II 

SUMMARY OF COMPUTATIONAL RUN RESULTS  
Function  Strategy Minimum.  Maximum  Average  Standard 

deviation  

RC 1 0.39789 0.39789 0.39789 0.00000 
2 0.39789 0.39789 0.39789 0.00000 

SF6 1 0.00000 0.00000 0.00000 0.00000 
2 0.00052 0.01026 0.00882 0.00243 

AS 1 1.00000 1.00000 1.00000 0.00000 
2 0.06872 0.96540 0.51283 0.28074 

MG6 1 0.00000 0.00000 0.00000 0.00000 
2 0.00798 284.148 11.3347 52.06211 

S4 1 10.5364 10.5364 10.5364 0.00000 
2 0.68479 3.11001 1.27051 0.49171 

H64 1 3.32237 3.32237 3.32237 0.00000 
2 0.00000 0.06305 0.00238 0.01151 

ACL 1 0.00005 0.00008 0.00006 0.00001 
2 0.11624 0.26429 0.20382 0.03768 

RGN 1 0.00000 0.99496 0.16583 0.37714 
2 0.99496 9.94959 3.74768 2.46061 

GR 1 0.00000 0.01478 0.00227 0.00466 
2 0.07472 0.25807 0.18631 0.04229 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Best point movement in CACO-MDS Method
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IV. CONCLUSIONS 
 

In this paper, a Mahalanobis distance based diversification 
scheme and Nelder-Mead simplex local search scheme is 
proposed and incorporated in a simple CACO strategy.  The 
objective was to see the improvement in performance by 
incorporating the above mentioned schemes. The 
computational run results clearly indicate the improvement of 
solution quality, and also the success rate to converge to the 
global optimum using the above mentioned scheme in CACO. 
The highlighted points from the study are, 

 
i) MD-based diversification scheme can ensures a minimum 
multivariate distance for a multidimensional problem and can 
avoid trap to local optima, 
ii) Nelder-Mead simplex search by individual ant can make 
the strategy more intense in the neighbourhood state space, 
iii) CACO-MDS has higher success rate to reach global 
optima as compared to CACO-Chen, and 
iv) The lower value of standard deviation and solution quality 
confirms the consistency of CACO-MDS to reach global 
optima     
 

The CACO-MDS can be adopted and tested in real life 
industrial optimization problem to determine near optimal 
conditions. In addition, the proposed intensification and 
diversification scheme can be introduced in other existing ant 
strategies (such as ACOR, and CIAC) and the performance 
improvement (if any) can be studied.  Future research can also 
be directed towards the best selection of ant parameters, 
optimal number of nests, and selecting optimal MD for varied 
problem situations. 

APPENDIX 
Branin RCOS (RC) 
This function is expressed as  

FMin = 
2

1
2
122 65

4
1.5

⎟
⎠
⎞

⎜
⎝
⎛ −+− xxx

ππ
+ 10 1cos(

8
11 x⎟

⎠
⎞

⎜
⎝
⎛ −

π
 + 

8, where the search domain is defined as -5  ≤  1x  ≤ 10, and 0  
≤  2x  ≤ 15. It has no local optima, and has three different 

global minima. They are (π , 12.275), (π , 2.275), and 
(9.42478, 2.475), and the corresponding optimal value is 
0.397887. 
 
Schaffer f6 (SF6) 
This function is expressed as  

FMin = 0.5 +
( )

( )22
2

2
1

2
2
2

2
1

)(*001.01

5.0sin

xx

xx

++

−+
, and the search space 

is -100  ≤  1x , 2x   ≤ 100. It has several local optima, and the 

global optimum solution is zero, corresponding to optX = (0, 

0). 
 
Easom (AS) 
This function can be mathematically expressed as  

FMax = ( )( )2 2
1 2( )

1 2cos( )*cos( )*e x xx x π π− − + − ,  where the 

search space is defined as  -100  ≤  1x , 2x ≤ 100. The 

optimum solution is optX = ( ππ , ), and its corresponding 

solution is 1. 
 
Michalewicz’s function number 6 (MG6) 
The function is written as 

Fmin = 100* ( )22
12 xx −  + ( )2

11 x−  + 90* ( )22
34 xx − + 

( )2
31 x− +10.1* ( ) ( )( )2

4
2

2 11 −+− xx  
+19.8* ( )12 −x ( )14 −x , and the multidimensional search 
space  is given by -10  ≤  ix  ≤ 10. The global optimum point 

or  optX  is (1, 1, 1, 1) and corresponding solution is zero. 

 
Shekel (S4) 
This function is expressed as  

 (F4,m)Max =

1

1

4

1

2)(
−

= =
∑ ∑

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−

m

i j
iiji cax , and the search space 

is given by -10 ≤  ix  ≤ 10. Here, m is selected as 10. The 

global optimum point or optX  is (4, 4, 4, 4), and optimal 

solution is 10.5364. The value of ija  and ic  are selected 

based on the following table. 
 
 

i  
ija  ic  

1 4 4 4 4 0.1 
2 1 1 1 1 0.2 
3 8 8 8 8 0.2 
4 6 6 6 6 0.4 
5 3 7 3 7 0.4 
6 2 9 2 9 0.6 
7 5 5 3 3 0.3 
8 8 1 8 1 0.7 
9 6 2 6 2 0.5 

10 7 3.6 7 3.6 0.5 
 

Fig. 6 Best point movement in CACO-Chen Method 
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Hartmann (H64) 
This function is expressed as 

(F6,4)Max = ∑ ∑
= = ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−

4

1

6

1

2)(exp
i j

ijjiji pxac , where search 

space is -10 ≤  jx  ≤ 10. It has four maxima. The optimum 

point or optX  is given by (0.20169, 0.150011, 0.476874, 

0.275332, 0.311652, 0.6573), and the corresponding solution 
is 3.3224. The selected values of ic , ija  and ijp values are 

given in the following tables. 
 

i 
ija  ic  

1 10.0 3.00 17.00 3.50 1.70 8.00 1.0 
2 0.05 10.00 17.00 0.10 8.00 14.00 1.2 
3 3.00 3.50 1.70 10.00 17.00 8.00 3.0 
4 17.00 8.00 0.05 10.00 0.10 14.00 3.2 

 
i  

ijp  

1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886 
2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991 
3 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650 
4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381 

 
 
Ackley (ACL) 
The function is given by  
 

FMin=-20*

n1 2-0.2* xin i=1e
∑

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠ - 

n1
* cos(2 px )in i=1e

∑
⎛ ⎞
⎜ ⎟
⎝ ⎠  + 

20 + e, and the search space is -30  ≤  ix  ≤ 30.  
There are several local optima and the global optimal point is 
(0, 0,. . . ,0n). The global optimal solution for this function is 
zero. 
 
Rastrigin (RGN) 
This function is given by 

FMin =10*n + { }∑
=

−
n

i
ii xx

1

2 )2cos(*10 π ,  where the search 

space is -5.12  ≤  ix  ≤ 5.12. It has several local optima and 
the optimal point is (0,0,. . . ,0n) with its solution as zero. 
Griewank (GR) 
The function is expressed as 

FMin = ∑
=

n

i

ix

1

2

4000
 - ∏

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛n

i

i

i
x

1

cos  + 1, and the search space is 

defined as -500  ≤  ix  ≤ 500.   It has several local optima. The 

global optimum point is given by optX = (0,0,. . . ,0n), and its 

corresponding solution is 0. 
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