**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**32451

##### On Generalizing Rough Set Theory via using a Filter

**Authors:**
Serkan Narlı,
Ahmet Z. Ozcelik

**Abstract:**

**Keywords:**
Rough set,
fuzzy set,
membership function,
knowledge representation and processing,
information theory

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1076712

**References:**

[1] J.Jarvinen, On the structure of rough approximations, Proceedings of the Third International Conference on Rough Sets and Current Trends in Computing, LNAI 2475, 123-130, 2002.

[2] J. Kelley, General Topology, Van Nostrand Company, 1955.

[3] ] E.F. Lashin, A.M. Kozae, A.A. Abo Khadra, T. Medhat, Rough set theory for topological spaces, Internat. J. Approx. Reason. 40 (2005) 35-43 37

[4] T.Y. Lin, Topological and fuzzy rough sets, in: R. Slowinski (Ed.), Decision Support by ExperienceÔÇö Application of the Rough Sets Theory, Kluwer Academic Publishers, 1992, pp. 287-304.

[5] T.Y. Lin, Granular computing on binary relations II: Rough set representations and belief functions, in: A. Skowron, L. Polkowski (Eds.), Rough Sets In Knowledge Discovery, Physica-Verlag, 1998, pp. 121-140.

[6] T.Y. Lin, Granular computing on binary relation I: Data mining and neighborhood systems, in: Rough Sets In Knowledge Discovery, Physica-Verlag, 1998, pp. 107-121.

[7] Z. Pawlak, Rough sets, Int. J. Comput. Inform. Sci. 11 (5) (1982) 341- 356.

[8] Z. Pawlak, Granularity of knowledge, indiscernibility and rough sets, in: Proceedings of 1998 IEEE International Conference on Fuzzy Systems, Anchorage, AK, vol. 1, May 1998, pp. 106-110.

[9] Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer Academic, Boston, 1991.

[10] Z. Pawlak, A. Skowron: Rough membership function, in: R. E Yeager, M. Fedrizzi and J. Kacprzyk (eds.), Advaces in the Dempster-Schafer of Evidence, Wiley, New York, 1994, 251-271

[11] J.A.Pomykala, Approximation operations in approximation space, Bulletin of Polish Academy of Sciences, Mathematics, 35 (1987), 653- 662.

[12] U.Wybraniec-Skardowska, On a generalization of approximation space, Bulletin of the Polish Academy of Sciences, Mathematics, 37 (1989), 51-61.

[13] Y.Y. Yao, Rough sets, neighborhood systems, and granular computing, in: Proceedings of 1999 IEEE Canadian Conference on Electrical and Computer Engineering, Edmonton, Alberta, Canada, May 1999, vol. 3, pp. 1553-1558.

[14] Y.Y. Yao, Granular computing using neighborhood systems, in: R. Roy, T. Furuhashi, P.K. Chawdhry (Eds.), Advances in Soft Computing: Engineering Design and Manufacturing, Springer-Verlag, New York, 1999, pp. 539-553.

[15] Y.Y. Yao, Two views of the theory of rough sets infinite universes, International Journal of Approximation Reasoning, 15 (1996), 291-317.

[16] Y.Y. Yao, On generalizing Pawlak approximation operators, Proceedings of the First International Conference, RSCTC'98, LNAI 1424, 298-307, 1998.

[17] Y.Y.Yao, Constructive and algebraic methods of the theory of rough sets, Information Sciences, 109(1998), 21-47.

[18] Y.Y.Yao, Generalized rough set models, in: Rough Sets in Knowledge Discovery, Polkowski, L. and Skowron, A. (Eds.), Physica-Verlag, Heidelberg, 286-318, 1998.

[19] Y.Y.Yao, Relational interpretations of neighborhood operators and rough set approximation operators, Information Sciences, 111(1998), 239-259.

[20] Y.Y.Yao, Information granulation and rough set approximation, International Journal of Intelligent Systems, 16(2001), 87-104.

[21] Y.Y.Yao, and Lin, T.Y. Generalization of rough sets using modal logic, Intelligent Automation and Soft Computing, An International Journal, 2(1996), 103-120.

[22] Y.Y.Yao, , Wong, S.K.M. and Lin, T.Y. A review of rough set models, in: Rough Sets and Data Mining: Analysis for Imprecise Data, Lin, T.Y. and Cercone, N. (Eds.), Kluwer Academic Publishers, Boston, 47-75, 1997.

[23] Y.Y. Yao, On generalizing rough set theory, Proceedings of the 9th International Conference on Rough Sets,Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC 2003), LNAI 2639, Chongqing, China, May 26-29, pp. 44-51, 2003.

[24] Y.Y.Yao, and Lin, T.Y. Generalization of rough sets using modal logic, Intelligent Automation and Soft Computing, 2 (1996), 103-120.

[25] Y.Y.Yao, and Wang, T. On rough relations: an alternative formulation, Proceedings of The Seventh International Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing, LNAI 1711, 82-90, 1999.

[26] Y.Y.Yao, Wong, S.K.M. and Lin, T.Y. A review of rough set models, in: Rough Sets and Data Mining: Analysis for Imprecise Data, Lin, T.Y. and Cercone, N.(Eds.), Kluwer Academic Publishers, Boston, 47-75, 1997.

[27] W.Zakowski, Approximations in the space (U;¤Ç), Demonstratio Mathematica, 16 (1983), 761-769.