Search results for: peak pressure.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1789

Search results for: peak pressure.

1249 Application of Artificial Neural Network for the Prediction of Pressure Distribution of a Plunging Airfoil

Authors: F. Rasi Maezabadi, M. Masdari, M. R. Soltani

Abstract:

Series of experimental tests were conducted on a section of a 660 kW wind turbine blade to measure the pressure distribution of this model oscillating in plunging motion. In order to minimize the amount of data required to predict aerodynamic loads of the airfoil, a General Regression Neural Network, GRNN, was trained using the measured experimental data. The network once proved to be accurate enough, was used to predict the flow behavior of the airfoil for the desired conditions. Results showed that with using a few of the acquired data, the trained neural network was able to predict accurate results with minimal errors when compared with the corresponding measured values. Therefore with employing this trained network the aerodynamic coefficients of the plunging airfoil, are predicted accurately at different oscillation frequencies, amplitudes, and angles of attack; hence reducing the cost of tests while achieving acceptable accuracy.

Keywords: Airfoil, experimental, GRNN, Neural Network, Plunging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
1248 Simulation and Analysis of the Shift Process for an Automatic Transmission

Authors: Kei-Lin Kuo

Abstract:

The automatic transmission (AT) is one of the most important components of many automobile transmission systems. The shift quality has a significant influence on the ride comfort of the vehicle. During the AT shift process, the joint elements such as the clutch and bands engage or disengage, linking sets of gears to create a fixed gear ratio. Since these ratios differ between gears in a fixed gear ratio transmission, the motion of the vehicle could change suddenly during the shift process if the joint elements are engaged or disengaged inappropriately, additionally impacting the entire transmission system and increasing the temperature of connect elements.The objective was to establish a system model for an AT powertrain using Matlab/Simulink. This paper further analyses the effect of varying hydraulic pressure and the associated impact on shift quality during both engagment and disengagement of the joint elements, proving that shift quality improvements could be achieved with appropriate hydraulic pressure control.

Keywords: Automatic transmission, Simulation and analysis, Shift quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4461
1247 Failure Analysis of a Fractured Control Pressure Tube from an Aircraft Engine

Authors: M. P. Valles-González, A. González Meije, A. Pastor Muro, M. García-Martínez, B. González Caballero

Abstract:

This paper studies a failure case of a fuel pressure supply tube from an aircraft engine. Multiple fracture cases of the fuel pressure control tube from aircraft engines have been reported. The studied set was composed by the mentioned tube, a welded connecting pipe, where the fracture has been produced, and a union nut. The fracture has been produced in one of the most critical zones of the tube, in a region next to the supporting body of the union nut to the connector. The tube material was X6CrNiTi18-10, an austenitic stainless steel. Chemical composition was determined using an X-Ray fluorescence spectrometer (XRF) and combustion equipment. Furthermore, the material was characterized mechanically, by a hardness test, and microstructurally using a stereo microscope and an optical microscope. The results confirmed that the material was within specifications. To determine the macrofractographic features, a visual examination and an observation using a stereo microscope of the tube fracture surface were carried out. The results revealed a tube plastic macrodeformation, surface damaged and signs of a possible corrosion process. Fracture surface was also inspected by scanning electron microscopy (FE-SEM), equipped with an energy-dispersive X-ray microanalysis system (EDX), to determine the microfractographic features in order to find out the failure mechanism involved in the fracture. Fatigue striations, which are typical from a progressive fracture by a fatigue mechanism, were observed. The origin of the fracture was placed in defects located on the outer wall of the tube, leading to a final overload fracture.

Keywords: Aircraft Engine, microstructure, fatigue, FE-SEM, fractography, fracture, fuel tube, stainless steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 503
1246 Case-Based Reasoning Application to Predict Geological Features at Site C Dam Construction Project

Authors: S. Behnam Malekzadeh, I. Kerr, T. Kaempffer, T. Harper, A Watson

Abstract:

The Site C Hydroelectric dam is currently being constructed in north-eastern British Columbia on sub-horizontal sedimentary strata that dip approximately 15 meters from one bank of the Peace River to the other. More than 615 pressure sensors (Vibrating Wire Piezometers) have been installed on bedding planes (BPs) since construction began, with over 80 more planned before project completion. These pressure measurements are essential to monitor the stability of the rock foundation during and after construction and for dam safety purposes. BPs are identified by their clay gouge infilling, which varies in thickness from less than 1 to 20 mm and can be challenging to identify as the core drilling process often disturbs or washes away the gouge material. Without the use of depth predictions from nearby boreholes, stratigraphic markers, and downhole geophysical data, it is difficult to confidently identify BP targets for the sensors. In this paper, a Case-Based Reasoning (CBR) method was used to develop an empirical model called the Bedding Plane Elevation Prediction (BPEP) to help geologists and geotechnical engineers to predict geological features and BPs at new locations in a fast and accurate manner. To develop CBR, a database was developed based on 64 pressure sensors already installed on key bedding planes BP25, BP28, and BP31 on the Right Bank, including BP elevations and coordinates. 13 (20%) of the most recent cases were selected to validate and evaluate the accuracy of the developed model, while the similarity was defined as the distance between previous cases and recent cases to predict the depth of significant BPs. The average difference between actual BP elevations and predicted elevations for above BPs was ± 55 cm, while the actual results showed that 69% of predicted elevations were within ± 79 cm of actual BP elevations while 100% of predicted elevations for new cases were within ± 99 cm range. Eventually, the actual results will be used to develop the database and improve BPEP to perform as a learning machine to predict more accurate BP elevations for future sensor installations.

Keywords: Case-Based Reasoning, CBR, geological feature, geology, piezometer, pressure sensor, core logging, dam construction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 121
1245 Heat Exchanger Design

Authors: Su Thet Mon Than, Khin Aung Lin, Mi Sandar Mon

Abstract:

This paper is intended to assist anyone with some general technical experience, but perhaps limited specific knowledge of heat transfer equipment. A characteristic of heat exchanger design is the procedure of specifying a design, heat transfer area and pressure drops and checking whether the assumed design satisfies all requirements or not. The purpose of this paper is how to design the oil cooler (heat exchanger) especially for shell-and-tube heat exchanger which is the majority type of liquid-to-liquid heat exchanger. General design considerations and design procedure are also illustrated in this paper and a flow diagram is provided as an aid of design procedure. In design calculation, the MatLAB and AutoCAD software are used. Fundamental heat transfer concepts and complex relationships involved in such exchanger are also presented in this paper. The primary aim of this design is to obtain a high heat transfer rate without exceeding the allowable pressure drop. This computer program is highly useful to design the shell-and-tube type heat exchanger and to modify existing deign.

Keywords: Shell-and-Tube Heat Exchanger, MatLAB and AutoCAD

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7899
1244 Identification of Key Parameters for Benchmarking of Combined Cycle Power Plants Retrofit

Authors: S. Sabzchi Asl, N. Tahouni, M. H. Panjeshahi

Abstract:

Benchmarking of a process with respect to energy consumption, without accomplishing a full retrofit study, can save both engineering time and money. In order to achieve this goal, the first step is to develop a conceptual-mathematical model that can easily be applied to a group of similar processes. In this research, we have aimed to identify a set of key parameters for the model which is supposed to be used for benchmarking of combined cycle power plants. For this purpose, three similar combined cycle power plants were studied. The results showed that ambient temperature, pressure and relative humidity, number of HRSG evaporator pressure levels and relative power in part load operation are the main key parameters. Also, the relationships between these parameters and produced power (by gas/ steam turbine), gas turbine and plant efficiency, temperature and mass flow rate of the stack flue gas were investigated.

Keywords: Combined cycle power plant, energy benchmarking, modelling, Retrofit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
1243 The Application of HLLC Numerical Solver to the Reduced Multiphase Model

Authors: Fatma Ghangir, Andrzej F. Nowakowski, Franck C. G. A. Nicolleau, Thomas M. Michelitsch

Abstract:

The performance of high-resolution schemes is investigated for unsteady, inviscid and compressible multiphase flows. An Eulerian diffuse interface approach has been chosen for the simulation of multicomponent flow problems. The reduced fiveequation and seven equation models are used with HLL and HLLC approximation. The authors demonstrated the advantages and disadvantages of both seven equations and five equations models studying their performance with HLL and HLLC algorithms on simple test case. The seven equation model is based on two pressure, two velocity concept of Baer–Nunziato [10], while five equation model is based on the mixture velocity and pressure. The numerical evaluations of two variants of Riemann solvers have been conducted for the classical one-dimensional air-water shock tube and compared with analytical solution for error analysis.

Keywords: Multiphase flow, gas-liquid flow, Godunov schems, Riemann solvers, HLL scheme, HLLC scheme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2570
1242 Finite Element Modeling of Rotating Mixing of Toothpaste

Authors: Inamullah Bhatti, Ahsanullah Baloch, Khadija Qureshi

Abstract:

The objective of this research is to examine the shear thinning behaviour of mixing flow of non-Newtonian fluid like toothpaste in the dissolution container with rotating stirrer. The problem under investigation is related to the chemical industry. Mixing of fluid is performed in a cylindrical container with rotating stirrer, where stirrer is eccentrically placed on the lid of the container. For the simulation purpose the associated motion of the fluid is considered as revolving of the container, with stick stirrer. For numerical prediction, a time-stepping finite element algorithm in a cylindrical polar coordinate system is adopted based on semi-implicit Taylor-Galerkin/pressure-correction scheme. Numerical solutions are obtained for non-Newtonian fluids employing power law model. Variations with power law index have been analysed, with respect to the flow structure and pressure drop.

Keywords: finite element simulation, mixing fluid, rheology, rotating flow, toothpaste

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2230
1241 A Combinatorial Model for ECG Interpretation

Authors: Costas S. Iliopoulos, Spiros Michalakopoulos

Abstract:

A new, combinatorial model for analyzing and inter- preting an electrocardiogram (ECG) is presented. An application of the model is QRS peak detection. This is demonstrated with an online algorithm, which is shown to be space as well as time efficient. Experimental results on the MIT-BIH Arrhythmia database show that this novel approach is promising. Further uses for this approach are discussed, such as taking advantage of its small memory requirements and interpreting large amounts of pre-recorded ECG data.

Keywords: Combinatorics, ECG analysis, MIT-BIH Arrhythmia Database, QRS Detection, String Algorithms

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908
1240 Perturbative Analysis on a Lunar Free Return Trajectory

Authors: Emre Ünal, Hasan Başaran

Abstract:

In this study, starting with a predetermined Lunar free-return trajectory, an analysis of major near-Earth perturbations is carried out. Referencing to historical Apollo-13 flight, changes in the mission’s resultant perimoon and perigee altitudes with each perturbative effect are evaluated. The perturbations that were considered are Earth oblateness effects, up to the 6th order, atmospheric drag, third body perturbations consisting of solar and planetary effects and solar radiation pressure effects. It is found that for a Moon mission, most of the main perturbative effects spoil the trajectory significantly while some came out to be negligible. It is seen that for apparent future request of constructing low cost, reliable and safe trajectories to the Moon, most of the orbital perturbations are crucial.

Keywords: Apollo-13 trajectory, atmospheric drag, lunar trajectories, oblateness effect, perturbative effects, solar radiation pressure, third body perturbations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 436
1239 Limiting Fiber Extensibility as Parameter for Damage in Venous Wall

Authors: Lukas Horny, Rudolf Zitny, Hynek Chlup, Tomas Adamek, Michal Sara

Abstract:

An inflation–extension test with human vena cava inferior was performed with the aim to fit a material model. The vein was modeled as a thick–walled tube loaded by internal pressure and axial force. The material was assumed to be an incompressible hyperelastic fiber reinforced continuum. Fibers are supposed to be arranged in two families of anti–symmetric helices. Considered anisotropy corresponds to local orthotropy. Used strain energy density function was based on a concept of limiting strain extensibility. The pressurization was comprised by four pre–cycles under physiological venous loading (0 – 4kPa) and four cycles under nonphysiological loading (0 – 21kPa). Each overloading cycle was performed with different value of axial weight. Overloading data were used in regression analysis to fit material model. Considered model did not fit experimental data so good. Especially predictions of axial force failed. It was hypothesized that due to nonphysiological values of loading pressure and different values of axial weight the material was not preconditioned enough and some damage occurred inside the wall. A limiting fiber extensibility parameter Jm was assumed to be in relation to supposed damage. Each of overloading cycles was fitted separately with different values of Jm. Other parameters were held the same. This approach turned out to be successful. Variable value of Jm can describe changes in the axial force – axial stretch response and satisfy pressure – radius dependence simultaneously.

Keywords: Constitutive model, damage, fiber reinforcedcomposite, limiting fiber extensibility, preconditioning, vena cavainferior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448
1238 Experimental Analysis and Optimization of Process Parameters in Plasma Arc Cutting Machine of EN-45A Material Using Taguchi and ANOVA Method

Authors: Sahil Sharma, Mukesh Gupta, Raj Kumar, N. S Bindra

Abstract:

This paper presents an experimental investigation on the optimization and the effect of the cutting parameters on Material Removal Rate (MRR) in Plasma Arc Cutting (PAC) of EN-45A Material using Taguchi L 16 orthogonal array method. Four process variables viz. cutting speed, current, stand-off-distance and plasma gas pressure have been considered for this experimental work. Analysis of variance (ANOVA) has been performed to get the percentage contribution of each process parameter for the response variable i.e. MRR. Based on ANOVA, it has been observed that the cutting speed, current and the plasma gas pressure are the major influencing factors that affect the response variable. Confirmation test based on optimal setting shows the better agreement with the predicted values.

Keywords: Analysis of variance, Material removal rate, plasma arc cutting, Taguchi method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1202
1237 A Tool for Modeling Slope Instability Triggered by Piping

Authors: Paola Gattinoni, Vincenzo Francani

Abstract:

The paper deals with the analysis of triggering conditions and evolution processes of piping phenomena, in relation to both mechanical and hydraulic aspects. In particular, the aim of the study is to predict slope instabilities triggered by piping, analysing the conditions necessary for a flow failure to occur. Really, the mechanical effect involved in the loads redistribution around the pipe is coupled to the drainage process arising from higher permeability of the pipe. If after the pipe formation, the drainage goes prevented for pipe clogging, the porewater pressure increase can lead to the failure or even the liquefaction, with a subsequent flow slide. To simulate the piping evolution and to verify relevant stability conditions, a iterative coupled modelling approach has been pointed out. As example, the proposed tool has been applied to the Stava Valley disaster (July, 1985), demonstrating that piping might be one of triggering phenomena of the tailings dams collapse.

Keywords: Flow failure, liquefaction, modeling, piping, porewater pressure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2431
1236 Performances Analysis of the Pressure and Production of an Oil Zone by Simulation of the Flow of a Fluid through the Porous Media

Authors: Makhlouf Mourad, Medkour Mihoub, Bouchher Omar, Messabih Sidi Mohamed, Benrachedi Khaled

Abstract:

This work is the modeling and simulation of fluid flow (liquid) through porous media. This type of flow occurs in many situations of interest in applied sciences and engineering, fluid (oil) consists of several individual substances in pure, single-phase flow is incompressible and isothermal. The porous medium is isotropic, homogeneous optionally, with the rectangular format and the flow is two-dimensional. Modeling of hydrodynamic phenomena incorporates Darcy's law and the equation of mass conservation. Correlations are used to model the density and viscosity of the fluid. A finite volume code is used in the discretization of differential equations. The nonlinearity is treated by Newton's method with relaxation coefficient. The results of the simulation of the pressure and the mobility of liquid flowing through porous media are presented, analyzed, and illustrated.

Keywords: Darcy equation, middle porous, continuity equation, Peng Robinson equation, mobility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 752
1235 Modeling Parametric Vibration of Multistage Gear Systems as a Tool for Design Optimization

Authors: James Kuria, John Kihiu

Abstract:

This work presents a numerical model developed to simulate the dynamics and vibrations of a multistage tractor gearbox. The effect of time varying mesh stiffness, time varying frictional torque on the gear teeth, lateral and torsional flexibility of the shafts and flexibility of the bearings were included in the model. The model was developed by using the Lagrangian method, and it was applied to study the effect of three design variables on the vibration and stress levels on the gears. The first design variable, module, had little effect on the vibration levels but a higher module resulted to higher bending stress levels. The second design variable, pressure angle, had little effect on the vibration levels, but had a strong effect on the stress levels on the pinion of a high reduction ratio gear pair. A pressure angle of 25o resulted to lower stress levels for a pinion with 14 teeth than a pressure angle of 20o. The third design variable, contact ratio, had a very strong effect on both the vibration levels and bending stress levels. Increasing the contact ratio to 2.0 reduced both the vibration levels and bending stress levels significantly. For the gear train design used in this study, a module of 2.5 and contact ratio of 2.0 for the various meshes was found to yield the best combination of low vibration levels and low bending stresses. The model can therefore be used as a tool for obtaining the optimum gear design parameters for a given multistage spur gear train.

Keywords: bending stress levels, frictional torque, gear designparameters, mesh stiffness, multistage gear train, vibration levels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2543
1234 Philosophy, Geometry, and Purpose in Islamic and Gothic Architecture as Two Religious-Based Styles

Authors: P. Nafisi Poor, P. Javid

Abstract:

Religion and divinity have always held important meaning to humans, and therefore it affects different aspects of life including art and architecture. Numerous works of art are related to religion whether supporting or denying it. Religion and religious scholars have influenced and changed art throughout history. This paper focuses on Islam and Christianity because these two religions have been the most discussed and most popular of all time, starting from the birth of Jesus to the arrival of Mohammad. Based on this popularity, these religions have influenced the arts and especially architecture. Islam on one hand changed Iranian and Arabian architecture and they applied it in different places around the world. From the appearance of Islam at 622 AD to this day, Islamic architecture has been evolving; however, one of the most important periods for this style was between 1501 AD and 1736 AD in Iran. Christianity, on the other hand, changed European architecture especially between 1150 AD and 1450 AD or the so-called "Gothic" era, which begins at medieval time and reaches its peak at International Gothic ages. At both of these periods, designing buildings based on spiritual concepts and divine statements reached its peak, and architects were considering God and religion as their center of attention. This article studies the focus on the religions of Islam and Christianity in terms of architecture and presents a general philosophy of both styles to comprehend the idea behind each one, followed by an analysis of their geometry and architectural aspects derived from the best examples, all to understand the purpose of each style and to realize, which one was more successful in reaching their purpose. Subsequently, a comprehensive review of each building is provided including 3D visualizations to help achieve the goal of the article. These studies can support diverse inquiries about both Islamic and Gothic architecture and can be used as a resource to support studies and research towards designing based on religion or for divine purposes.

Keywords: Architecture, gothic, Islamic, religion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 915
1233 Simulation of an Auto-Tuning Bicycle Suspension Fork with Quick Releasing Valves

Authors: Y. C. Mao, G. S. Chen

Abstract:

Bicycle configuration is not as large as those of motorcycles or automobiles, while it indeed composes a complicated dynamic system. People-s requirements on comfortability, controllability and safety grow higher as the research and development technologies improve. The shock absorber affects the vehicle suspension performances enormously. The absorber takes the vibration energy and releases it at a suitable time, keeping the wheel under a proper contact condition with road surface, maintaining the vehicle chassis stability. Suspension design for mountain bicycles is more difficult than that of city bikes since it encounters dynamic variations on road and loading conditions. Riders need a stiff damper as they exert to tread on the pedals when climbing, while a soft damper when they descend downhill. Various switchable shock absorbers are proposed in markets, however riders have to manually switch them among soft, hard and lock positions. This study proposes a novel design of the bicycle shock absorber, which provides automatic smooth tuning of the damping coefficient, from a predetermined lower bound to theoretically unlimited. An automatic quick releasing valve is involved in this design so that it can release the peak pressure when the suspension fork runs into a square-wave type obstacle and prevent the chassis from damage, avoiding the rider skeleton from injury. This design achieves the automatic tuning process by innovative plunger valve and fluidic passage arrangements without any electronic devices. Theoretical modelling of the damper and spring are established in this study. Design parameters of the valves and fluidic passages are determined. Relations between design parameters and shock absorber performances are discussed in this paper. The analytical results give directions to the shock absorber manufacture.

Keywords: Modelling, Simulation, Bicycle, Shock Absorber, Damping, Releasing Valve

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2860
1232 Supercritical Carbon Dioxide Extraction of Phenolics and Tocopherols Enriched Oil from Wheat Bran

Authors: Kyung-Tae Kwon, Md. Salim Uddin, Go-Woon Jung, Jeong-Eun Sim, Byung-Soo Chun

Abstract:

Supercritical carbon dioxide (SC-CO2) was used as a solvent to extract oil from wheat bran. Extractions were carried out in a semi-batch process at temperatures ranging from 40 to 60ºC and pressures ranging from 10 to 30 MPa, with a carbon dioxide (CO2) flow rate of 26.81 g/min. The oil obtained from wheat bran at different extraction conditions was quantitatively measured to investigate the solubility of oil in SC-CO2. The solubility of wheat bran oil was found to be enhanced in high temperature and pressure. The composition of fatty acids in wheat bran oil was measured by gas chromatography (GC). Linoleic, palmitic, oleic and γ-linolenic acid were the major fatty acids of wheat bran oil. Tocopherol contents in oil were analyzed by high performance liquid chromatography (HPLC). The highest amount of phenolics and tocopherols (α and β) were found at temperature of 60ºC and pressure of 30 MPa.

Keywords: Supercritical carbon dioxide, Tocopherols, Totalphenolic content, Wheat bran oil

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2537
1231 Effects of Mach Number and Angle of Attack on Mass Flow Rates and Entropy Gain in a Supersonic Inlet

Authors: Taher Fodeibou, Ziaul Huque, Jenny Galvis

Abstract:

A parametric study of a mixed-compression supersonic inlet is performed and reported. The effects of inlet Mach Numbers, varying from 4 to 10, and angle of attack, varying from 0 to 10, are reported for a constant inlet dynamic pressure. The paper looked at the variations of mass flow rates through the inlet, gain in entropy through the inlet, and the angles of the external oblique shocks. The mass flow rates were found to decrease monotonically with Mach numbers and increase with angle of attacks. On the other hand the entropy gain through the inlet increased with increasing Mach number and angle of attack. The variation in static pressure was found to be identical from the inlet throat to the exit for Mach number values higher than 6.

Keywords: Angle of attack, entropy gain, mass flow rates, supersonic inlets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2583
1230 Ankh Key Broadband Array Antenna for 5G Applications

Authors: Noha M. Rashad, W. Swelam, M. H. Abd ElAzeem

Abstract:

A simple design of array antenna is presented in this paper, supporting millimeter wave applications which can be used in short range wireless communications such as 5G applications. This design enhances the use of V-band, according to IEEE standards, as the antenna works in the 70 GHz band with bandwidth more than 11 GHz and peak gain more than 13 dBi. The design is simulated using different numerical techniques achieving a very good agreement.

Keywords: 5G Technology, array antenna, microstrip, millimeter wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 939
1229 Steady State Creep Behavior of Functionally Graded Thick Cylinder

Authors: Tejeet Singh, Harmanjit Singh

Abstract:

Creep behavior of thick-walled functionally graded cylinder consisting of AlSiC and subjected to internal pressure and high temperature has been analyzed. The functional relationship between strain rate with stress can be described by the well known threshold stress based creep law with a stress exponent of five. The effect of imposing non-linear particle gradient on the distribution of creep stresses in the thick-walled functionally graded composite cylinder has been investigated. The study revealed that for the assumed non-linear particle distribution, the radial stress decreases throughout the cylinder, whereas the tangential, axial and effective stresses have averaging effect. The strain rates in the functionally graded composite cylinder could be reduced to significant extent by employing non-linear gradient in the distribution of reinforcement.

Keywords: Functionally Graded Material, Pressure, Steady State Creep, Thick-Cylinder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
1228 Application of Natural Clay to Formulate Nontraditional Completion Fluid that Triples Oil Productivity

Authors: Munawar Khalil, Badrul Mohamed Jan, Abdul Aziz Abdul Raman

Abstract:

In the last decades, the problem of perforation damage has been considered as the major factor for the reduction of oil productivity. Underbalance perforation is considered as one of the best means to minimize or overcome this problem. By maintaining wellbore pressure lower than formation pressure, perforation damage could be minimize or eliminated. This can be achieved by the use of nontraditional lightweight completion fluid. This paper presents the effect of natural clay in formulating nontraditional completion fluid to ensure successful perforation job and increase of production rate. Natural clay is used as homogenizing agent to create a stable and non-damaging low-density completion fluid. Results indicate that the addition of natural clay dramatically increase the stability of the final fluids. In addition, field test has shown that the application of nontraditional completion fluid increases oil production by three folds.

Keywords: Completion fluid, underbalance, clay, oil production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1362
1227 Numerical Simulation of Diesel Sprays under Hot Bomb Conditions

Authors: Ishtiaq A. Chaudhry, Zia R Tahir, F. A. Siddiqui, F. Noor, M. J. Rashid

Abstract:

It has experimentally been proved that the performance of compression ignition (C.I.) engine is spray characteristics related. In modern diesel engine the spray formation and the eventual combustion process are the vital processes that offer more challenges towards enhancing the engine performance. In the present work the numerical simulation has been carried out for evaporating diesel sprays using Fluent software. For computational fluid dynamics simulation “Meshing” is done using Gambit software before transmitting it into Fluent. The simulation is carried out using hot bomb conditions under varying chamber conditions such as gas pressure, nozzle diameter and fuel injection pressure. For comparison purpose, the numerical simulations the chamber conditions were kept the same as that of the experimental data. At varying chamber conditions the spray penetration rates are compared with the existing experimental results.

Keywords: Evaporating diesel sprays, Penetration rates, Hot bomb conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2150
1226 Study of the Effect of the Contra-Rotating Component on the Performance of the Centrifugal Compressor

Authors: Van Thang Nguyen, Amelie Danlos, Richard Paridaens, Farid Bakir

Abstract:

This article presents a study of the effect of a contra-rotating component on the efficiency of centrifugal compressors. A contra-rotating centrifugal compressor (CRCC) is constructed using two independent rotors, rotating in the opposite direction and replacing the single rotor of a conventional centrifugal compressor (REF). To respect the geometrical parameters of the REF one, two rotors of the CRCC are designed, based on a single rotor geometry, using the hub and shroud length ratio parameter of the meridional contour. Firstly, the first rotor is designed by choosing a value of length ratio. Then, the second rotor is calculated to be adapted to the fluid flow of the first rotor according aerodynamics principles. In this study, four values of length ratios 0.3, 0.4, 0.5, and 0.6 are used to create four configurations CF1, CF2, CF3, and CF4 respectively. For comparison purpose, the circumferential velocity at the outlet of the REF and the CRCC are preserved, which means that the single rotor of the REF and the second rotor of the CRCC rotate with the same speed of 16000rpm. The speed of the first rotor in this case is chosen to be equal to the speed of the second rotor. The CFD simulation is conducted to compare the performance of the CRCC and the REF with the same boundary conditions. The results show that the configuration with a higher length ratio gives higher pressure rise. However, its efficiency is lower. An investigation over the entire operating range shows that the CF1 is the best configuration in this case. In addition, the CRCC can improve the pressure rise as well as the efficiency by changing the speed of each rotor independently. The results of changing the first rotor speed show with a 130% speed increase, the pressure ratio rises of 8.7% while the efficiency remains stable at the flow rate of the design operating point.

Keywords: Centrifugal compressor, contra-rotating, interaction rotor, vacuum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 796
1225 Effects of Axial Loads and Soil Density on Pile Group Subjected to Triangular Soil Movement

Authors: Ihsan Al-Abboodi, Tahsin Toma-Sabbagh

Abstract:

Laboratory tests have been carried out to investigate the response of 2x2 pile group subjected to triangular soil movement. The pile group was instrumented with displacement and tilting devices at the pile cap and strain gauges on two piles of the group. In this paper, results from four model tests were presented to study the effects of axial loads and soil density on the lateral behavior of piles. The responses in terms of bending moment, shear force, soil pressure, deflection, and rotation of piles were compared. Test results indicate that increasing the soil strength could increase the measured moment, shear, soil pressure, and pile deformations. Most importantly, adding loads to the pile cap induces additional moment to the head of front-pile row unlike the back-pile row which was influenced insignificantly.

Keywords: Pile group, passive piles, lateral soil movement, soil density, axial loads.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1117
1224 A CFD Study of Turbulent Convective Heat Transfer Enhancement in Circular Pipeflow

Authors: Perumal Kumar, Rajamohan Ganesan

Abstract:

Addition of milli or micro sized particles to the heat transfer fluid is one of the many techniques employed for improving heat transfer rate. Though this looks simple, this method has practical problems such as high pressure loss, clogging and erosion of the material of construction. These problems can be overcome by using nanofluids, which is a dispersion of nanosized particles in a base fluid. Nanoparticles increase the thermal conductivity of the base fluid manifold which in turn increases the heat transfer rate. Nanoparticles also increase the viscosity of the basefluid resulting in higher pressure drop for the nanofluid compared to the base fluid. So it is imperative that the Reynolds number (Re) and the volume fraction have to be optimum for better thermal hydraulic effectiveness. In this work, the heat transfer enhancement using aluminium oxide nanofluid using low and high volume fraction nanofluids in turbulent pipe flow with constant wall temperature has been studied by computational fluid dynamic modeling of the nanofluid flow adopting the single phase approach. Nanofluid, up till a volume fraction of 1% is found to be an effective heat transfer enhancement technique. The Nusselt number (Nu) and friction factor predictions for the low volume fractions (i.e. 0.02%, 0.1 and 0.5%) agree very well with the experimental values of Sundar and Sharma (2010). While, predictions for the high volume fraction nanofluids (i.e. 1%, 4% and 6%) are found to have reasonable agreement with both experimental and numerical results available in the literature. So the computationally inexpensive single phase approach can be used for heat transfer and pressure drop prediction of new nanofluids.

Keywords: Heat transfer intensification, nanofluid, CFD, friction factor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2849
1223 Optimization of Diverter Box Configuration in a V94.2 Gas Turbine Exhaust System using Numerical Simulation

Authors: A. Mohajer, A. Noroozi, S. Norouzi

Abstract:

The bypass exhaust system of a 160 MW combined cycle has been modeled and analyzed using numerical simulation in 2D prospective. Analysis was carried out using the commercial numerical simulation software, FLUENT 6.2. All inputs were based on the technical data gathered from working conditions of a Siemens V94.2 gas turbine, installed in the Yazd power plant. This paper deals with reduction of pressure drop in bypass exhaust system using turning vanes mounted in diverter box in order to alleviate turbulent energy dissipation rate above diverter box. The geometry of such turning vanes has been optimized based on the flow pattern at diverter box inlet. The results show that the use of optimized turning vanes in diverter box can improve the flow pattern and eliminate vortices around sharp edges just before the silencer. Furthermore, this optimization could decrease the pressure drop in bypass exhaust system and leads to higher plant efficiency.

Keywords: Numerical simulation, Diverter box, Turning vanes, Exhaust system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2779
1222 Body Mass Index, Components of Metabolic Syndrome and Hyperuricemia among Women in Postmenopausal Period

Authors: Vladyslav Povoroznyuk, Galina Dubetska, Roksolana Povoroznyuk

Abstract:

In recent years, the problem of hyperuricemia is getting a particular importance due to its increased incidence in the world population. The aim of this study was to determine uriс acid level in blood serum, incidence of hyperuricemia among women in postmenopausal period and their association with body mass index and some components of metabolic syndrome (triglyceride, cholesterol, systolic and diastolic pressure). We examined 412 women in postmenopausal period. They were divided in to the following groups: I group (BMI = 18,5-24,9), II group (BMI = 25,0-29,9), III group (BMI = 30,0-34,9), IV group (BMI > 35). We determined uric acid level among women during postmenopausal period depending on their body mass index. The higher level of uric acid was found in patients with the maximal body mass index (BMI > 35). In the I group it was 277,52 ± 8,40; in the II group – 286,81 ± 7,79; in the III group – 291,81 ± 7,56; in the IV group – 327,17 ± 12,17. Incidence of hyperuricemia among women in the I group was 10,2%, in the II group – 15,9%; in the III group – 21,2%, in the IV group – 34,2%. We found an interdependence between an uric acid level and BMI in the examined women (r = 0,21, p < 0,05). We determined that the highest level of triglyceride (F = 18,62, p < 0,05), cholesterol (F = 3,64, p < 0,05), atherogenic coefficient (F = 22,64, p < 0,05), systolic (F = 10,5, p < 0,05) and diastolic pressure (F = 4,30, p < 0,05) was among women with hyperuricemia. It was an interdependence between an uric acid level and triglyceride (r = 0,26, p < 0,05), atherogenic coefficient (r = 0,24, p < 0,05) among women in postmenopausal period.

Keywords: Hyperuricemia, uric acid, body mass index, metabolic syndrome, triglyceride, cholesterol, atherogenic coefficient, systolic and diastolic pressure, women.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 419
1221 Study on Seismic Performance of Reinforced Soil Walls to Modify the Pseudo Static Method

Authors: Majid Yazdandoust

Abstract:

This study, tries to suggest a design method based on displacement using finite difference numerical modeling in reinforcing soil retaining wall with steel strip. In this case, dynamic loading characteristics such as duration, frequency, peak ground acceleration, geometrical characteristics of reinforced soil structure and type of the site are considered to correct the pseudo static method and finally introduce the pseudo static coefficient as a function of seismic performance level and peak ground acceleration. For this purpose, the influence of dynamic loading characteristics, reinforcement length, height of reinforced system and type of the site are investigated on seismic behavior of reinforcing soil retaining wall with steel strip. Numerical results illustrate that the seismic response of this type of wall is highly dependent to cumulative absolute velocity, maximum acceleration, and height and reinforcement length so that the reinforcement length can be introduced as the main factor in shape of failure. Considering the loading parameters, geometric parameters of the wall and type of the site showed that the used method in this study leads to efficient designs in comparison with other methods, which are usually based on limit-equilibrium concept. The outputs show the over-estimation of equilibrium design methods in comparison with proposed displacement based methods here.

Keywords: Pseudo static coefficient, seismic performance design, numerical modeling, steel strip reinforcement, retaining walls, cumulative absolute velocity, failure shape.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121
1220 Nebulized Magnesium Sulfate in Acute Moderate to Severe Asthma in Pediatric Patients

Authors: Lubna M. Zakaryia Mahmoud, Mohammed A. Dawood, Doaa A. Heiba

Abstract:

A prospective double-blind placebo controlled trial carried out on 60 children known to be asthmatic who presented to the emergency department at Alexandria University of Children’s Hospital at El-Shatby with acute asthma exacerbations to assess the efficacy of adding inhaled magnesium sulfate to β-agonist, compared with β-agonist in saline, in the management of acute asthma exacerbations in children. The participants in the study were divided in two groups; Group A (study group) received inhaled salbutamol solution (0.15 ml/kg) plus isotonic magnesium sulfate 2 ml in a nebulizer chamber. Group B (control group): received nebulized salbutamol solution (0.15 ml/kg) diluted with placebo (2 ml normal saline). Both groups received inhaled solution every 20 minutes that was repeated for three doses. They were evaluated using the Pediatric Asthma Severity Score (PASS), oxygen saturation using portable pulse oximetry and peak expiratory flow rate using a portable peak expiratory flow meter at initially recorded as zero-minute assessment and every 20 minutes from the end of each nebulization (nebulization lasts 5-10 minutes) recorded as 20, 40 and 60-minute assessments. Regarding PASS, comparison showed non-significant difference with p-value 0.463, 0.472, 0.0766 at 20, 40 and 60 minutes. Regarding oxygen saturation, improvement was more significant towards group A starting from 40 min with significant p-value=0.000. At 60 min p-value=0.000. Although mean PEFR significantly improved from zero-min in both groups; however, improvement was more significant in group A with significant p-value = 0.015, 0.001, 0.001 at 20 min, 40 min and 60 min, respectively. The conclusion this study suggests is that inhaled magnesium sulfate is an efficient add on drug to standard β- agonist inhalation used in the treatment of moderate to severe asthma exacerbations.

Keywords: Nebulized, magnesium sulfate, acute asthma, pediatric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631