Second-order Time Evolution Scheme for Time-dependent Neutron Transport Equation
Authors: Zhenying Hong, Guangwei Yuan, Xuedong Fu, Shulin Yang
Abstract:
In this paper, the typical exponential method, diamond difference and modified time discrete scheme is researched for self adaptive time step. The second-order time evolution scheme is applied to time-dependent spherical neutron transport equation by discrete ordinates method. The numerical results show that second-order time evolution scheme associated exponential method has some good properties. The time differential curve about neutron current is more smooth than that of exponential method and diamond difference and modified time discrete scheme.
Keywords: Exponential method, diamond difference, modified time discrete scheme, second-order time evolution scheme.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1329541
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581References:
[1] E.E.Lewis, W.F.Miller, Computational methods of neutron transport(M). La Grange Park. Amermos Nuclear Societ(1993).
[2] T.Nkaoua, R.Sentis, A new time discretization for the radiative transfer equations: analysis and comparison with the classical discretization(J). SIAM J.NUMER.ANAL., 30,733-748(1993).
[3] R.H.Szilard, G.C.Pomraning, Numerical transport and diffusion methods in radiative transfer(J). Nucl.Sci.Eng., 112,256-269(1992).
[4] G.G.McClarren, A quasi-linear implementation of high-resolution time integration for PN the equations(J). Nucl.Sci.Eng., 159, 330-337(2008).
[5] J.E.Morel., Wareing.T.A., A linear-discontinuous spatial differencing scheme for Sn radiative transfer calculations(J). J.Comp.Phys., 128, 445- 462(1996).
[6] Gordon L.Olson, Second-order time evolution of PN equations for radiation transport(J). J.Comput.Phys., 228, 3072-3083(2009).
[7] Gordon L.Olson, Efficient solution of multi-dimensional flux-limited nonequilibrium radiation diffusion coupled to material conduction with second-order time discretization(J). J.Comput.Phys., 226, 1181- 1195(2007).
[8] K.D.Lathrop, Spatial differencing the transport equation: positivity vs. accuracy(J). J.Comp.Phys., 4, 475-498(1969).
[9] Zhengying Hong, Guangwei Yuan, Xudong Fu, Oscillation of numerical for time-dependent particle transport equation(J). Prog.Nucl.Energy.,52315-320(2010).
[10] Zhengying Hong, Guangwei Yuan, Xudong Fu, Shulin Yangm, Modified time discrete scheme for time-dependent neutron transport equation(J). Chinese Nuclear Power Engineering(accepted).
[11] Zhengying Hong, Guangwei Yuan, Xudong Fu, Methods of determining iterative initial value for time-dependent neutron transport equation(J). Journal On Numerical Methods and Computer Applications.,29,4:302- 312(2008)