Search results for: generalized Pochhammer- Chree equation
912 Application of Modified Maxwell-Stefan Equation for Separation of Aqueous Phenol by Pervaporation
Authors: Ujjal K Ghosh, Ling Teen
Abstract:
Pervaporation has the potential to be an alternative to the other traditional separation processes such as distillation, adsorption, reverse osmosis and extraction. This study investigates the separation of phenol from water using a polyurethane membrane by pervaporation by applying the modified Maxwell-Stephen model. The modified Maxwell-Stefan model takes into account the non-ideal multi-component solubility effect, nonideal diffusivity of all permeating components, concentration dependent density of the membrane and diffusion coupling to predict various fluxes. Four cases has been developed to investigate the process parameters effects on the flux and weight fraction of phenol in the permeate values namely feed concentration, membrane thickness, operating temperature and operating downstream pressure. The model could describe semi-quantitatively the performance of the pervaporation membrane for the given system as a very good agreement between the observed and theoretical fluxes was observed.
Keywords: Pervaporation, Phenol, Polyurethane, Modified Maxwell-Stefan equation, Solution Diffusion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2742911 Topological Sensitivity Analysis for Reconstruction of the Inverse Source Problem from Boundary Measurement
Authors: Maatoug Hassine, Mourad Hrizi
Abstract:
In this paper, we consider a geometric inverse source problem for the heat equation with Dirichlet and Neumann boundary data. We will reconstruct the exact form of the unknown source term from additional boundary conditions. Our motivation is to detect the location, the size and the shape of source support. We present a one-shot algorithm based on the Kohn-Vogelius formulation and the topological gradient method. The geometric inverse source problem is formulated as a topology optimization one. A topological sensitivity analysis is derived from a source function. Then, we present a non-iterative numerical method for the geometric reconstruction of the source term with unknown support using a level curve of the topological gradient. Finally, we give several examples to show the viability of our presented method.Keywords: Geometric inverse source problem, heat equation, topological sensitivity, topological optimization, Kohn-Vogelius formulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1124910 Automated Natural Hazard Zonation System with Internet-SMS Warning: Distributed GIS for Sustainable Societies Creating Schema & Interface for Mapping & Communication
Authors: Devanjan Bhattacharya, Jitka Komarkova
Abstract:
The research describes the implementation of a novel and stand-alone system for dynamic hazard warning. The system uses all existing infrastructure already in place like mobile networks, a laptop/PC and the small installation software. The geospatial dataset are the maps of a region which are again frugal. Hence there is no need to invest and it reaches everyone with a mobile. A novel architecture of hazard assessment and warning introduced where major technologies in ICT interfaced to give a unique WebGIS based dynamic real time geohazard warning communication system. A never before architecture introduced for integrating WebGIS with telecommunication technology. Existing technologies interfaced in a novel architectural design to address a neglected domain in a way never done before – through dynamically updatable WebGIS based warning communication. The work publishes new architecture and novelty in addressing hazard warning techniques in sustainable way and user friendly manner. Coupling of hazard zonation and hazard warning procedures into a single system has been shown. Generalized architecture for deciphering a range of geo-hazards has been developed. Hence the developmental work presented here can be summarized as the development of internet-SMS based automated geo-hazard warning communication system; integrating a warning communication system with a hazard evaluation system; interfacing different open-source technologies towards design and development of a warning system; modularization of different technologies towards development of a warning communication system; automated data creation, transformation and dissemination over different interfaces. The architecture of the developed warning system has been functionally automated as well as generalized enough that can be used for any hazard and setup requirement has been kept to a minimum.
Keywords: Geospatial, web-based GIS, geohazard, warning system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799909 Investigation of Stoneley Waves in Multilayered Plates
Authors: Bing Li, Tong Lu, Lei Qiang
Abstract:
Stoneley waves are interface waves that propagate at the interface between two solid media. In this study, the dispersion characteristics and wave structures of Stoneley waves in elastic multilayered plates are displayed and investigated. With a perspective of bulk wave, a reasonable assumption of the potential function forms of the expansion wave and shear wave in nth layer medium is adopted, and the characteristic equation of Stoneley waves in a three-layered plate is given in a determinant form. The dispersion curves and wave structures are solved and presented in both numerical and simulation results. It is observed that two Stoneley wave modes exist in a three-layered plate, that conspicuous dispersion occurs on low frequency band, that the velocity of each Stoneley wave mode approaches the corresponding Stoneley wave velocity at interface between two half infinite spaces. The wave structures reveal that the in-plane displacement of Stoneley waves are relatively high at interfaces, which shows great potential for interface defects detection.
Keywords: Characteristic equation, interface waves, dispersion curves, potential function, Stoneley waves, wave structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689908 Tracking Control of a Linear Parabolic PDE with In-domain Point Actuators
Authors: Amir Badkoubeh, Guchuan Zhu
Abstract:
This paper addresses the problem of asymptotic tracking control of a linear parabolic partial differential equation with indomain point actuation. As the considered model is a non-standard partial differential equation, we firstly developed a map that allows transforming this problem into a standard boundary control problem to which existing infinite-dimensional system control methods can be applied. Then, a combination of energy multiplier and differential flatness methods is used to design an asymptotic tracking controller. This control scheme consists of stabilizing state-feedback derived from the energy multiplier method and feed-forward control based on the flatness property of the system. This approach represents a systematic procedure to design tracking control laws for a class of partial differential equations with in-domain point actuation. The applicability and system performance are assessed by simulation studies.Keywords: Tracking Control, In-domain point actuation, PartialDifferential Equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063907 Constraint Based Frequent Pattern Mining Technique for Solving GCS Problem
Authors: First G.M. Karthik, Second Ramachandra.V.Pujeri, Dr.
Abstract:
Generalized Center String (GCS) problem are generalized from Common Approximate Substring problem and Common substring problems. GCS are known to be NP-hard allowing the problems lies in the explosion of potential candidates. Finding longest center string without concerning the sequence that may not contain any motifs is not known in advance in any particular biological gene process. GCS solved by frequent pattern-mining techniques and known to be fixed parameter tractable based on the fixed input sequence length and symbol set size. Efficient method known as Bpriori algorithms can solve GCS with reasonable time/space complexities. Bpriori 2 and Bpriori 3-2 algorithm are been proposed of any length and any positions of all their instances in input sequences. In this paper, we reduced the time/space complexity of Bpriori algorithm by Constrained Based Frequent Pattern mining (CBFP) technique which integrates the idea of Constraint Based Mining and FP-tree mining. CBFP mining technique solves the GCS problem works for all center string of any length, but also for the positions of all their mutated copies of input sequence. CBFP mining technique construct TRIE like with FP tree to represent the mutated copies of center string of any length, along with constraints to restraint growth of the consensus tree. The complexity analysis for Constrained Based FP mining technique and Bpriori algorithm is done based on the worst case and average case approach. Algorithm's correctness compared with the Bpriori algorithm using artificial data is shown.Keywords: Constraint Based Mining, FP tree, Data mining, GCS problem, CBFP mining technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705906 Finite Volume Model to Study The Effect of Voltage Gated Ca2+ Channel on Cytosolic Calcium Advection Diffusion
Authors: Brajesh Kumar Jha, Neeru Adlakha, M. N. Mehta
Abstract:
Mathematical and computational modeling of calcium signalling in nerve cells has produced considerable insights into how the cells contracts with other cells under the variation of biophysical and physiological parameters. The modeling of calcium signaling in astrocytes has become more sophisticated. The modeling effort has provided insight to understand the cell contraction. Main objective of this work is to study the effect of voltage gated (Operated) calcium channel (VOC) on calcium profile in the form of advection diffusion equation. A mathematical model is developed in the form of advection diffusion equation for the calcium profile. The model incorporates the important physiological parameter like diffusion coefficient etc. Appropriate boundary conditions have been framed. Finite volume method is employed to solve the problem. A program has been developed using in MATLAB 7.5 for the entire problem and simulated on an AMD-Turion 32-bite machine to compute the numerical results.Keywords: Ca2+ Profile, Advection Diffusion, VOC, FVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788905 A Numerical Approach for Static and Dynamic Analysis of Deformable Journal Bearings
Authors: D. Benasciutti, M. Gallina, M. Gh. Munteanu, F. Flumian
Abstract:
This paper presents a numerical approach for the static and dynamic analysis of hydrodynamic radial journal bearings. In the first part, the effect of shaft and housing deformability on pressure distribution within oil film is investigated. An iterative algorithm that couples Reynolds equation with a plane finite elements (FE) structural model is solved. Viscosity-to-pressure dependency (Vogel- Barus equation) is also included. The deformed lubrication gap and the overall stress state are obtained. Numerical results are presented with reference to a typical journal bearing configuration at two different inlet oil temperatures. Obtained results show the great influence of bearing components structural deformation on oil pressure distribution, compared with results for ideally rigid components. In the second part, a numerical approach based on perturbation method is used to compute stiffness and damping matrices, which characterize the journal bearing dynamic behavior.Keywords: Journal bearing, finite elements, deformation, dynamic analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2044904 An Analytical Study of Small Unmanned Arial Vehicle Dynamic Stability Characteristics
Authors: Abdelhakam A. Noreldien, Sakhr B. Abudarag, Muslim S. Eltoum, Salih O. Osman
Abstract:
This paper presents an analytical study of Small Unmanned Aerial Vehicle (SUAV) dynamic stability derivatives. Simulating SUAV dynamics and analyzing its behavior at the earliest design stages is too important and more efficient design aspect. The approach suggested in this paper is using the wind tunnel experiment to collect the aerodynamic data and get the dynamic stability derivatives. AutoCAD Software was used to draw the case study (wildlife surveillance SUAV). The SUAV is scaled down to be 0.25% of the real SUAV dimensions and converted to a wind tunnel model. The model was tested in three different speeds for three different attitudes which are; pitch, roll and yaw. The wind tunnel results were then used to determine the case study stability derivative values, and hence it used to calculate the roots of the characteristic equation for both longitudinal and lateral motions. Finally, the characteristic equation roots were found and discussed in all possible cases.
Keywords: Model, simulating, SUAV, wind tunnel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617903 Using Structural Equation Modeling in Causal Relationship Design for Balanced-Scorecards' Strategic Map
Authors: A. Saghaei, R. Ghasemi
Abstract:
Through 1980s, management accounting researchers described the increasing irrelevance of traditional control and performance measurement systems. The Balanced Scorecard (BSC) is a critical business tool for a lot of organizations. It is a performance measurement system which translates mission and strategy into objectives. Strategy map approach is a development variant of BSC in which some necessary causal relations must be established. To recognize these relations, experts usually use experience. It is also possible to utilize regression for the same purpose. Structural Equation Modeling (SEM), which is one of the most powerful methods of multivariate data analysis, obtains more appropriate results than traditional methods such as regression. In the present paper, we propose SEM for the first time to identify the relations between objectives in the strategy map, and a test to measure the importance of relations. In SEM, factor analysis and test of hypotheses are done in the same analysis. SEM is known to be better than other techniques at supporting analysis and reporting. Our approach provides a framework which permits the experts to design the strategy map by applying a comprehensive and scientific method together with their experience. Therefore this scheme is a more reliable method in comparison with the previously established methods.Keywords: BSC, SEM, Strategy map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2707902 Useful Lifetime Prediction of Rail Pads for High Speed Trains
Authors: Chang Su Woo, Hyun Sung Park
Abstract:
Useful lifetime evaluation of railpads were very important in design procedure to assure the safety and reliability. It is, therefore, necessary to establish a suitable criterion for the replacement period of rail pads. In this study, we performed properties and accelerated heat aging tests of rail pads considering degradation factors and all environmental conditions including operation, and then derived a lifetime prediction equation according to changes in hardness, thickness, and static spring constants in the Arrhenius plot to establish how to estimate the aging of rail pads. With the useful lifetime prediction equation, the lifetime of e-clip pads was 2.5 years when the change in hardness was 10% at 25°C; and that of f-clip pads was 1.7 years. When the change in thickness was 10%, the lifetime of e-clip pads and f-clip pads is 2.6 years respectively. The results obtained in this study to estimate the useful lifetime of rail pads for high speed trains can be used for determining the maintenance and replacement schedule for rail pads.
Keywords: Rail pads, accelerated test, Arrhenius plot, useful lifetime prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2807901 Extremal Properties of Generalized Class of Close-to-convex Functions
Authors: Norlyda Mohamed, Daud Mohamad, Shaharuddin Cik Soh
Abstract:
Let Gα ,β (γ ,δ ) denote the class of function f (z), f (0) = f ′(0)−1= 0 which satisfied e δ {αf ′(z)+ βzf ′′(z)}> γ i Re in the open unit disk D = {z ∈ı : z < 1} for some α ∈ı (α ≠ 0) , β ∈ı and γ ∈ı (0 ≤γ <α ) where δ ≤ π and α cosδ −γ > 0 . In this paper, we determine some extremal properties including distortion theorem and argument of f ′( z ) .Keywords: Argument of f ′(z) , Carathéodory Function, Closeto- convex Function, Distortion Theorem, Extremal Properties
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1360900 On Generalizing Rough Set Theory via using a Filter
Authors: Serkan Narlı, Ahmet Z. Ozcelik
Abstract:
The theory of rough sets is generalized by using a filter. The filter is induced by binary relations and it is used to generalize the basic rough set concepts. The knowledge representations and processing of binary relations in the style of rough set theory are investigated.Keywords: Rough set, fuzzy set, membership function, knowledge representation and processing, information theory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818899 Improved Neutron Leakage Treatment on Nodal Expansion Method for PWR Reactors
Authors: Antonio Carlos Marques Alvim, Fernando Carvalho da Silva, Aquilino Senra Martinez
Abstract:
For a quick and accurate calculation of spatial neutron distribution in nuclear power reactors 3D nodal codes are usually used aiming at solving the neutron diffusion equation for a given reactor core geometry and material composition. These codes use a second order polynomial to represent the transverse leakage term. In this work, a nodal method based on the well known nodal expansion method (NEM), developed at COPPE, making use of this polynomial expansion was modified to treat the transverse leakage term for the external surfaces of peripheral reflector nodes. The proposed method was implemented into a computational system which, besides solving the diffusion equation, also solves the burnup equations governing the gradual changes in material compositions of the core due to fuel depletion. Results confirm the effectiveness of this modified treatment of peripheral nodes for practical purposes in PWR reactors.Keywords: Transverse leakage, nodal expansion method, power density, PWR reactors
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2046898 Modeling of Masonry In-Filled R/C Frame to Evaluate Seismic Performance of Existing Building
Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail
Abstract:
This paper deals with different modeling aspects of masonry infill: no infill model, Layered shell infill model, and strut infill model. These models consider the complicated behavior of the in-filled plane frames under lateral load similar to an earthquake load. Three strut infill models are used: NBCC (2005) strut infill model, ASCE/SEI 41-06 strut infill model and proposed strut infill model based on modification to Canadian, NBCC (2005) strut infill model. Pushover and modal analyses of a masonry infill concrete frame with a single storey and an existing 5-storey RC building have been carried out by using different models for masonry infill. The corresponding hinge status, the value of base shear at target displacement as well as their dynamic characteristics have been determined and compared. A validation of the structural numerical models for the existing 5-storey RC building has been achieved by comparing the experimentally measured and the analytically estimated natural frequencies and their mode shapes. This study shows that ASCE/SEI 41-06 equation underestimates the values for the equivalent properties of the diagonal strut while Canadian, NBCC (2005) equation gives realistic values for the equivalent properties. The results indicate that both ASCE/SEI 41-06 and Canadian, NBCC (2005) equations for strut infill model give over estimated values for dynamic characteristic of the building. Proposed modification to Canadian, NBCC (2005) equation shows that the fundamental dynamic characteristic values of the building are nearly similar to the corresponding values using layered shell elements as well as measured field results.
Keywords: Masonry infill, framed structures, RC buildings, non-structural elements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3295897 Pull-In Instability Determination of Microcapacitive Sensor for Measuring Special Range of Pressure
Authors: Yashar Haghighatfar, Shahrzad Mirhosseini
Abstract:
Pull-in instability is a nonlinear and crucial effect that is important for the design of microelectromechanical system devices. In this paper, the appropriate electrostatic voltage range is determined by measuring fluid flow pressure via micro pressure sensor based microbeam. The microbeam deflection contains two parts, the static and perturbation deflection of static. The second order equation regarding the equivalent stiffness, mass and damping matrices based on Galerkin method is introduced to predict pull-in instability due to the external voltage. Also the reduced order method is used for solving the second order nonlinear equation of motion. Furthermore, in the present study, the micro capacitive pressure sensor is designed for measuring special fluid flow pressure range. The results show that the measurable pressure range can be optimized, regarding damping field and external voltage.
Keywords: MEMS, pull-in instability, electrostatically actuated microbeam, reduced order method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 773896 Numerical Investigation of Indoor Air Quality and Thermal Comfort in a Ventilated Room
Authors: Ramy H. Mohammed
Abstract:
Understanding the behavior of airflow in a room is essential for building designers to provide the most efficient design of ventilation system, and having acceptable indoor air quality. This trend is the motive to solve the relationship between airflow parameters and thermal comfort. This paper investigates airflow characteristics, indoor air quality (IAQ), and the thermal comfort (TC) in a ventilated room with a displacement ventilation system using three dimensional CFD code [AirPak 2.0.6]. After validation of the code, a numerical study is executed for a typical room with dimensions of 5m by 3m by 3m height according to a variety of supply air velocities, supply air temperature and supply air relative humidity. The finite volume method and the indoor zero equation turbulence models are employed for solving the governing equations numerically. The temperature field and the mean age of air (MAA) in the modeled room for a displacement ventilation system are determined according to a variety of the above parameters. The variable air volume (VAV) systems with different supply air velocity are applicable to control room air temperature for a displacement ventilation system.
Keywords: Displacement ventilation, AirPak, Indoor zero equation, MAA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3130895 Design and Analysis of a Piezoelectric-Based AC Current Measuring Sensor
Authors: Easa Ali Abbasi, Akbar Allahverdizadeh, Reza Jahangiri, Behnam Dadashzadeh
Abstract:
Electrical current measurement is a suitable method for the performance determination of electrical devices. There are two contact and noncontact methods in this measuring process. Contact method has some disadvantages like having direct connection with wire which may endamage the system. Thus, in this paper, a bimorph piezoelectric cantilever beam which has a permanent magnet on its free end is used to measure electrical current in a noncontact way. In mathematical modeling, based on Galerkin method, the governing equation of the cantilever beam is solved, and the equation presenting the relation between applied force and beam’s output voltage is presented. Magnetic force resulting from current carrying wire is considered as the external excitation force of the system. The results are compared with other references in order to demonstrate the accuracy of the mathematical model. Finally, the effects of geometric parameters on the output voltage and natural frequency are presented.
Keywords: Cantilever beam, electrical current measurement, forced excitation, piezoelectric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1081894 Effects of Li2O Thickness and Moisture Content on LiH Hydrolysis Kinetics in Slightly Humidified Argon
Authors: S. Xiao, M. B. Shuai, M. F. Chu
Abstract:
The hydrolysis kinetics of polycrystalline lithium hydride (LiH) in argon at various low humidities was measured by gravimetry and Raman spectroscopy with ambient water concentration ranging from 200 to 1200 ppm. The results showed that LiH hydrolysis curve revealed a paralinear shape, which was attributed to two different reaction stages that forming different products as explained by the 'Layer Diffusion Control' model. Based on the model, a novel two-stage rate equation for LiH hydrolysis reactions was developed and used to fit the experimental data for determination of Li2O steady thickness Hs and the ultimate hydrolysis rate vs. The fitted data presented a rise of Hs as ambient water concentration cw increased. However, in spite of the negative effect imposed by Hs increasing, the upward trend of vs remained, which implied that water concentration, rather than Li2O thickness, played a predominant role in LiH hydrolysis kinetics. In addition, the proportional relationship between vsHs and cw predicted by rate equation and confirmed by gravimetric data validated the model in such conditions.
Keywords: Hydrolysis kinetics, ‘Layer Diffusion Control’ model, Lithium hydride
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1704893 Accelerating GLA with an M-Tree
Authors: Olli Luoma, Johannes Tuikkala, Olli Nevalainen
Abstract:
In this paper, we propose a novel improvement for the generalized Lloyd Algorithm (GLA). Our algorithm makes use of an M-tree index built on the codebook which makes it possible to reduce the number of distance computations when the nearest code words are searched. Our method does not impose the use of any specific distance function, but works with any metric distance, making it more general than many other fast GLA variants. Finally, we present the positive results of our performance experiments.Keywords: Clustering, GLA, M-Tree, Vector Quantization .
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529892 Perfect Plastic Deformation of a Circular Thin Bronze Plate due to the Growth and Collapse of a Vapour Bubble
Authors: M.T. Shervani-Tabar, M. Rezaee, E. Madadi Kandjani
Abstract:
Dynamics of a vapour bubble generated due to a high local energy input near a circular thin bronze plate in the absence of the buoyancy forces is numerically investigated in this paper. The bubble is generated near a thin bronze plate and during the growth and collapse of the bubble, it deforms the nearby plate. The Boundary Integral Equation Method is employed for numerical simulation of the problem. The fluid is assumed to be incompressible, irrotational and inviscid and the surface tension on the bubble boundary is neglected. Therefore the fluid flow around the vapour bubble can be assumed as a potential flow. Furthermore, the thin bronze plate is assumed to have perfectly plastic behaviour. Results show that the displacement of the circular thin bronze plate has considerable effect on the dynamics of its nearby vapour bubble. It is found that by decreasing the thickness of the thin bronze plate, the growth and collapse rate of the bubble becomes higher and consequently the lifetime of the bubble becomes shorter.
Keywords: Vapour Bubble, Thin Bronze Plate, Boundary Integral Equation Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533891 Simulation of a Multi-Component Transport Model for the Chemical Reaction of a CVD-Process
Abstract:
In this paper we present discretization and decomposition methods for a multi-component transport model of a chemical vapor deposition (CVD) process. CVD processes are used to manufacture deposition layers or bulk materials. In our transport model we simulate the deposition of thin layers. The microscopic model is based on the heavy particles, which are derived by approximately solving a linearized multicomponent Boltzmann equation. For the drift-process of the particles we propose diffusionreaction equations as well as for the effects of heat conduction. We concentrate on solving the diffusion-reaction equation with analytical and numerical methods. For the chemical processes, modelled with reaction equations, we propose decomposition methods and decouple the multi-component models to simpler systems of differential equations. In the numerical experiments we present the computational results of our proposed models.
Keywords: Chemical reactions, chemical vapor deposition, convection-diffusion-reaction equations, decomposition methods, multi-component transport.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414890 Seismic Assessment of Old Existing RC Buildings with Masonry Infill in Madinah as per ASCE
Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail
Abstract:
An existing RC building in Madinah is seismically evaluated with and without infill wall. Four model systems have been considered i.e. model I (no infill), model IIA (strut infill-update from field test), model IIB (strut infill- ASCE/SEI 41) and model IIC (strut infill-Soft storey- ASCE/SEI 41). Three dimensional pushover analyses have been carried out using SAP2000 software incorporating inelastic material behavior for concrete, steel and infill walls. Infill wall has been modeled as equivalent strut according to suggested equation matching field test measurements and to the ASCE/SEI 41 equation. The effect of building modeling on the performance point as well as capacity and demand spectra due to EQ design spectrum function in Madinah area has been investigated. The response modification factor (R) for the 5 story RC building is evaluated from capacity and demand spectra (ATC-40) for the studied models. The results are summarized and discussed.
Keywords: Infill wall, Pushover Analysis, Response Modification Factor, Seismic Assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3268889 Understanding Physical Activity Behavior of Type 2 Diabetics Using the Theory of Planned Behavior and Structural Equation Modeling
Authors: D. O. Omondi, M. K. Walingo, G. M. Mbagaya, L. O. A. Othuon
Abstract:
Understanding patient factors related to physical activity behavior is important in the management of Type 2 Diabetes. This study applied the Theory of Planned Behavior model to understand physical activity behavior among sampled Type 2 diabetics in Kenya. The study was conducted within the diabetic clinic at Kisii Level 5 Hospital and adopted sequential mixed methods design beginning with qualitative phase and ending with quantitative phase. Qualitative data was analyzed using grounded theory analysis method. Structural equation modeling using maximum likelihood was used to analyze quantitative data. The common fit indices revealed that the theory of planned behavior fitted the data acceptably well among the Type 2 diabetes and within physical activity behavior {¤ç2 = 213, df = 84, n=230, p = .061, ¤ç2/df = 2.53; TLI = .97; CFI =.96; RMSEA (90CI) = .073(.029, .08)}. This theory proved to be useful in understanding physical activity behavior among Type 2 diabetics.
Keywords: Physical activity, Theory of Planned Behavior, Type2 diabetes, Kenya.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1987888 Thermodynamic Equilibrium of Nitrogen Species Discharge: Comparison with Global Model
Authors: Saktioto, F.D Ismail, P.P. Yupapin, J. Ali
Abstract:
The equilibrium process of plasma nitrogen species by chemical kinetic reactions along various pressures is successfully investigated. The equilibrium process is required in industrial application to obtain the stable condition when heating up the material for having homogenous reaction. Nitrogen species densities is modeled by a continuity equation and extended Arrhenius form. These equations are used to integrate the change of density over the time. The integration is to acquire density and the reaction rate of each reaction where temperature and time dependence are imposed. A comparison is made with global model within pressure range of 1- 100mTorr and the temperature of electron is set to be higher than other nitrogen species. The results shows that the chemical kinetic model only agrees for high pressure because of no power imposed; while the global model considers the external power along the pressure range then the electron and nitrogen species give highly quantity densities by factor of 3 to 5.Keywords: chemical kinetic model, Arrhenius equation, nitrogen plasma, low pressure discharge
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739887 Application of Differential Transformation Method for Solving Dynamical Transmission of Lassa Fever Model
Authors: M. A. Omoloye, M. I. Yusuff, O. K. S. Emiola
Abstract:
The use of mathematical models for solving biological problems varies from simple to complex analyses, depending on the nature of the research problems and applicability of the models. The method is more common nowadays. Many complex models become impractical when transmitted analytically. However, alternative approach such as numerical method can be employed. It appropriateness in solving linear and non-linear model equation in Differential Transformation Method (DTM) which depends on Taylor series make it applicable. Hence this study investigates the application of DTM to solve dynamic transmission of Lassa fever model in a population. The mathematical model was formulated using first order differential equation. Firstly, existence and uniqueness of the solution was determined to establish that the model is mathematically well posed for the application of DTM. Numerically, simulations were conducted to compare the results obtained by DTM and that of fourth-order Runge-Kutta method. As shown, DTM is very effective in predicting the solution of epidemics of Lassa fever model.
Keywords: Differential Transform Method, Existence and uniqueness, Lassa fever, Runge-Kutta Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 497886 Differential Sandwich Theorems with Generalised Derivative Operator
Authors: Maslina Darus, Khalifa Al-Shaqsi
Abstract:
In this paper, a generalized derivatives operator n λ,βf introduced by the authors will be discussed. Some subordination and superordination results involving this operator for certain normalized analytic functions in the open unit disk will be investigated. Our results extend corresponding previously known results.Keywords: Analytic functions, Univalent functions, Derivative operator, Differential subordination, Differential superordination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1481885 Influence of Confined Acoustic Phonons on the Shubnikov – de Haas Magnetoresistance Oscillations in a Doped Semiconductor Superlattice
Authors: Pham Ngoc Thang, Le Thai Hung, Nguyen Quang Bau
Abstract:
The influence of confined acoustic phonons on the Shubnikov – de Haas magnetoresistance oscillations in a doped semiconductor superlattice (DSSL), subjected in a magnetic field, DC electric field, and a laser radiation, has been theoretically studied based on quantum kinetic equation method. The analytical expression for the magnetoresistance in a DSSL has been obtained as a function of external fields, DSSL parameters, and especially the quantum number m characterizing the effect of confined acoustic phonons. When m goes to zero, the results for bulk phonons in a DSSL could be achieved. Numerical calculations are also achieved for the GaAs:Si/GaAs:Be DSSL and compared with other studies. Results show that the Shubnikov – de Haas magnetoresistance oscillations amplitude decrease as the increasing of phonon confinement effect.
Keywords: Shubnikov–de Haas magnetoresistance oscillations, quantum kinetic equation, confined acoustic phonons, laser radiation, doped semiconductor superlattices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464884 A View of Flexible Housing in China
Authors: Shanshan Li
Abstract:
Beginning with the debate of concept, this essay explains the historical source and development of flexible housing in China. In the former part, the flexibility contained in traditional house is explored. While in the latter, the relevant practices in modern times are systematically analyzed as three phases–the Embryonic Period (1949 - 1980), the Systematic Practice (1981 - 2000), as well as the Integrated Trend and Prosperity (2001 - present). As a conclusion, the generalized flexibility is tentatively discussed.
Keywords: Flexibility, Long-term effectiveness, Variety, Social background.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2293883 Nonlinear Propagation of Acoustic Soliton Waves in Dense Quantum Electron-Positron Magnetoplasma
Authors: A. Abdikian
Abstract:
Propagation of nonlinear acoustic wave in dense electron-positron (e-p) plasmas in the presence of an external magnetic field and stationary ions (to neutralize the plasma background) is studied. By means of the quantum hydrodynamics model and applying the reductive perturbation method, the Zakharov-Kuznetsov equation is derived. Using the bifurcation theory of planar dynamical systems, the compressive structure of electrostatic solitary wave and periodic travelling waves is found. The numerical results show how the ion density ratio, the ion cyclotron frequency, and the direction cosines of the wave vector affect the nonlinear electrostatic travelling waves. The obtained results may be useful to better understand the obliquely nonlinear electrostatic travelling wave of small amplitude localized structures in dense magnetized quantum e-p plasmas and may be applicable to study the particle and energy transport mechanism in compact stars such as the interior of massive white dwarfs etc.Keywords: Bifurcation theory, magnetized electron-positron plasma, phase portrait, the Zakharov-Kuznetsov equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1371