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Abstract—In the context of planetary exploration, the MIMOS
II (miniaturized Mössbauer spectrometer) serves as a proven and
reliable measuring instrument. The transmission behaviour of the
electronics in the Mössbauer spectroscopy is further developed and
optimized. For this purpose, the overall electronics is split into three
parts. This elaboration deals exclusively with the first part of the
signal chain for the evaluation of photons in experiments with gamma
radiation. Parallel to the analysis of the electronics, an additional
method for analysing the stability of linear and non-linear systems
is presented: The extended method of Lyapunov’s stability criteria.
The design helps to weigh advantages and disadvantages against other
simulated circuits in order to optimize the MIMOS II for the terestric
and extraterestric measurment. Finally, after stability analysis, the
controller design according to Ackermann is performed, achieving
the best possible optimization of the output variable through a skillful
pole assignment.

Keywords—Controller design for MIMOS II, stability analysis,
Mössbauer spectroscopy, electronic signal amplifier, light processing
technology, photocurrent, transimpedance amplifier, extended
Lyapunov method.

I. INTRODUCTION

M ÖSSBAUER spectroscopy stands as a highly precise

and invaluable analytical technique within the realm

of solid-state physics and materials science. It facilitates the

examination of atomic and nuclear properties of materials

in a manner unrivaled by other methods. This methodology

relies on the interaction of gamma rays with atomic nuclei

within a solid. What sets Mössbauer spectroscopy apart is

its unique capacity to provide detailed information about

energy levels and structural characteristics at the atomic scale.

This technique finds diverse applications, ranging from the

investigation of crystal structures to the characterization of

chemical bonding and magnetic properties in materials.
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A. Miniaturized Mössbauer Spectrometer

The MIMOS II (miniaturised Mössbauer spectrometer) has

now been in use for over a decade in planetary exploration

and has provided reliable and robust measurement data from

unknown areas [1]. The MIMOS II originally devised by

Göstar Klingelhöfer, is further developed by the Renz group

at the Leibniz University Hanover in cooperation with the

Hanover University of Applied Sciences [1], [2]. Fig. 1

illustrates the configuration of the Mössbauer spectrometer as

a schematic diagram:

Fig. 1 Schematic representation of the Mössbauer spectrometer

The Mössbauer drive mechanically oscillates radioactive

Co-57 sources to exploit the Doppler effect for the purpose

of increasing the number of protons encountered by emitted

gamma rays. The emitted gamma rays interact with the sample,

elevating the energy level of activated protons. After a certain

period, the protons return to their original energy state and emit

gamma rays. These gamma rays are detected by a sensor and

subsequent electronics for digitalization. A microcontroller

further processes the acquisition data and concurrently controls

the Mössbauer drive.

B. Electronics behind Mössbauer Spectroscopy

The electronics for gamma-ray detection are the central

focus of this paper. Photons impinge on the surface of the
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photosensor, generating a photocurrent iph(t). The challenge

in harnessing the sensor signal lies in generating an appropriate

signal shaping into a voltage that is stable enough for

further processing. The generated photocurrent is very low

in amplitude and must be amplified in a manner that avoids

signal distortion due to noise and other sources of interference.

For this reason, the foundation of the signal shaping is a

transimpedance amplifier. The current iph(t) is converted into

a voltage ua(t) and made available for further processing.

Fig. 2 Schematic representation of the electronics for the Mössbauer
spectrometer

II. INTRODUCTORY CONSIDERATION OF THE

TRANSIMPEDANCE AMPLIFIER

The transimpedance amplifier (TIA) is the core of the

electrical circuit considered in this paper. In this elaboration,

the already existing derivations for the mentioned system are

used. Due to the fact that the measured and in the system

theoretical analysis focused output voltage has an oscillatory

characteristic, at least a second order system is assumed in the

modeling of the TIA [3]-[5].

A. The TIA as a 2nd Order System

It has been proven that the TIA exhibits oscillations in

certain operating ranges. With the modeling of the TIA as

a second order system, output oscillations with limited quality

can be approximately described. The cause of the oscillation is

found in the modeling of the photodiode, which itself also has

a capacitive and a resistive component [3], [4]. Fig. 3 shows

such a second-order transimpedance amplifier.

Due to the fact that this paper mainly deals with the system

analysis of the electrical circuits listed, the mathematical

descriptions already known for a long time are used

without further derivations. Derivation can be taken from

corresponding literature [3]-[6].

Because of the inverting effect at the input of the operational

amplifier, the output voltage is pushed into the negative range

and only there shows oscillation characteristics (1).

GPT2(s) =
KPT2 · (ω0)

2

s2 + 2 ·D · ω0 · s+ (ω0)2
(1)

Fig. 3 Transimpedance amplifier as a 2nd order system

Fig. 4 Step response of TIA: 2nd order system

B. State Space Model & Stability of the TIA

From the listed literature, the state space representation of

the systems is used on the one hand for system analysis and

on the other hand for multidimensional controller design [3],

[4], [7], [8]. The system analysis plays an important role in

this elaboration, especially with regard to the main sections

of this paper. The transfer to the state space also results in

a completely new state and system assessment possibility, it

is the phase space. In the state space, states are defined and

derived. The phase space uses these derived states and relates

them to each other. For example, an arbitrary state xi and its

velocity ẋi can then be plotted and considered in the phase

plane.

In this section, the equations of the TIA are transformed into

the state space as an example in order to be able to transform

the mathematical description of the photodiode amplifier as

well using the same methodology:

ẋ = A · x+B · u (2)

y = C · x+D · u (3)

Since this is a single input single output system, the u vector

becomes a scalar u → u, the input matrix an input vector

B → b, followed by an output vector C → cT and a direct

pass-through value D → d. However, since there is no direct

pass-through at all (input has no directly additive influence on

output), it follows that d = 0 and the eigenvalues λi can be

calculated [3], [4].

A =

[
0 1

−(ω0)
2 −2Dω0

]
(4)

The system matrix A carries the intrinsic dynamics

information in the sense of eigenvalues λi.
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b =

[
0

KP · (ω0)
2

]
(5)

The input vector b carries the extrinsic dynamics

information of the system, which is caused by external

influence.

cT =
[
0 1

]
(6)

The output vector cT describes what influence the states xi

of a system have on its output y = ua.

As already mentioned, the eigenvalues of the system can

now be determined by the system matrix and the following

equation:

det (λ · I −A) = 0 (7)∣∣∣∣
[

λ −1
(ω0)

2 (λ+ 2Dω0)

]∣∣∣∣ = 0

λ2 + 2Dω0 · λ+ (ω0)
2 = 0

⇒ λ1,2 = −Dω0 ±
√

(Dω0)2 − (ω0)2 (8)

III. PHOTODIODE AMPLIFIER

The transmission behavior of the initially simulated

amplifier circuit is to be determined and can serve as a basis

for a later control [3]. Here, the results are collected of the the

circuit version intended for practical tests. The electrical circuit

used in this elaboration is a modified version of a photodiode

amplifier (PDA), which is based on the TIA [3], [4]. The

modified PDA combines and replaces the usually switched

multiple filters and the signal pickup of the photodiode current

(iph(t)) and the new draft serves to weigh up the advantages

and disadvantages compared to other designs in order to

optimise the MIMOS II for planetary measurement. The TIA

is extended in such a way that the resulting circuit of the

PDA can be divided into three sections. This paper will deal

exclusively with the first section described by h1(t). The other

sections are the subject of other papers.

Fig. 5 Photodiode amplifier as a modular system

To describe the first section h1(t) the Laplace

transformation is performed and the transfer function

results:

L{h1(t)} = H1(s) =
UH1(s)

Iph(s)
=

b1 · s+ b0
s2 + a1 · s+ a0

(9)

It is a PDT2 element: Proportional differential element,

which is doubly delayed.

Fig. 6 Block diagram of H1(s)

A. 1st Section of the PDA in the State Space

In this section, the transformation into the state space takes

place. For practical reasons, the control normal form (CNF)

is used. The CNF makes it possible to write any PTn or

PDTn form of the system descriptions directly into a form

suitable for the control design and bypasses the controllability

analysis, since a control normal form can only be achieved if

an original system exists, which can be transformed into the

control normal form.

Fig. 7 State space model

G(s) =
b1 · s+ b0

sn + an−1 · sn−1 + . . .+ a1 · s+ a0
(10)

ẋR = AR · xR + bR · u (11)

y = cTR · xR + dR · u (12)

AR =

[
0(n−1) I

aT

]
(13)

bR =

[
0(n−1)

1

]
(14)

cTR =
[
βT − aT · bn

]
(15)

dR = d (16)

aT =
[
a0 a1 . . . an−1

]
is the vector of the coefficients

of the denominator and βT =
[
b0 b1 . . . bn−1

]
is the

vector of the coefficients of the numerator of G(s).

ẋR = AR · xR + bR · u (17)

yR = cTR · xR + dR · u (18)
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AR =

[
0 1

−a0 −a1

]
(19)

bR =

[
0
1

]
(20)

cTR =
[
b0 b1

]
(21)

dR = 0 (22)

Fig. 8 Step responses of uH1 (t) and state space model yR

A look at the step response of both representations of the

system (Fig. 6) clearly shows that they are one and the same

system and that each representation has its own justification.

The state space opens up a wealth of new possibilities for

analysis. For example, stability can be examined on the one

hand by means of the poles and on the other hand by means

of a visualization in the form of a phase diagram.
Since the classical eigenvalue analysis for the stability

assessment of a system presupposes linearity of this system,

this method is not applicable in the case of existing

nonlinearities. For this reason, the consideration of phase space

is relevant and very useful in terms of applicability in all cases.

IV. STABILITY ANALYSIS OF THE 1ST SECTION OF THE

PDA

A. Stability of the 1st Section of the PDA in the Laplace
Plane

From [4] and [7] the classical stability analysis in state space

should be known. The eigenvalues of the system matrix AR

are determined:

det (λ · I −AR) = 0 (23)∣∣∣∣
[
λ −1
a0 (λ+ a1)

]∣∣∣∣ = λ2 + a1 · λ+ a0 = 0

⇒ λ1,2 = −a1
2

±
√(a1

2

)2

− a0 (24)

Since in all cases considered and developed in this paper,

the system is stable if Re{λi} < 0.

B. Stability of the 1st Section of the PDA in the Phase Plane

Now the stability of the system in the phase diagram is

to be considered. For this purpose, the Lyapunov stability

is introduced in the first step, which is visualised by the

representation in the phase plane.

1) Lyapunov Stability: The stability analysis of nonlinear

systems is usually carried out with the direct or second method

of Lyapunov. A Lyapunov function V (x) is searched which

fulfils the following criteria [9, chapt. 4.5], [10, p. 222-236]:

ẋ = f(x) (25)

A real-valued differentiable function V (x) is called a

Lyapunov function (for the vector field f ) if V̇ (x) ≤ 0 holds

for all points x from the phase space.

V̇ (x) := 〈grad V (x), ẋ〉 = 〈grad V (x),f(x)〉 (26)

ẋ = ẋ(xeq) = 0 (27)

1) First criterion

(i) xeq is an equilibrium of the system

(ii) V is a Lyapunov function at f(xeq)
(iii) V has a strict local minimum at xeq

2) Second criterion:

For x �= xeq in an environment of the equilibrium xeq,

V̇ (x) < 0 is valid.

It is noticeable that the mathematical description of a

Lyapunov function is time-consuming. Especially since no

criterion is presented that estimates in advance whether a

Lyapunov function exists for a given system of differential

equations. In the linear case, a prediction regarding the

existence of V can be given quickly and reliably through the

eigenvalue analysis. In the nonlinear case, however, no clear

structure for estimating the existence of Lyapunov functions

is known. The representation of a system in the phase space is

intended to provide a possible structure for estimation at this

point.

2) Extended Lyapunov Stability in the Phase Plane: The

following relationship is already known from the state space

description of the system H1(s):

x1 = uH1 (28)

x2 = ẋ1 (29)

Now the system is plotted in the phase diagram (Fig. 9).

For this purpose, the states are set in relation to each other.

The following is to apply:

x1 = f(x2) (30)
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Fig. 9 Phase diagram of the step response of the 1st section of the PDA

The phase diagram shows a completely new and different

representation of the system. This circumstance is also

imperative, since, mostly due to the non-linearities, no regular

examination of the system can take place. At first glance, the

representation in the phase diagram is hardly meaningful. Even

with experience, an accurate statement regarding the stability

of the system cannot always be made. For this reason, the

solution for a better estimation of the existence of a Lyapunov

function lies in the analytical approach of the investigation in

phase space. In other words, a systematic approach must be

created that will produce a statement regarding the system.

The solution lies in the excitation of the system. In the case

of a step-like excitation, the response must already be known

in order to classify the system correctly. With an oscillating

excitation, the expected response is an oscillation. In phase

space, an oscillation is represented as a closed circular or

elliptical curve in case that the system is stable. Ideally, a

closed circle is expected as in Lissajou’s figures in electrical

engineering. For this reason, the input function iph(t) is set to

the following function:

iph(t) = i0 · sin(ωx · t) · σ(t) (31)

σ(t) =

{
0, t < 0
1, t ≥ 0

(32)

The amplitude is usually set to the value i0 = 1, but

the frequency ωx can be adjusted according to the system.

In the standard case, the frequency ωx should not be set

to the resonance frequency ω0 of the system in order to

avoid excessive resonance. In addition, the set frequency ωx

must not coincide with the zero points of the system, as

the zero points would then equalise and the excitation would

be virtually swallowed up by the system. Fig. 10 shows the

system response to an excitation with a harmonic oscillation.

The expected response also occurred with the pure vibration

excitation – a closed circular elliptical curve. The coordinate

origin represents the initial condition in the solution of the

-3 -2 -1 0 1 2 3

108

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Fig. 10 Phase diagram of the vibration response of the 1st section of the
PDA

differential equations. In Fig. 11, the excitation is initially

step-like and also oscillating-like to demonstrate the transition

of these two system responses.

iph(t) = i0 · σ(t) + i0 · sin(ωx · t) · σ(t) (33)

-4 -2 0 2 4 6 8

108

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 11 Phase diagram of step & vibration response of the 1st section of the
PDA

It can be clearly seen that the original excitation smoothly

transitions into a closed elliptical curve. So it is clear that

the system must be stable to allow such a transition. Due

to the closed curve, an exact calculation of the Lyapunov

function is no longer necessary. Of course, such a function

can be determined, but in this case the area to be examined

is so clearly delineated that stability can already be confirmed

visually.

Now follows the consideration of an unstable system with

the described procedure for analysis. The poles of the previous

system are shifted to the right half-plane, so there is definitely

instability. Then the excitation takes place with an oscillation.
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It is to be expected that there will be no closed curve. Fig. 12

shows this investigation.

0 2 4 6 8 10 12

1017

0

2

4

6

8

10

12
108

Fig. 12 Phase diagram of the vibration response of the unstable PDA

There is no longer a closed curve. It is a rising straight line

in phase space. Thus, a clear statement can be made as to

whether a Lyapunov function exists. There is no area in the

phase plane that offers indications of stability.

Lyapunov’s extended method can thus unambiguously

define good approaches for stability ranges and allows good

estimates without further calculations up to the unambiguous

proof of stability in the linear case.

V. CONTROLLER DESIGN FOR THE 1ST SECTION OF THE

PDA

The state regulator can be determined much more simply

from the CNF using the following rule:

kT
R = αT − aT (34)

where αT =
[
α0 α1 . . . αn−1

]
is the vector of the new

coefficients resulting from the pole specification of the form:

(s−sp1,α)·(s−sp2,α)·. . .·(s−spn,α) = sn+αn−1·sn−1+. . .+α1·s+α0

v =
[
cT (bkT −A)−1b

]−1

(35)

Fig. 13 Controller and prefilter in the state space

The new coefficients were based on the old ones:

αT = 5 · aT = 5 · [a0 a1
]

(36)

Fig. 14 Controlled system

The controlled system has a very fast response behaviour.

The factor 5 is an experimental value from the laboratory

and can vary depending on the realisation possibilities of the

system.

VI. CONCLUSION

A. Linear System Analysis

System analysis in the linear case has been known and

well defined for a long time. Eigenvalue analysis provides a

very good method of investigation at this point [7]. However,

for higher order systems, the time required to find analytical

solutions can increase enormously. Numerical methods for

the approximate solution of eigenvalue problems provide a

remedy. On the other hand, the extended Lyapunov method

for pure visualisation in phase space can save an enormous

amount of time.

B. Nonlinear Stability Analysis

Stability analysis for non-linear systems is much more

challenging than for linear systems. The time required for

the determination of analytical solutions and the derivation

of a possible Lyapunov function is relatively high. Even with

systems that are not too complex, it is hardly possible to make

a statement regarding the existence of a Lyapunov function [9],

[10]. The extended Lyapunov method for pure visualisation

in phase space enables a very good first estimation and

delimitation of areas in which a Lyapunov function can exist.

This saves time and resources, both in theoretical and applied

research.

C. Analysis of H1(s) of the PDA

The transfer of H1(s) (9) into the state space, in particular

into the control normal form, enables a multidimensional

analysis and leads to a consideration on several levels. The

control normal form presupposes controllability, since a basis

system matrix A must always exist in advance of this normal

form so that a transformation into AR can take place [7].
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With regard to the stability of the first section of the PDA,

a stable system could be demonstrated in two ways. Both the

eigenvalue analysis and the extended direct method according

to Lyapunov, presented in this paper, have produced clear

results.

D. Controller Design and Its Challenges

The controller design essentially depends on the nature of

the possible circuit parameters in the real design. This means

that it is one thing to design the controller simulatively, but

quite another to implement the real controller. In the real

version, resistors and capacitors were used and care must

always be taken to ensure that the component noise does not

predominate with these fine settings and distort the poles of the

system and thus negatively influence and shift them. However,

the results obtained here are satisfactory and open up a further

view in the direction of very fine controller designs.

VII. OUTLOOK

With the development of the new light processing system,

measurements can be made in less time and with higher

resolution. Based on the results from this paper, the following

points should be addressed and elaborated in future papers:

• The other two sections (h2(t), h3(t)) of the overall

system h(t) should also be examined in order to satisfy

the following form for the overall description:

L(h(t)) = H(s) = H1(s) ·H2(s) ·H3(s) (37)

• A state estimation is essential for more precise controller

settings and should be taken into account in future work.

• Following this, the overall system can then be analyzed.
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