Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30169
Time-Derivative Estimation of Noisy Movie Data using Adaptive Control Theory

Authors: Soon-Hyun Park, Takami Matsuo

Abstract:

This paper presents an adaptive differentiator of sequential data based on the adaptive control theory. The algorithm is applied to detect moving objects by estimating a temporal gradient of sequential data at a specified pixel. We adopt two nonlinear intensity functions to reduce the influence of noises. The derivatives of the nonlinear intensity functions are estimated by an adaptive observer with σ-modification update law.

Keywords: Adaptive estimation, parameter adjustmentlaw, motion detection, temporal gradient, differential filter.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1075190

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1295

References:


[1] Cucchiara,R., Grana,C., Piccardi,M., and Prati,A. : "Detecting Moving Objects, Ghosts, and Shadows in Video Streams", IEEE Trans. on PAMI, Vol.25, No.10, pp.1337-1342 (2003).
[2] Cheung,S.-C. and Kamath,C. : "Robust techniques for background subtraction in urban traffic video", Video Communications and Image Processing, SPIE Electronic Imaging, San Jose, January (2004), UCRL-CONF-200706.
[3] Manzanera,A. and Richefeu,J.C. : "A robust and computationally efficient motion detection algorithm based on Σ − Δ background estimation", ICVGIP, Kolkata, India (2004). http://www.ensta.fr/╦£manzaner
[4] Halevy,G. and Weinshall,D. : "Motion of disturbances: detection and tracking of multibody non-rigid motion",Machine Vision and Applications, Vol.11, pp.122-137 (1999).
[5] Ibrir,S.: "New differentiators for control and observation applications", Proc. of American Control Conference, pp.2522-2527 (2001).
[6] Ibrir,S.: "Linear time-derivative trackers", Automatica, Vol.40, pp.397-405 (2004).
[7] Wren,C., Azabayejani,A., Darrell,T. and Pentland,A.: "Pfinder: Real-time tracking of the human body", IEEE Trans. on PAMI, Vol.19, No.7, pp.780-785 (1997).
[8] Kuo,C.M., Hsieh,C.-H., Lin,H.-C., and Lu, P.-C.: "Motion estimation algorithm with Kalman filter", Electronics Letters, Vol.30, No.15, pp.1204-1206 (1994).
[9] Karmann,K.-P. and Brandt A.: "Moving object recognition using an adaptive background memory", Time-Varying Image Processing and Moving Object Recognition, V.Cappellini ed., 2, pp.289-307, Elsevier Sicence Publishers B.V. (1990).
[10] K¨oker,R., Cakar,,S., and O¨ z,C.: "Moving object detection and target prediction in video image", IJCI Proceedings of International Conference on Signal Processing, Vol.1, No.2, pp.149- 152 (2003).
[11] Richefeu,J. and Manzanera,A. : "A new hybrid differential filter for motion detection", ICCVG-04, Warsaw, Poland, 22-24, Sept. (2004). http://www.ensta.fr/˜richefeu/Publications/ iccvg82.pdf
[12] Narendra,K.S. and Annaswamy,A.M. : Stable Adaptive Systems, Prentice-Hall, Inc. (1989).
[13] Ioannou,P.A. and Sun,J. : Robust Adaptive Control, Prentice- Hall, Inc. (1996).
[14] Marbled-Block (new version) marmor stat, Institut f¨ur Algorithmen und Kognitive Systeme (Group Prof. Dr. H.-H. Nagel), Universit¨at Karlsruhe, http://i21www.ira.uka.de/image_sequences/.
[15] Shimai,H. , Kurita,T. , and Umeyama,S. : "Adaptive Background Estimation by Robust Statistics", IEICE Transaction, D-II, Vol.J86-D-II, No.6, pp.796-806 (2003) (in Japanese).
[16] Shimai,H., Mishima,T., Kurita,T., and Umeyama,S. : "Adaptive background estimation from image sequence by on-line Mestimation and its application to detection of moving objects", Proc. of Infotech Oulu Workshop on Real-Time Image Sequence Analysis, pp.99-108 (2000).