Search results for: Motion resistance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1459

Search results for: Motion resistance

919 Research Regarding Resistance Characteristics of Biscuits Assortment Using Cone Penetrometer

Authors: G.–A. Constantin, G. Voicu, E.–M. Stefan, P. Tudor, G. Paraschiv, M.–G. Munteanu

Abstract:

In the activity of handling and transport of food products, the products may be subjected to mechanical stresses that may lead to their deterioration by deformation, breaking, or crushing. This is the case for biscuits, regardless of their type (gluten-free or sugary), the addition of ingredients or flour from which they are made. However, gluten-free biscuits have a higher mechanical resistance to breakage or crushing compared to easily shattered sugar biscuits (especially those for children). The paper presents the results of the experimental evaluation of the texture for four varieties of commercial biscuits, using the penetrometer equipped with needle cone at five different additional weights on the cone-rod. The assortments of biscuits tested in the laboratory were Petit Beurre, Picnic, and Maia (all three manufactured by RoStar, Romania) and Sultani diet biscuits, manufactured by Eti Burcak Sultani (Turkey, in packs of 138 g). For the four varieties of biscuits and the five additional weights (50, 77, 100, 150 and 177 g), the experimental data obtained were subjected to regression analysis in the MS Office Excel program, using Velon's relationship (h = a∙ln(t) + b). The regression curves were analysed comparatively in order to identify possible differences and to highlight the variation of the penetration depth h, in relation to the time t. Based on the penetration depth between two-time intervals (every 5 seconds), the curves of variation of the penetration speed in relation to time were then drawn. It was found that Velon's law verifies the experimental data for all assortments of biscuits and for all five additional weights. The correlation coefficient R2 had in most of the analysed cases values over 0.850. The values recorded for the penetration depth were framed, in general, within 45-55 p.u. (penetrometric units) at an additional mass of 50 g, respectively between 155-168 p.u., at an additional mass of 177 g, at Petit Beurre biscuits. For Sultani diet biscuits, the values of the penetration depth were within the limits of 32-35 p.u., at an additional weight of 50 g and between 80-114 p.u., at an additional weight of 177g. The data presented in the paper can be used by both operators on the manufacturing technology flow, as well as by the traders of these food products, in order to establish the most efficient parametric of the working regimes (when packaging and handling).

Keywords: Biscuits resistance/texture, penetration depth, penetration velocity, sharp pin penetrometer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 584
918 Metallic Coating for Carbon Fiber Reinforced Polymer Matrix Composite Substrate

Authors: Amine Rezzoug, Said Abdi, Nadjet Bouhelal, Ismail Daoud

Abstract:

This paper investigates the application of metallic coatings on high fiber volume fraction carbon/epoxy polymer matrix composites. For the grip of the metallic layer, a method of modifying the surface of the composite by introducing a mixture of copper and steel powder (filler powders) which can reduce the impact of thermal spray particles. The powder was introduced to the surface at the time of the forming. Arc spray was used to project the zinc coating layer. The substrate was grit blasted to avoid poor adherence. The porosity, microstructure, and morphology of layers are characterized by optical microscopy, SEM and image analysis. The samples were studied also in terms of hardness and erosion resistance. This investigation did not reveal any visible evidence damage to the substrates. The hardness of zinc layer was about 25.94 MPa and the porosity was around (∼6.70%). The erosion test showed that the zinc coating improves the resistance to erosion. Based on the results obtained, we can conclude that thermal spraying allows the production of protective coating on PMC. Zinc coating has been identified as a compatible material with the substrate. The filler powders layer protects the substrate from the impact of hot particles and allows avoiding the rupture of brittle carbon fibers.

Keywords: Arc spray, coating, composite, erosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3354
917 Improving Ride Comfort of a Bus Using Fuzzy Logic Controlled Suspension

Authors: Mujde Turkkan, Nurkan Yagiz

Abstract:

In this study an active controller is presented for vibration suppression of a full-bus model. The bus is modeled having seven degrees of freedom. Using the achieved model via Lagrange Equations the system equations of motion are derived. The suspensions of the bus model include air springs with two auxiliary chambers are used. Fuzzy logic controller is used to improve the ride comfort. The numerical results, verifies that the presented fuzzy logic controller improves the ride comfort.

Keywords: Ride comfort, air spring, bus, fuzzy logic controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
916 Effect of Plunging Oscillation on an Offshore Wind Turbine Blade Section

Authors: F. Rasi Marzabadi

Abstract:

A series of experiments were carried out to study unsteady behavior of the flow field as well as the boundary layer of an airfoil oscillating in plunging motion in a subsonic wind tunnel. The measurements involved surface pressure distribution complimented with surface-mounted hot-films. The effect of leadingedge roughness that simulates surface irregularities on the wind turbine blades was also studied on variations of aerodynamic loads and boundary layer behavior.

Keywords: Boundary layer transition, plunging, reduced frequency, wind turbine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1972
915 Correlation of Microstructure and Corrosion Behavior of Martensitic Stainless Steel Surgical Grade AISI 420A Exposed to 980-1035oC

Authors: Taqi Zahid Butt, Tanveer Ahmad Tabish

Abstract:

Martensitic stainless steels have been extensively used for their good corrosion resistance and better mechanical properties. Heat treatment was suggested as one of the most excellent ways to this regard; hence, it affects the microstructure, mechanical and corrosion properties of the steel. In the current research work the microstructural changes and corrosion behavior in an AISI 420A stainless steel exposed to temperatures in the 980-1035oC range were investigated. The heat treatment is carried out in vacuum furnace within the said temperature range. The quenching of the samples was carried out in oil, brine and water media. The formation and stability of passive film was studied by Open Circuit Potential, Potentiodynamic polarization and Electrochemical Scratch Tests. The Electrochemical Impedance Spectroscopy results simulated with Equivalent Electrical Circuit suggested bilayer structure of outer porous and inner barrier oxide films. The quantitative data showed thick inner barrier oxide film retarded electrochemical reactions. Micrographs of the quenched samples showed sigma and chromium carbide phases which prove the corrosion resistance of steel alloy.

Keywords: Martensitic stainless steel corrosion, microstructure, vacuum furnace.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2621
914 Numerical Evaluation of Shear Strength for Cold-Formed Steel Shear Wall Panel

Authors: Rouaz Idriss, Bourahla Nour-Eddine, Kahlouche Farah, Rafa Sid Ali

Abstract:

The stability of structures made of light-gauge steel depends highly on the contribution of Shear Wall Panel (SWP) systems under horizontal forces due to wind or earthquake loads. Steel plate sheathing is often used with these panels made of cold formed steel (CFS) to improve its shear strength. In order to predict the shear strength resistance, two methods are presented in this paper. In the first method, the steel plate sheathing is modeled with plats strip taking into account only the tension and compression force due to the horizontal load, where both track and stud are modeled according to the geometrical and mechanical characteristics of the specimen used in the experiments. The theoretical background and empirical formulations of this method are presented in this paper. However, the second method is based on a micro modeling of the cold formed steel Shear Wall Panel “CFS-SWP” using Abaqus software. A nonlinear analysis was carried out with an in-plan monotonic load. Finally, the comparison between these two methods shows that the micro modeling with Abaqus gives better prediction of shear resistance of SWP than strips method. However, the latter is easier and less time consuming than the micro modeling method.

Keywords: Cold Formed Steel Shear Wall Panel, CFS-SWP, micro modeling, nonlinear analysis, strip method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494
913 Control and Navigation with Knowledge Bases

Authors: Miloš Šeda, Tomáš Březina

Abstract:

In this paper, we focus on the use of knowledge bases in two different application areas – control of systems with unknown or strongly nonlinear models (i.e. hardly controllable by the classical methods), and robot motion planning in eight directions. The first one deals with fuzzy logic and the paper presents approaches for setting and aggregating the rules of a knowledge base. Te second one is concentrated on a case-based reasoning strategy for finding the path in a planar scene with obstacles.

Keywords: fuzzy controller, fuzzification, rule base, inference, defuzzification, genetic algorithm, neural network, case-based reasoning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
912 Associations between Surrogate Insulin Resistance Indices and the Risk of Metabolic Syndrome in Children

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

A well-defined insulin resistance (IR) is one of the requirements for the good understanding and evaluation of metabolic syndrome (MetS). However, underlying causes for the development of IR are not clear. Endothelial dysfunction also participates in the pathogenesis of this disease. IR indices are being determined in various obesity groups and also in diagnosing MetS. Components of MetS have been well established and used in adult studies. However, there are some ambiguities particularly in the field of pediatrics. The aims of this study were to compare the performance of fasting blood glucose (FBG), one of MetS components, with some other IR indices and check whether FBG may be replaced by some other parameter or ratio for a better evaluation of pediatric MetS. Five-hundred and forty-nine children were involved in the study. Five groups were constituted. Groups 109, 40, 100, 166, 110, 24 children were included in normal-body mass index (N-BMI), overweight (OW), obese (OB), morbid obese (MO), MetS with two components (MetS2) and MetS with three components (MetS3) groups, respectively. Age and sex-adjusted BMI percentiles tabulated by World Health Organization were used for the classification of obesity groups. MetS components were determined. Aside from one of the MetS components-FBG, eight measures of IR [homeostatic model assessment of IR (HOMA-IR), homeostatic model assessment of beta cell function (HOMA-%β), alanine transaminase-to-aspartate transaminase ratio (ALT/AST), alanine transaminase (ALT), insulin (INS), insulin-to-FBG ratio (INS/FBG), the product of fasting triglyceride and glucose (TyG) index, McAuley index] were evaluated. Statistical analyses were performed. A p value less than 0.05 was accepted as the statistically significance degree. Mean values for BMI of the groups were 15.7 kg/m2, 21.0 kg/m2, 24.7 kg/m2, 27.1 kg/m2, 28.7 kg/m2, 30.4 kg/m2 for N-BMI, OW, OB, MO, MetS2, MetS3, respectively. Differences between the groups were significant (p < 0.001). The only exception was MetS2-MetS3 couple, in spite of an increase detected in MetS3 group. Waist-to-hip circumference ratios significantly differed only for N-BMI vs, OB, MO, MetS2; OW vs MO; OB vs MO, MetS2 couples. ALT and ALT/AST did not differ significantly among MO-MetS2-MetS3. HOMA-%β differed only between MO and MetS2. INS/FBG, McAuley index and TyG were not significant between MetS2 and MetS3. HOMA-IR and FBG were not significant between MO and MetS2. INS was the only parameter, which showed statistically significant differences between MO-MetS2, MO-MetS3, and MetS2-MetS3. In conclusion, these findings have suggested that FBG presently considered as one of the five MetS components, may be replaced by INS during the evaluation of pediatric morbid obesity and MetS.

Keywords: Children, insulin resistance indices, metabolic syndrome, obesity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 794
911 A Study on the Condition Monitoring of Transmission Line by On-line Circuit Parameter Measurement

Authors: Il Dong Kim, Jin Rak Lee, Young Jun Ko, Young Taek Jin

Abstract:

An on-line condition monitoring method for transmission line is proposed using electrical circuit theory and IT technology in this paper. It is reasonable that the circuit parameters such as resistance (R), inductance (L), conductance (g) and capacitance (C) of a transmission line expose the electrical conditions and physical state of the line. Those parameters can be calculated from the linear equation composed of voltages and currents measured by synchro-phasor measurement technique at both end of the line. A set of linear voltage drop equations containing four terminal constants (A, B ,C ,D ) are mathematical models of the transmission line circuits. At least two sets of those linear equations are established from different operation condition of the line, they may mathematically yield those circuit parameters of the line. The conditions of line connectivity including state of connecting parts or contacting parts of the switching device may be monitored by resistance variations during operation. The insulation conditions of the line can be monitored by conductance (g) and capacitance(C) measurements. Together with other condition monitoring devices such as partial discharge, sensors and visual sensing device etc.,they may give useful information to monitor out any incipient symptoms of faults. The prototype of hardware system has been developed and tested through laboratory level simulated transmission lines. The test has shown enough evident to put the proposed method to practical uses.

Keywords: Transmission Line, Condition Monitoring, Circuit Parameters, Synchro- phasor Measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3175
910 Two Culture-s Characters in Contemporary Kazakh Cinema

Authors: Baubek B. Nogerbek, Alma M. Aidarova

Abstract:

In this article the authors are researching cultural differences between rural and urban characters in case of contemporary Kazakh cinema.Two motion pictures are analyzed: “Strizh" (2007) by AbaiKulbai and “Seker" (2009) by SabitKurmanbekov.According to the authors- opinion ateenage girl characters in these two films reflect two cultures (urban and rural) of Kazakh society, which displays complicated socio-cultural processes of modern Kazakhstan.

Keywords: Culture (urban and rural), film characters, Kazakh cinema, Kazakh society

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1824
909 Time-Derivative Estimation of Noisy Movie Data using Adaptive Control Theory

Authors: Soon-Hyun Park, Takami Matsuo

Abstract:

This paper presents an adaptive differentiator of sequential data based on the adaptive control theory. The algorithm is applied to detect moving objects by estimating a temporal gradient of sequential data at a specified pixel. We adopt two nonlinear intensity functions to reduce the influence of noises. The derivatives of the nonlinear intensity functions are estimated by an adaptive observer with σ-modification update law.

Keywords: Adaptive estimation, parameter adjustmentlaw, motion detection, temporal gradient, differential filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1852
908 Numerical Solution of Steady Magnetohydrodynamic Boundary Layer Flow Due to Gyrotactic Microorganism for Williamson Nanofluid over Stretched Surface in the Presence of Exponential Internal Heat Generation

Authors: M. A. Talha, M. Osman Gani, M. Ferdows

Abstract:

This paper focuses on the study of two dimensional magnetohydrodynamic (MHD) steady incompressible viscous Williamson nanofluid with exponential internal heat generation containing gyrotactic microorganism over a stretching sheet. The governing equations and auxiliary conditions are reduced to a set of non-linear coupled differential equations with the appropriate boundary conditions using similarity transformation. The transformed equations are solved numerically through spectral relaxation method. The influences of various parameters such as Williamson parameter γ, power constant λ, Prandtl number Pr, magnetic field parameter M, Peclet number Pe, Lewis number Le, Bioconvection Lewis number Lb, Brownian motion parameter Nb, thermophoresis parameter Nt, and bioconvection constant σ are studied to obtain the momentum, heat, mass and microorganism distributions. Moment, heat, mass and gyrotactic microorganism profiles are explored through graphs and tables. We computed the heat transfer rate, mass flux rate and the density number of the motile microorganism near the surface. Our numerical results are in better agreement in comparison with existing calculations. The Residual error of our obtained solutions is determined in order to see the convergence rate against iteration. Faster convergence is achieved when internal heat generation is absent. The effect of magnetic parameter M decreases the momentum boundary layer thickness but increases the thermal boundary layer thickness. It is apparent that bioconvection Lewis number and bioconvection parameter has a pronounced effect on microorganism boundary. Increasing brownian motion parameter and Lewis number decreases the thermal boundary layer. Furthermore, magnetic field parameter and thermophoresis parameter has an induced effect on concentration profiles.

Keywords: Convection flow, internal heat generation, similarity, spectral method, numerical analysis, Williamson nanofluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 939
907 Two Phase Frictional Pressure Drop of Carbon Dioxide in Horizontal Micro Tubes

Authors: M. Tarawneh

Abstract:

Two-phase frictional pressure drop data were obtained for condensation of carbon dioxide in single horizontal micro tube of inner diameter ranged from 0.6 mm up to 1.6 mm over mass flow rates from 2.5*10-5 to 17*10-5 kg/s and vapor qualities from 0.0 to 1.0. The inlet condensing pressure is changed from 33.5 to 45 bars. The saturation temperature ranged from -1.5 oC up to 10 oC. These data have then been compared against three (two-phase) frictional pressure drop prediction methods. The first method is by Muller-Steinhagen and Heck (Muller-Steinhagen H, Heck K. A simple friction pressure drop correlation for two-phase flow in pipes. Chem. Eng. Process 1986;20:297–308) and that by Gronnerud R. Investigation of liquid hold-up, flow-resistance and heat transfer in circulation type evaporators, part IV: two-phase flow resistance in boiling refrigerants, Annexe 1972. Then the method used by FriedelL. Improved friction pressures drop in horizontal and vertical two-phase pipe flow. European Two-Phase Flow Group Meeting, Paper E2; 1979 June, Ispra, Italy. The methods are used by M.B Ould Didi et al (2001) “Prediction of two-phase pressure gradients of refrigerant in horizontal tubes". Int.J.of Refrigeration 25(2002) 935- 947. The best available method for annular flow was that of Muller- Steinhagen and Heck. It was observed that the peak in the two-phase frictional pressure gradient is at high vapor qualities.

Keywords: Two-phase flow, frictional pressure drop, horizontalmicro tube, carbon dioxide, condensers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3335
906 Numerical Model of Low Cost Rubber Isolators for Masonry Housing in High Seismic Regions

Authors: Ahmad B. Habieb, Gabriele Milani, Tavio Tavio, Federico Milani

Abstract:

Housings in developing countries have often inadequate seismic protection, particularly for masonry. People choose this type of structure since the cost and application are relatively cheap. Seismic protection of masonry remains an interesting issue among researchers. In this study, we develop a low-cost seismic isolation system for masonry using fiber reinforced elastomeric isolators. The elastomer proposed consists of few layers of rubber pads and fiber lamina, making it lower in cost comparing to the conventional isolators. We present a finite element (FE) analysis to predict the behavior of the low cost rubber isolators undergoing moderate deformations. The FE model of the elastomer involves a hyperelastic material property for the rubber pad. We adopt a Yeoh hyperelasticity model and estimate its coefficients through the available experimental data. Having the shear behavior of the elastomers, we apply that isolation system onto small masonry housing. To attach the isolators on the building, we model the shear behavior of the isolation system by means of a damped nonlinear spring model. By this attempt, the FE analysis becomes computationally inexpensive. Several ground motion data are applied to observe its sensitivity. Roof acceleration and tensile damage of walls become the parameters to evaluate the performance of the isolators. In this study, a concrete damage plasticity model is used to model masonry in the nonlinear range. This tool is available in the standard package of Abaqus FE software. Finally, the results show that the low-cost isolators proposed are capable of reducing roof acceleration and damage level of masonry housing. Through this study, we are also capable of monitoring the shear deformation of isolators during seismic motion. It is useful to determine whether the isolator is applicable. According to the results, the deformations of isolators on the benchmark one story building are relatively small.

Keywords: Masonry, low cost elastomeric isolator, finite element analysis, hyperelasticity, damped non-linear spring, concrete damage plasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1155
905 Enhancement of Hardness Related Properties of Grey Cast Iron Powder Reinforced AA7075 Metal Matrix Composites through T6 and T8 Heat Treatments

Authors: S. S. Sharma, P. R. Prabhu, K. Jagannath, Achutha Kini U., Gowri Shankar M. C.

Abstract:

In present global scenario, aluminum alloys are coining the attention of many innovators as competing structural materials for automotive and space applications. Comparing to other challenging alloys, especially, 7xxx series aluminum alloys have been studied seriously because of benefits such as moderate strength; better deforming characteristics and affordable cost. It is expected that substitution of aluminum alloys for steels will result in great improvements in energy economy, durability and recyclability. However, it is necessary to improve the strength and the formability levels at low temperatures in aluminum alloys for still better applications. Aluminum–Zinc–Magnesium with or without other wetting agent denoted as 7XXX series alloys are medium strength heat treatable alloys. In addition to Zn, Mg as major alloying additions, Cu, Mn and Si are the other solute elements which contribute for the improvement in mechanical properties by suitable heat treatment process. Subjecting to suitable treatments like age hardening or cold deformation assisted heat treatments; known as low temperature thermomechanical treatments (LTMT) the challenging properties might be incorporated. T6 is the age hardening or precipitation hardening process with artificial aging cycle whereas T8 comprises of LTMT treatment aged artificially with X% cold deformation. When the cold deformation is provided after solution treatment, there is increase in hardness related properties such as wear resistance, yield and ultimate strength, toughness with the expense of ductility. During precipitation hardening both hardness and strength of the samples are increasing. The hardness value may further improve when room temperature deformation is positively supported with age hardening known as thermomechanical treatment. It is intended to perform heat treatment and evaluate hardness, tensile strength, wear resistance and distribution pattern of reinforcement in the matrix. 2 to 2.5 and 3 to 3.5 times increase in hardness is reported in age hardening and LTMT treatments respectively as compared to as-cast composite. There was better distribution of reinforcements in the matrix, nearly two fold increase in strength levels and up to 5 times increase in wear resistance are also observed in the present study.

Keywords: Reinforcement, precipitation, thermomechanical, dislocation, strain hardening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2180
904 The Acaricidal and Repellent Effect of Cinnamon Essential Oil against House Dust Mite

Authors: Je-Hoon Michael Oh

Abstract:

The major source of allergy in home is the house dust mite (Dematophagoides farina, Dermatophagoides pteronyssinus) causing allergic symptom include atopic dermatitis, asthma, perennial rhinitis and even infant death syndrome. Control of this mite species is dependent on the use of chemical methods such as fumigation treatments with methylene bromide, spraying with organophosphates such as pirimiphos-methyl, or treatments with repellents such as DEET and benzyl benzoate. Although effective, their repeated use for decades has sometimes resulted in development of resistance and fostered environmental and human health concerns. Both decomposing animal parts and the protein that surrounds mite fecal pellets cause mite allergy. So it is more effective to repel than to kill them because allergen is not living house dust mite but dead body or fecal particles of house dust mite. It is important to find out natural repellent material against house dust mite to control them and reduce the allergic reactions. Plants may be an alternative source for dust mite control because they contain a range of bioactive chemicals. The research objectives of this paper were to verify the acaricidal and repellent effects of cinnamon essential oil and to find out it-s most effective concentrations. We could find that cinnamon bark essential oil was very effective material to control the house dust mite. Furthermore, it could reduce chemical resistance and danger for human health.

Keywords: house dust mite, cinnamon, repellent effect

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4531
903 When Psychology Meets Ecology: Cognitive Flexibility for Quarry Rehabilitation

Authors: J. Fenianos, C. Khater, D. Brouillet

Abstract:

Ecological projects are often faced with reluctance from local communities hosting the project, especially when this project involves variation from preset ideas or classical practices. This paper aims at appreciating the contribution of environmental psychology through cognitive flexibility exercises to improve the acceptability of local communities in adopting more ecological rehabilitation scenarios. The study is based on a quarry site located in Bekaa- Lebanon. Four groups were considered with different levels of involvement, as follows: Group 1 is Training (T) – 50 hours of on-site training over 8 months, Group 2 is Awareness (A) – 2 hours of awareness raising session, Group 3 is Flexibility (F) – 2 hours of flexibility exercises and Group 4 is the Control (C). The results show that individuals in Group 3 (F) who followed flexibility sessions accept comparably the ecological rehabilitation option over the more classical one. This is also the case for the people in Group 1 (T) who followed a more time-demanding “on-site training”. Another experience was conducted on a second quarry site combining flexibility with awareness-raising. This research confirms that it is possible to reduce resistance to change thanks to a limited in-time intervention using cognitive flexibility. This methodological approach could be transferable to other environmental problems involving local communities and changes in preset perceptions.

Keywords: Acceptability, ecological restoration, environmental psychology, Lebanon, local communities, resistance to change.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1254
902 Considering the Effect of Semi-Rigid Connection in Steel Frame Structures for Progressive Collapse

Authors: Fooad Karimi Ghaleh Jough, Mohsen Soori

Abstract:

Today, the occurrence of progressive failure in structures has become a challenging issue, requiring the presentation of suitable solutions for structural resistance to this phenomenon. It is also necessary to evaluate the vulnerability of existing and under-construction buildings to progressive failure. The kind of lateral load-resisting system the building and its connections have is one of the most significant and influential variables in structural resistance to the risk of progressing failure. Using the "Alternative Path" approach suggested by the GSA2003 and UFC2013 recommendations, different configurations of semi-rigid connections against progressive failure are offered in this study. In order to do this, the Opensees program was used to model nine distinct semi-rigid connection configurations on a three-story Special Area of Conservation (SAC) structure, accounting for the impact of connection stiffness. Then, using nonlinear dynamic analysis, the effects of column removal were explored in two scenarios: corner column removal and middle column removal on the first level. Nonlinear static analysis results showed that when a column is removed, structures with semi-rigid connections experience larger displacements, which result in the construction of a plastic hinge. Furthermore, it was clear from the findings of the nonlinear static analysis that the possibility of progressive failure increased with the number of semi-rigid connections in the structure.

Keywords: Semi-rigid, nonlinear static analysis, progressive collapse, alternative path.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41
901 Neuron Efficiency in Fluid Dynamics and Prediction of Groundwater Reservoirs'' Properties Using Pattern Recognition

Authors: J. K. Adedeji, S. T. Ijatuyi

Abstract:

The application of neural network using pattern recognition to study the fluid dynamics and predict the groundwater reservoirs properties has been used in this research. The essential of geophysical survey using the manual methods has failed in basement environment, hence the need for an intelligent computing such as predicted from neural network is inevitable. A non-linear neural network with an XOR (exclusive OR) output of 8-bits configuration has been used in this research to predict the nature of groundwater reservoirs and fluid dynamics of a typical basement crystalline rock. The control variables are the apparent resistivity of weathered layer (p1), fractured layer (p2), and the depth (h), while the dependent variable is the flow parameter (F=λ). The algorithm that was used in training the neural network is the back-propagation coded in C++ language with 300 epoch runs. The neural network was very intelligent to map out the flow channels and detect how they behave to form viable storage within the strata. The neural network model showed that an important variable gr (gravitational resistance) can be deduced from the elevation and apparent resistivity pa. The model results from SPSS showed that the coefficients, a, b and c are statistically significant with reduced standard error at 5%.

Keywords: Neural network, gravitational resistance, pattern recognition, non-linear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 774
900 Compressive Strength and Workability Characteristics of Low-Calcium Fly ash-based Self-Compacting Geopolymer Concrete

Authors: M. Fareed Ahmed, M. Fadhil Nuruddin, Nasir Shafiq

Abstract:

Due to growing environmental concerns of the cement industry, alternative cement technologies have become an area of increasing interest. It is now believed that new binders are indispensable for enhanced environmental and durability performance. Self-compacting Geopolymer concrete is an innovative method and improved way of concreting operation that does not require vibration for placing it and is produced by complete elimination of ordinary Portland cement. This paper documents the assessment of the compressive strength and workability characteristics of low-calcium fly ash based selfcompacting geopolymer concrete. The essential workability properties of the freshly prepared Self-compacting Geopolymer concrete such as filling ability, passing ability and segregation resistance were evaluated by using Slump flow, V-funnel, L-box and J-ring test methods. The fundamental requirements of high flowability and segregation resistance as specified by guidelines on Self Compacting Concrete by EFNARC were satisfied. In addition, compressive strength was determined and the test results are included here. This paper also reports the effect of extra water, curing time and curing temperature on the compressive strength of self-compacting geopolymer concrete. The test results show that extra water in the concrete mix plays a significant role. Also, longer curing time and curing the concrete specimens at higher temperatures will result in higher compressive strength.

Keywords: Fly ash, Geopolymer Concrete, Self-compactingconcrete, Self-compacting Geopolymer concrete

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4548
899 Theoretical and Experimental Analysis of Hard Material Machining

Authors: Rajaram Kr. Gupta, Bhupendra Kumar, T. V. K. Gupta, D. S. Ramteke

Abstract:

Machining of hard materials is a recent technology for direct production of work-pieces. The primary challenge in machining these materials is selection of cutting tool inserts which facilitates an extended tool life and high-precision machining of the component. These materials are widely for making precision parts for the aerospace industry. Nickel-based alloys are typically used in extreme environment applications where a combination of strength, corrosion resistance and oxidation resistance material characteristics are required. The present paper reports the theoretical and experimental investigations carried out to understand the influence of machining parameters on the response parameters. Considering the basic machining parameters (speed, feed and depth of cut) a study has been conducted to observe their influence on material removal rate, surface roughness, cutting forces and corresponding tool wear. Experiments are designed and conducted with the help of Central Composite Rotatable Design technique. The results reveals that for a given range of process parameters, material removal rate is favorable for higher depths of cut and low feed rate for cutting forces. Low feed rates and high values of rotational speeds are suitable for better finish and higher tool life.

Keywords: Speed, feed, depth of cut, roughness, cutting force, flank wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950
898 Collaborative Tracking Control of UAV-UGV

Authors: Jae-Young Choi, Sung-Gaun Kim

Abstract:

This paper suggests a fast and stable Target Tracking system in collaborative control of UAV and UGV. Wi-Fi communication range is limited in collaborative control of UAV and UGV. Thus, to secure a stable communications, UAV and UGV have to be kept within a certain distance from each other. But existing method which uses UAV Vertical Camera to follow the motion of UGV is likely to lose a target with a sudden movement change. Eventually, UGV has disadvantages that it could only move at a low speed and not make any sudden change of direction in order to keep track of the target. Therefore, we suggest utilizing AR Drone UAV front camera to track fast-moving and Omnidirectional Mecanum Wheel UGV.

Keywords: Collaborative control, UAV, UGV, Target Tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2904
897 Contaminant Transport Modeling Due to Thermal Diffusion Effects with the Effect of Biodegradation

Authors: Nirmala P. Ratchagar, S. Senthamilselvi

Abstract:

The heat and mass transfer characteristics of contaminants in groundwater subjected to a biodegradation reaction is analyzed by taking into account the thermal diffusion (Soret) effects. This phenomenon is modulated mathematically by a system of partial differential equations which govern the motion of fluid (groundwater) and solid (contaminants) particles. The numerical results are presented graphically for different values of the parameters entering into the problem on the velocity profiles of fluid, contaminants, temperature and concentration profile.

Keywords: Heat and mass transfer, Soret number, porous media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
896 Switching Studies on Ge15In5Te56Ag24 Thin Films

Authors: Diptoshi Roy, G. Sreevidya Varma, S. Asokan, Chandasree Das

Abstract:

Germanium Telluride based quaternary thin film switching devices with composition Ge15In5Te56Ag24, have been deposited in sandwich geometry on glass substrate with aluminum as top and bottom electrodes. The bulk glassy form of the said composition is prepared by melt quenching technique. In this technique, appropriate quantity of elements with high purity are taken in a quartz ampoule and sealed under a vacuum of 10-5 mbar. Then, it is allowed to rotate in a horizontal rotary furnace for 36 hours to ensure homogeneity of the melt. After that, the ampoule is quenched into a mixture of ice - water and NaOH to get the bulk ingot of the sample. The sample is then coated on a glass substrate using flash evaporation technique at a vacuum level of 10-6 mbar. The XRD report reveals the amorphous nature of the thin film sample and Energy - Dispersive X-ray Analysis (EDAX) confirms that the film retains the same chemical composition as that of the base sample. Electrical switching behavior of the device is studied with the help of Keithley (2410c) source-measure unit interfaced with Lab VIEW 7 (National Instruments). Switching studies, mainly SET (changing the state of the material from amorphous to crystalline) operation is conducted on the thin film form of the sample. This device is found to manifest memory switching as the device remains 'ON' even after the removal of the electric field. Also it is found that amorphous Ge15In5Te56Ag24 thin film unveils clean memory type of electrical switching behavior which can be justified by the absence of fluctuation in the I-V characteristics. The I-V characteristic also reveals that the switching is faster in this sample as no data points could be seen in the negative resistance region during the transition to on state and this leads to the conclusion of fast phase change during SET process. Scanning Electron Microscopy (SEM) studies are performed on the chosen sample to study the structural changes at the time of switching. SEM studies on the switched Ge15In5Te56Ag24 sample has shown some morphological changes at the place of switching wherein it can be explained that a conducting crystalline channel is formed in the device when the device switches from high resistance to low resistance state. From these studies it can be concluded that the material may find its application in fast switching Non-Volatile Phase Change Memory (PCM) Devices.

Keywords: Chalcogenides, vapor deposition, electrical switching, PCM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
895 Exploring Solutions in Extended Horava-Lifshitz Gravity

Authors: Aziza Altaibayeva, Ertan Gudekli, Ratbay Myrzakulov

Abstract:

In this letter, we explore exact solutions for the Horava-Lifshitz gravity. We use of an extension of this theory with first order dynamical lapse function. The equations of motion have been derived in a fully consistent scenario. We assume that there are some spherically symmetric families of exact solutions of this extended theory of gravity. We obtain exact solutions and investigate the singularity structures of these solutions. Specially, an exact solution with the regular horizon is found.

Keywords: Quantum gravity, Horava-Lifshitz gravity, black hole, spherically symmetric space times.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221
894 Nonlinear Mathematical Model of the Rotor Motion in a Thin Hydrodynamic Gap

Authors: Jaroslav Krutil, František Pochylý, Simona Fialová

Abstract:

The article presents two mathematical models of the interaction between a rotating shaft and an incompressible fluid. The mathematical model includes both the journal bearings and the axially traversed hydrodynamic sealing gaps of hydraulic machines. A method is shown for the identification of additional effects of the fluid acting on the rotor of the machine, both for a linear and a nonlinear model. The interaction is expressed by matrices of mass, stiffness and damping.

Keywords: CFD modeling, hydrodynamic gap, matrices of mass, stiffness and damping, nonlinear mathematical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816
893 State of the Art: A Study on Fall Detection

Authors: Goh Yongli, Ooi Shih Yin, Pang Ying Han

Abstract:

Unintentional falls are rife throughout the ages and have been the common factor of serious or critical injuries especially for the elderly society. Fortunately, owing to the recent rapid advancement in technology, fall detection system is made possible, enabling detection of falling events for the elderly, monitoring the patient and consequently provides emergency support in the event of falling. This paper presents a review of 3 main categories of fall detection techniques, ranging from year 2005 to year 2010. This paper will be focusing on discussing the techniques alongside with summary and conclusion for them.

Keywords: State of the art, fall detection, wearable devices, ambient analyser, motion detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2125
892 Development and Characterization of Re-Entrant Auxetic Fibrous Structures for Application in Ballistic Composites

Authors: Rui Magalhães, Sohel Rana, Raul Fangueiro, Clara Gonçalves, Pedro Nunes, Gustavo Dias

Abstract:

Auxetic fibrous structures and composites with negative Poisson’s ratio (NPR) have huge potential for application in ballistic protection due to their high energy absorption and excellent impact resistance. In the present research, re-entrant lozenge auxetic fibrous structures were produced through weft knitting technology using high performance polyamide and para-aramid fibres. Fabric structural parameters (e.g. loop length) and machine parameters (e.g. take down load) were varied in order to investigate their influence on the auxetic behaviours of the produced structures. These auxetic structures were then impregnated with two types of polymeric resins (epoxy and polyester) to produce composite materials, which were subsequently characterized for the auxetic behaviour. It was observed that the knitted fabrics produced using the polyamide yarns exhibited NPR over a wide deformation range, which was strongly dependant on the loop length and take down load. The polymeric composites produced from the auxetic fabrics also showed good auxetic property, which was superior in case of the polyester matrix. The experimental results suggested that these composites made from the auxetic fibrous structures can be properly designed to find potential use in the body amours for personal protection applications.

Keywords: Auxetic fabrics, high performance, composites, impact resistance, energy absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 771
891 Streamwise Vorticity in the Wake of a Sliding Bubble

Authors: R. O’Reilly Meehan, D. B. Murray

Abstract:

In many practical situations, bubbles are dispersed in a liquid phase. Understanding these complex bubbly flows is therefore a key issue for applications such as shell and tube heat exchangers, mineral flotation and oxidation in water treatment. Although a large body of work exists for bubbles rising in an unbounded medium, that of bubbles rising in constricted geometries has received less attention. The particular case of a bubble sliding underneath an inclined surface is common to two-phase flow systems. The current study intends to expand this knowledge by performing experiments to quantify the streamwise flow structures associated with a single sliding air bubble under an inclined surface in quiescent water. This is achieved by means of two-dimensional, two-component particle image velocimetry (PIV), performed with a continuous wave laser and high-speed camera. PIV vorticity fields obtained in a plane perpendicular to the sliding surface show that there is significant bulk fluid motion away from the surface. The associated momentum of the bubble means that this wake motion persists for a significant time before viscous dissipation. The magnitude and direction of the flow structures in the streamwise measurement plane are found to depend on the point on its path through which the bubble enters the plane. This entry point, represented by a phase angle, affects the nature and strength of the vortical structures. This study reconstructs the vorticity field in the wake of the bubble, converting the field at different instances in time to slices of a large-scale wake structure. This is, in essence, Taylor’s ”frozen turbulence” hypothesis. Applying this to the vorticity fields provides a pseudo three-dimensional representation from 2-D data, allowing for a more intuitive understanding of the bubble wake. This study provides insights into the complex dynamics of a situation common to many engineering applications, particularly shell and tube heat exchangers in the nucleate boiling regime.

Keywords: Bubbly flow, particle image velocimetry, two-phase flow, wake structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1889
890 Co-Articulation between Consonant and Vowel in Cantonese Syllables

Authors: Wai-Sum Lee

Abstract:

This study investigates C-V and V-C co-articulation in Cantonese monosyllables of the CV, VC or CVC structure, with C = one of the three stop consonants [p, t, k] and V = one of the three corner vowels [i, a, u]. Five repetitions of each test syllable on a randomized list were elicited from Cantonese young adult speakers in their early-20s. A research tool, EMA AG500, was used to record the synchronized audio signals and articulatory data at three different locations of the tongue – tongue tip, tongue middle, and tongue back – and the positions of the upper and lower lips during the test syllables. The main findings based on the articulatory data collected from two male Cantonese speakers are as follows: (i) For the syllable-initial [p-], strong co-articulation is observed when [p-] preceding the high vowel [i] or [u], but not the low vowel [a]. As for the syllable-final [-p], it is strongly co-articulated with the preceding vowel, even when the vowel is [a]. (ii) The co-articulation between the initial [t-] and the following vowel of any type is weak. In the syllable-final position, the degree of co-articulatory resistance of [-t] is also large when following the vowel [u], but [-t] is largely co-articulated with the preceding vowel when the vowel is [i] or [a]. (iii) The strength of co-articulation differs when the initial [k-] precedes the different types of vowel. A stronger co-articulation between [k-] and [i] than between [k-] and [u], and the strength of co-articulation is much reduced between [k-] and [a]. However, in the syllable-final position, there is strong co-articulation between [-k] and the preceding vowel [a]. (iv) Among the three types of stop consonants in the syllable-initial position, the decreasing degree of co-articulatory resistance (CR) is [t-] > [k-] > [p-], and the degree of CR is reduced during all three types of stop in the syllable-final position. In general, the data on co-articulation between consonant and vowel in the Cantonese monosyllables are similar to those in other languages reported in previous studies.

Keywords: Cantonese, co-articulation, consonant, vowel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1098