Search results for: Lyapunov exponents
156 Instability of a Nonlinear Differential Equation of Fifth Order with Variable Delay
Authors: Cemil Tunc
Abstract:
In this paper, we study the instability of the zero solution to a nonlinear differential equation with variable delay. By using the Lyapunov functional approach, some sufficient conditions for instability of the zero solution are obtained.
Keywords: Instability, Lyapunov-Krasovskii functional, delay differential equation, fifth order.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453155 Posture Stabilization of Kinematic Model of Differential Drive Robots via Lyapunov-Based Control Design
Abstract:
In this paper, the problem of posture stabilization for a kinematic model of differential drive robots is studied. A more complex model of the kinematics of differential drive robots is used for the design of stabilizing control. This model is formulated in terms of the physical parameters of the system such as the radius of the wheels, and velocity of the wheels are the control inputs of it. In this paper, the framework of Lyapunov-based control design has been used to solve posture stabilization problem for the comprehensive model of differential drive robots. The results of the simulations show that the devised controller successfully solves the posture regulation problem. Finally, robustness and performance of the controller have been studied under system parameter uncertainty.Keywords: Differential drive robots, nonlinear control, Lyapunov-based control design, posture regulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797154 Strict Stability of Fuzzy Differential Equations with Impulse Effect
Authors: Sanjay K.Srivastava, Bhanu Gupta
Abstract:
In this paper some results on strict stability heve beeb extended for fuzzy differential equations with impulse effect using Lyapunov functions and Razumikhin technique.
Keywords: Fuzzy differential equations, Impulsive differential equations, Strict stability, Lyapunov function, Razumikhin technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469153 Adaptive Nonlinear Backstepping Control
Authors: Sun Lim, Bong-Seok Kim
Abstract:
This paper presents an adaptive nonlinear position controller with velocity constraint, capable of combining the input-output linearization technique and Lyapunov stability theory. Based on the Lyapunov stability theory, the adaptation law of the proposed controller is derived along with the verification of the overall system-s stability. Computer simulation results demonstrate that the proposed controller is robust and it can ensure transient stability of BLDCM, under the occurrence of a large sudden fault.Keywords: BLDC Motor Control, Backstepping Control, Adaptive nonlinear control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2228152 Globally Exponential Stability for Hopfield Neural Networks with Delays and Impulsive Perturbations
Authors: Adnene Arbi, Chaouki Aouiti, Abderrahmane Touati
Abstract:
In this paper, we consider the global exponential stability of the equilibrium point of Hopfield neural networks with delays and impulsive perturbation. Some new exponential stability criteria of the system are derived by using the Lyapunov functional method and the linear matrix inequality approach for estimating the upper bound of the derivative of Lyapunov functional. Finally, we illustrate two numerical examples showing the effectiveness of our theoretical results.
Keywords: Hopfield Neural Networks, Exponential stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2348151 Synthesis of a Control System of a Deterministic Chaotic Process in the Class of Two-Parameter Structurally Stable Mappings
Authors: M. Beisenbi, A. Sagymbay, S. Beisembina, A. Satpayeva
Abstract:
In this paper, the problem of unstable and deterministic chaotic processes in control systems is considered. The synthesis of a control system in the class of two-parameter structurally stable mappings is demonstrated. This is realized via the gradient-velocity method of Lyapunov vector functions. It is shown that the gradient-velocity method of Lyapunov vector functions allows generating an aperiodic robust stable system with the desired characteristics. A simple solution to the problem of synthesis of control systems for unstable and deterministic chaotic processes is obtained. Moreover, it is applicable for complex systems.
Keywords: Control system synthesis, deterministic chaotic processes, Lyapunov vector function, robust stability, structurally stable mappings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 389150 Adaptive Functional Projective Lag Synchronization of Lorenz System
Authors: Tae H. Lee, J.H. Park, S.M. Lee, H.Y. Jung
Abstract:
This paper addresses functional projective lag synchronization of Lorenz system with four unknown parameters, where the output of the master system lags behind the output of the slave system proportionally. For this purpose, an adaptive control law is proposed to make the states of two identical Lorenz systems asymptotically synchronize up. Based on Lyapunov stability theory, a novel criterion is given for asymptotical stability of the null solution of an error dynamics. Finally, some numerical examples are provided to show the effectiveness of our results.
Keywords: Adaptive function projective synchronization, Chaotic system, Lag synchronization, Lyapunov method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605149 Regional Stability Analysis of Rotor-Ball Bearing and Rotor- Roller Bearing Systems Considering Switching Phenomena
Authors: Jafar Abbaszadeh Chekan, Kaveh Merat, Hassan Zohoor
Abstract:
In this study the regional stability of a rotor system which is supported on rolling bearings with radial clearance is studied. The rotor is assumed to be rigid. Due to radial clearance of bearings and dynamic configuration of system, each rolling elements of bearings has the possibility to be in contact with both of the races (under compression) or lose its contact. As a result, this change in dynamic of the system makes it to be known as switching system which is a type of Hybrid systems. In this investigation by adopting Multiple Lyapunov Function theorem and using Hamiltonian function as a candidate Lyapunov function, the stability of the system is studied. The purpose of this study is to inspect the regional stability of rotor-roller bearing and rotor-ball bearing systems.
Keywords: Stability analysis, Rotor-rolling bearing systems, Switching systems, Multiple Lyapunov Function Method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743148 Trajectory Tracking Using Artificial Potential Fields
Authors: Krishna S. Raghuwaiya, Shonal Singh, Jito Vanualailai
Abstract:
In this paper, the trajectory tracking problem for carlike mobile robots have been studied. The system comprises of a leader and a follower robot. The purpose is to control the follower so that the leader-s trajectory is tracked with arbitrary desired clearance to avoid inter-robot collision while navigating in a terrain with obstacles. A set of artificial potential field functions is proposed using the Direct Method of Lyapunov for the avoidance of obstacles and attraction to their designated targets. Simulation results prove the efficiency of our control technique.
Keywords: Control, Trajectory Tracking, Lyapunov.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257147 A New Sufficient Conditions of Stability for Discrete Time Non-autonomous Delayed Hopfield Neural Networks
Authors: Adnene Arbi, Chaouki Aouiti, Abderrahmane Touati
Abstract:
In this paper, we consider the uniform asymptotic stability, global asymptotic stability and global exponential stability of the equilibrium point of discrete Hopfield neural networks with delays. Some new stability criteria for system are derived by using the Lyapunov functional method and the linear matrix inequality approach, for estimating the upper bound of Lyapunov functional derivative.
Keywords: Hopfield neural networks, uniform asymptotic stability, global asymptotic stability, exponential stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970146 Reliable Consensus Problem for Multi-Agent Systems with Sampled-Data
Authors: S. H. Lee, M. J. Park, O. M. Kwon
Abstract:
In this paper, reliable consensus of multi-agent systems with sampled-data is investigated. By using a suitable Lyapunov-Krasovskii functional and some techniques such as Wirtinger Inequality, Schur Complement and Kronecker Product, the results of such system are obtained by solving a set of Linear Matrix Inequalities (LMIs). One numerical example is included to show the effectiveness of the proposed criteria.
Keywords: Multi-agent, Linear Matrix Inequalities (LMIs), Kronecker Product, Sampled-Data, Lyapunov method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744145 Improved Asymptotic Stability Criteria for Uncertain Neutral Systems with Time-varying Discrete Delays
Authors: Changchun Shen, Shouming Zhong
Abstract:
This paper investigates the robust stability of uncertain neutral system with time-varying delay. By using Lyapunov method and linear matrix inequality technology, new delay-dependent stability criteria are obtained and formulated in terms of linear matrix inequalities (LMIs), which can be easy to check the robust stability of the considered systems. Numerical examples are given to indicate significant improvements over some existing results.
Keywords: Neutral system, linear matrix inequalities, Lyapunov, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1514144 Leader-following Consensus Criterion for Multi-agent Systems with Probabilistic Self-delay
Authors: M.J. Park, K.H. Kim, O.M. Kwon
Abstract:
This paper proposes a delay-dependent leader-following consensus condition of multi-agent systems with both communication delay and probabilistic self-delay. The proposed methods employ a suitable piecewise Lyapunov-Krasovskii functional and the average dwell time approach. New consensus criterion for the systems are established in terms of linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. Numerical example showed that the proposed method is effective.
Keywords: Multi-agent systems, probabilistic self-delay, consensus, Lyapunov method, LMI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748143 Robust Control for Discrete-Time Sector Bounded Systems with Time-Varying Delay
Authors: Ju H. Park, S.M. Lee
Abstract:
In this paper, we propose a robust controller design method for discrete-time systems with sector-bounded nonlinearities and time-varying delay. Based on the Lyapunov theory, delaydependent stabilization criteria are obtained in terms of linear matrix inequalities (LMIs) by constructing the new Lyapunov-Krasovskii functional and using some inequalities. A robust state feedback controller is designed by LMI framework and a reciprocally convex combination technique. The effectiveness of the proposed method is verified throughout a numerical example.
Keywords: Lur'e systems, Time-delay, Stabilization, LMIs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686142 Sensorless Backstepping Control Using an Adaptive Luenberger Observer with Three Levels NPC Inverter
Authors: A. Bennassar, A. Abbou, M. Akherraz, M. Barara
Abstract:
In this paper, we propose a sensorless backstepping control of induction motor (IM) associated with three levels neutral clamped (NPC) inverter. First, the backstepping approach is designed to steer the flux and speed variables to theirs references and to compensate the uncertainties. A Lyapunov theory is used and it demonstrates that the dynamic trajectories tracking are asymptotically stable. Second, we estimate the rotor flux and speed by using the adaptive Luenberger observer (ALO). Simulation results are provided to illustrate the performance of the proposed approach in high and low speeds and load torque disturbance.
Keywords: Sensorless backstepping, IM, Three levels NPC inverter, Lyapunov theory, ALO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2206141 Stability Analysis and Controller Design of Further Development of MIMOS II for Space Applications with Focus on the Extended Lyapunov Method: Part I
Authors: Mohammad Beyki, Justus Pawlak, Robert Patzke, Franz Renz
Abstract:
In the context of planetary exploration, the MIMOS II (miniaturized M¨ossbauer spectrometer) serves as a proven and reliable measuring instrument. The transmission behaviour of the electronics in the M¨ossbauer spectroscopy is further developed and optimized. For this purpose, the overall electronics is split into three parts. This elaboration deals exclusively with the first part of the signal chain for the evaluation of photons in experiments with gamma radiation. Parallel to the analysis of the electronics, an additional method for analysing the stability of linear and non-linear systems is presented: The extended method of Lyapunov’s stability criteria. The design helps to weigh advantages and disadvantages against other simulated circuits in order to optimize the MIMOS II for the terestric and extraterestric measurment. Finally, after stability analysis, the controller design according to Ackermann is performed, achieving the best possible optimization of the output variable through a skillful pole assignment.
Keywords: Controller design for MIMOS II, stability analysis, M¨ossbauer spectroscopy, electronic signal amplifier, light processing technology, photocurrent, transimpedance amplifier, extended Lyapunov method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49140 Partial Stabilization of a Class of Nonlinear Systems Via Center Manifold Theory
Authors: Ping He
Abstract:
This paper addresses the problem of the partial state feedback stabilization of a class of nonlinear systems. In order to stabilization this class systems, the especial place of this paper is to reverse designing the state feedback control law from the method of judging system stability with the center manifold theory. First of all, the center manifold theory is applied to discuss the stabilization sufficient condition and design the stabilizing state control laws for a class of nonlinear. Secondly, the problem of partial stabilization for a class of plane nonlinear system is discuss using the lyapunov second method and the center manifold theory. Thirdly, we investigate specially the problem of the stabilization for a class of homogenous plane nonlinear systems, a class of nonlinear with dual-zero eigenvalues and a class of nonlinear with zero-center using the method of lyapunov function with homogenous derivative, specifically. At the end of this paper, some examples and simulation results are given show that the approach of this paper to this class of nonlinear system is effective and convenient.Keywords: Partial stabilization, Nonlinear critical systems, Centermanifold theory, Lyapunov function, System reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763139 Stabilization of the Lorenz Chaotic Equations by Fuzzy Controller
Authors: Behrooz Rezaie, Zahra Rahmani Cherati, Mohammad Reza Jahed Motlagh, Mohammad Farrokhi
Abstract:
In this paper, a fuzzy controller is designed for stabilization of the Lorenz chaotic equations. A simple Mamdani inference method is used for this purpose. This method is very simple and applicable for complex chaotic systems and it can be implemented easily. The stability of close loop system is investigated by the Lyapunov stabilization criterion. A Lyapunov function is introduced and the global stability is proven. Finally, the effectiveness of this method is illustrated by simulation results and it is shown that the performance of the system is improved.Keywords: Chaotic system, Fuzzy control, Lorenz equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2029138 Turing Pattern in the Oregonator Revisited
Authors: Elragig Aiman, Dreiwi Hanan, Townley Stuart, Elmabrook Idriss
Abstract:
In this paper, we reconsider the analysis of the Oregonator model. We highlight an error in this analysis which leads to an incorrect depiction of the parameter region in which diffusion driven instability is possible. We believe that the cause of the oversight is the complexity of stability analyses based on eigenvalues and the dependence on parameters of matrix minors appearing in stability calculations. We regenerate the parameter space where Turing patterns can be seen, and we use the common Lyapunov function (CLF) approach, which is numerically reliable, to further confirm the dependence of the results on diffusion coefficients intensities.Keywords: Diffusion driven instability, common Lyapunov function (CLF), turing pattern, positive-definite matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1048137 Improved Stability Criteria for Neural Networks with Two Additive Time-Varying Delays
Authors: Miaomiao Yang, Shouming Zhong
Abstract:
This paper studies the problem of stability criteria for neural networks with two additive time-varying delays.A new Lyapunov-Krasovskii function is constructed and some new delay dependent stability criterias are derived in the terms of linear matrix inequalities(LMI), zero equalities and reciprocally convex approach.The several stability criterion proposed in this paper is simpler and effective. Finally,numerical examples are provided to demonstrate the feasibility and effectiveness of our results.
Keywords: Stability, Neural networks, Linear Matrix Inequalities (LMI) , Lyapunov function, Time-varying delays
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449136 Implementation of an Associative Memory Using a Restricted Hopfield Network
Authors: Tet H. Yeap
Abstract:
An analog restricted Hopfield Network is presented in this paper. It consists of two layers of nodes, visible and hidden nodes, connected by directional weighted paths forming a bipartite graph with no intralayer connection. An energy or Lyapunov function was derived to show that the proposed network will converge to stable states. By introducing hidden nodes, the proposed network can be trained to store patterns and has increased memory capacity. Training to be an associative memory, simulation results show that the associative memory performs better than a classical Hopfield network by being able to perform better memory recall when the input is noisy.Keywords: Associative memory, Hopfield network, Lyapunov function, Restricted Hopfield network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 488135 Delay-Independent Closed-Loop Stabilization of Neutral System with Infinite Delays
Authors: I. Davies, O. L. C. Haas
Abstract:
In this paper, the problem of stability and stabilization for neutral delay-differential systems with infinite delay is investigated. Using Lyapunov method, new delay-independent sufficient condition for the stability of neutral systems with infinite delay is obtained in terms of linear matrix inequality (LMI). Memory-less state feedback controllers are then designed for the stabilization of the system using the feasible solution of the resulting LMI, which are easily solved using any optimization algorithms. Numerical examples are given to illustrate the results of the proposed methods.Keywords: Infinite delays, Lyapunov method, linear matrix inequality, neutral systems, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2761134 Sliding Mode Control Based on Backstepping Approach for an UAV Type-Quadrotor
Authors: H. Bouadi, M. Bouchoucha, M. Tadjine
Abstract:
In this paper; we are interested principally in dynamic modelling of quadrotor while taking into account the high-order nonholonomic constraints in order to develop a new control scheme as well as the various physical phenomena, which can influence the dynamics of a flying structure. These permit us to introduce a new state-space representation. After, the use of Backstepping approach for the synthesis of tracking errors and Lyapunov functions, a sliding mode controller is developed in order to ensure Lyapunov stability, the handling of all system nonlinearities and desired tracking trajectories. Finally simulation results are also provided in order to illustrate the performances of the proposed controller.
Keywords: Dynamic modeling, nonholonomic constraints, Backstepping, sliding mode.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5876133 New Delay-Dependent Stability Criteria for Neural Networks With Two Additive Time-varying Delay Components
Authors: Xingyuan Qu, Shouming Zhong
Abstract:
In this paper, the problem of stability criteria of neural networks (NNs) with two-additive time-varying delay compenents is investigated. The relationship between the time-varying delay and its lower and upper bounds is taken into account when estimating the upper bound of the derivative of Lyapunov functional. As a result, some improved delay stability criteria for NNs with two-additive time-varying delay components are proposed. Finally, a numerical example is given to illustrate the effectiveness of the proposed method.
Keywords: Delay-dependent stability, time-varying delays, Lyapunov functional, linear matrix inequality (LMI).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610132 Stability of Interconnected Systems under Structural Perturbation: Decomposition-Aggregation Approach
Authors: M. Kidouche, H. Habbi, M. Zelmat
Abstract:
In this paper, the decomposition-aggregation method is used to carry out connective stability criteria for general linear composite system via aggregation. The large scale system is decomposed into a number of subsystems. By associating directed graphs with dynamic systems in an essential way, we define the relation between system structure and stability in the sense of Lyapunov. The stability criteria is then associated with the stability and system matrices of subsystems as well as those interconnected terms among subsystems using the concepts of vector differential inequalities and vector Lyapunov functions. Then, we show that the stability of each subsystem and stability of the aggregate model imply connective stability of the overall system. An example is reported, showing the efficiency of the proposed technique.Keywords: Composite system, Connective stability, Lyapunovfunctions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505131 A New Robust Stability Criterion for Dynamical Neural Networks with Mixed Time Delays
Authors: Guang Zhou, Shouming Zhong
Abstract:
In this paper, we investigate the problem of the existence, uniqueness and global asymptotic stability of the equilibrium point for a class of neural networks, the neutral system has mixed time delays and parameter uncertainties. Under the assumption that the activation functions are globally Lipschitz continuous, we drive a new criterion for the robust stability of a class of neural networks with time delays by utilizing the Lyapunov stability theorems and the Homomorphic mapping theorem. Numerical examples are given to illustrate the effectiveness and the advantage of the proposed main results.
Keywords: Neural networks, Delayed systems, Lyapunov function, Stability analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584130 Stability of a Special Class of Switched Positive Systems
Authors: Xiuyong Ding, Lan Shu, Xiu Liu
Abstract:
This paper is concerned with the existence of a linear copositive Lyapunov function(LCLF) for a special class of switched positive linear systems(SPLSs) composed of continuousand discrete-time subsystems. Firstly, by using system matrices, we construct a special kind of matrices in appropriate manner. Secondly, our results reveal that the Hurwitz stability of these matrices is equivalent to the existence of a common LCLF for arbitrary finite sets composed of continuous- and discrete-time positive linear timeinvariant( LTI) systems. Finally, a simple example is provided to illustrate the implication of our results.
Keywords: Linear co-positive Lyapunov functions, positive systems, switched systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519129 An Analysis of Global Stability of a Class of Neutral-Type Neural Systems with Time Delays
Authors: Ozlem Faydasicok, Sabri Arik
Abstract:
This paper derives some new sufficient conditions for the stability of a class of neutral-type neural networks with discrete time delays by employing a suitable Lyapunov functional. The obtained conditions can be easily verified as they can be expressed in terms of the network parameters only. It is shown that the results presented in this paper for neutral-type delayed neural networks establish a new set of stability criteria, and therefore can be considered as the alternative results to the previously published literature results. A numerical example is also given to demonstrate the applicability of our proposed stability criterion.Keywords: Stability Analysis, Neutral-Type Neural Networks, Time Delay Systems, Lyapunov Functionals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638128 Parallel Particle Swarm Optimization Optimized LDI Controller with Lyapunov Stability Criterion for Nonlinear Structural Systems
Authors: P.-W. Tsai, W.-L. Hong, C.-W. Chen, C.-Y. Chen
Abstract:
In this paper, we present a neural-network (NN) based approach to represent a nonlinear Tagagi-Sugeno (T-S) system. A linear differential inclusion (LDI) state-space representation is utilized to deal with the NN models. Taking advantage of the LDI representation, the stability conditions and controller design are derived for a class of nonlinear structural systems. Moreover, the concept of utilizing the Parallel Particle Swarm Optimization (PPSO) algorithm to solve the common P matrix under the stability criteria is given in this paper.
Keywords: Lyapunov Stability, Parallel Particle Swarm Optimization, Linear Differential Inclusion, Artificial Intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865127 Strict Stability of Fuzzy Differential Equations by Lyapunov Functions
Authors: Mustafa Bayram Gücen, Coşkun Yakar
Abstract:
In this study, we have investigated the strict stability of fuzzy differential systems and we compare the classical notion of strict stability criteria of ordinary differential equations and the notion of strict stability of fuzzy differential systems. In addition that, we present definitions of stability and strict stability of fuzzy differential equations and also we have some theorems and comparison results. Strict Stability is a different stability definition and this stability type can give us an information about the rate of decay of the solutions. Lyapunov’s second method is a standard technique used in the study of the qualitative behavior of fuzzy differential systems along with a comparison result that allows the prediction of behavior of a fuzzy differential system when the behavior of the null solution of a fuzzy comparison system is known. This method is a usefull for investigating strict stability of fuzzy systems. First of all, we present definitions and necessary background material. Secondly, we discuss and compare the differences between the classical notion of stability and the recent notion of strict stability. And then, we have a comparison result in which the stability properties of the null solution of the comparison system imply the corresponding stability properties of the fuzzy differential system. Consequently, we give the strict stability results and a comparison theorem. We have used Lyapunov second method and we have proved a comparison result with scalar differential equations.Keywords: Fuzzy systems, fuzzy differential equations, fuzzy stability, strict stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1127