Search results for: Linear switched reluctance motor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2232

Search results for: Linear switched reluctance motor

1692 Optimum Parameter of a Viscous Damper for Seismic and Wind Vibration

Authors: Soltani Amir, Hu Jiaxin

Abstract:

Determination of optimal parameters of a passive  control system device is the primary objective of this study.  Expanding upon the use of control devices in wind and earthquake  hazard reduction has led to development of various control systems.  The advantage of non-linearity characteristics in a passive control  device and the optimal control method using LQR algorithm are  explained in this study. Finally, this paper introduces a simple  approach to determine optimum parameters of a nonlinear viscous  damper for vibration control of structures. A MATLAB program is  used to produce the dynamic motion of the structure considering the  stiffness matrix of the SDOF frame and the non-linear damping  effect. This study concluded that the proposed system (variable  damping system) has better performance in system response control  than a linear damping system. Also, according to the energy  dissipation graph, the total energy loss is greater in non-linear  damping system than other systems.

 

Keywords: Passive Control System, Damping Devices, Viscous Dampers, Control Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3595
1691 Analysis of Motor Cycle Helmet under Static and Dynamic Loading

Authors: V. C. Sathish Gandhi, R. Kumaravelan, S. Ramesh, M. Venkatesan, M. Ponraj

Abstract:

Each year nearly nine hundred persons die in head injuries and over fifty thousand persons are severely injured due to non wearing of helmets. In motor cycle accidents, the human head is exposed to heavy impact loading against natural protection. In this work, an attempt has been made for analyzing the helmet with all the standard data. The simulation software ‘ANSYS’ is used to analyze the helmet with different conditions such as bottom fixed-load on top surface, bottom fixed -load on top line, side fixed –load on opposite surface, side fixed-load on opposite line and dynamic analysis. The maximum force of 19.5 kN is applied on the helmet to study the model in static and dynamic conditions. The simulation has been carried out for the static condition for the parameters like total deformation, strain energy, von-Mises stress for different cases. The dynamic analysis has been performed for the parameter like total deformation and equivalent elastic strain. The result shows that these values are concentrated in the retention portion of the helmet. These results have been compared with the standard experimental data proposed by the BIS and well within the acceptable limit.

Keywords: Helmet, Deformation, Strain energy, Equivalent elastic strain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4889
1690 Power System Voltage Control using LP and Artificial Neural Network

Authors: A. Sina, A. Aeenmehr, H. Mohamadian

Abstract:

Optimization and control of reactive power distribution in the power systems leads to the better operation of the reactive power resources. Reactive power control reduces considerably the power losses and effective loads and improves the power factor of the power systems. Another important reason of the reactive power control is improving the voltage profile of the power system. In this paper, voltage and reactive power control using Neural Network techniques have been applied to the 33 shines- Tehran Electric Company. In this suggested ANN, the voltages of PQ shines have been considered as the input of the ANN. Also, the generators voltages, tap transformers and shunt compensators have been considered as the output of ANN. Results of this techniques have been compared with the Linear Programming. Minimization of the transmission line power losses has been considered as the objective function of the linear programming technique. The comparison of the results of the ANN technique with the LP shows that the ANN technique improves the precision and reduces the computation time. ANN technique also has a simple structure and this causes to use the operator experience.

Keywords: voltage control, linear programming, artificial neural network, power systems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760
1689 Studying Frame-Resistant Steel Structures under near Field Ground Motion

Authors: S. A. Hashemi, A. Khoshraftar

Abstract:

This paper presents the influence of the vertical seismic component on the non-linear dynamics analysis of three different structures. The subject structures were analyzed and designed according to recent codes. This paper considers three types of buildings: 5-, 10-, and 15-story buildings. The non-linear dynamics analysis of the structures with assuming elastic-perfectly-plastic behavior was performed using RAM PERFORM-3D software; the horizontal component was taken into consideration with and without the incorporation of the corresponding vertical component. Dynamic responses obtained for the horizontal component acting alone were compared with those obtained from the simultaneous application of both seismic components. The results show that the effect of the vertical component of ground motion may increase the axial load significantly in the interior columns and, consequently, the stories. The plastic mechanisms would be changed. The P-Delta effect is expected to increase. The punching base plate shear of the columns should be considered. Moreover, the vertical component increases the input energy when the structures exhibit inelastic behavior and are taller.

Keywords: Inelastic behavior, non-linear dynamic analysis, steel structure, vertical component.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795
1688 Physical Habitat Simulation and Comparison within a Lerma River Reach, with Respect to the Same but Modified Reach, to Create a Linear Park

Authors: Ezequiel Garcia-Rodriguez, Luis A. Ochoa-Franco, Adrian I. Cervantes-Servin

Abstract:

In this work, the Ictalurus punctatus species estimated available physical habitat is compared with the estimated physical habitat for the same but modified river reach, with the aim of creating a linear park, along a length of 5 500 m. To determine the effect of ecological park construction, on physical habitat of the Lerma river stretch of study, first, the available habitat for the Ictalurus punctatus species was estimated through the simulation of the physical habitat, by using surveying, hydraulics, and habitat information gotten at the river reach in its actual situation. Second, it was estimated the available habitat for the above species, upon the simulation of the physical habitat through the proposed modification for the ecological park creation. Third, it is presented a comparison between both scenarios in terms of available habitat estimated for Ictalurus punctatus species, concluding that in cases of adult and spawning life stages, changes in the channel to create an ecological park would produce a considerable loss of potentially usable habitat (PUH), while in the case of the juvenile life stage PUH remains virtually unchanged, and in the case of life stage fry the PUH would increase due to the presence of velocities and depths of lesser magnitude, due to the presence of minor flow rates and lower volume of the wet channel. It is expected that habitat modification for linear park construction may produce the lack of Ictalurus punktatus species conservation at the river reach of the study.

Keywords: Habitat modification, Ictalurus punctatus, Lerma, river, linear park.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608
1687 Automated Algorithm for Removing Continuous Flame Spectrum Based On Sampled Linear Bases

Authors: Luis Arias, Jorge E. Pezoa, Daniel Sbárbaro

Abstract:

In this paper, an automated algorithm to estimate and remove the continuous baseline from measured spectra containing both continuous and discontinuous bands is proposed. The algorithm uses previous information contained in a Continuous Database Spectra (CDBS) to obtain a linear basis, with minimum number of sampled vectors, capable of representing a continuous baseline. The proposed algorithm was tested by using a CDBS of flame spectra where Principal Components Analysis and Non-negative Matrix Factorization were used to obtain linear bases. Thus, the radical emissions of natural gas, oil and bio-oil flames spectra at different combustion conditions were obtained. In order to validate the performance in the baseline estimation process, the Goodness-of-fit Coefficient and the Root Mean-squared Error quality metrics were evaluated between the estimated and the real spectra in absence of discontinuous emission. The achieved results make the proposed method a key element in the development of automatic monitoring processes strategies involving discontinuous spectral bands.

Keywords: Flame spectra, removing baseline, recovering spectrum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1752
1686 Transient Thermal Modeling of an Axial Flux Permanent Magnet (AFPM) Machine Using a Hybrid Thermal Model

Authors: J. Hey, D. A. Howey, R. Martinez-Botas, M. Lamperth

Abstract:

This paper presents the development of a hybrid thermal model for the EVO Electric AFM 140 Axial Flux Permanent Magnet (AFPM) machine as used in hybrid and electric vehicles. The adopted approach is based on a hybrid lumped parameter and finite difference method. The proposed method divides each motor component into regular elements which are connected together in a thermal resistance network representing all the physical connections in all three dimensions. The element shape and size are chosen according to the component geometry to ensure consistency. The fluid domain is lumped into one region with averaged heat transfer parameters connecting it to the solid domain. Some model parameters are obtained from Computation Fluid Dynamic (CFD) simulation and empirical data. The hybrid thermal model is described by a set of coupled linear first order differential equations which is discretised and solved iteratively to obtain the temperature profile. The computation involved is low and thus the model is suitable for transient temperature predictions. The maximum error in temperature prediction is 3.4% and the mean error is consistently lower than the mean error due to uncertainty in measurements. The details of the model development, temperature predictions and suggestions for design improvements are presented in this paper.

Keywords: Electric vehicle, hybrid thermal model, transient temperature prediction, Axial Flux Permanent Magnet machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2158
1685 Development and Validation of Cylindrical Linear Oscillating Generator

Authors: Sungin Jeong

Abstract:

This paper presents a linear oscillating generator of cylindrical type for hybrid electric vehicle application. The focus of the study is the suggestion of the optimal model and the design rule of the cylindrical linear oscillating generator with permanent magnet in the back-iron translator. The cylindrical topology is achieved using equivalent magnetic circuit considering leakage elements as initial modeling. This topology with permanent magnet in the back-iron translator is described by number of phases and displacement of stroke. For more accurate analysis of an oscillating machine, it will be compared by moving just one-pole pitch forward and backward the thrust of single-phase system and three-phase system. Through the analysis and comparison, a single-phase system of cylindrical topology as the optimal topology is selected. Finally, the detailed design of the optimal topology takes the magnetic saturation effects into account by finite element analysis. Besides, the losses are examined to obtain more accurate results; copper loss in the conductors of machine windings, eddy-current loss of permanent magnet, and iron-loss of specific material of electrical steel. The considerations of thermal performances and mechanical robustness are essential, because they have an effect on the entire efficiency and the insulations of the machine due to the losses of the high temperature generated in each region of the generator. Besides electric machine with linear oscillating movement requires a support system that can resist dynamic forces and mechanical masses. As a result, the fatigue analysis of shaft is achieved by the kinetic equations. Also, the thermal characteristics are analyzed by the operating frequency in each region. The results of this study will give a very important design rule in the design of linear oscillating machines. It enables us to more accurate machine design and more accurate prediction of machine performances.

Keywords: Equivalent magnetic circuit, finite element analysis, hybrid electric vehicle, free piston engine, cylindrical linear oscillating generator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1367
1684 Numerical Modelling of Dust Propagation in the Atmosphere of Tbilisi City in Case of Western Background Light Air

Authors: N. Gigauri, V. Kukhalashvili, A. Surmava, L. Intskirveli, L. Gverdtsiteli

Abstract:

Tbilisi, a large city of the South Caucasus, is a junction point connecting Asia and Europe, Russia and republics of the Asia Minor. Over the last years, its atmosphere has been experienced an increasing anthropogenic load. Numerical modeling method is used for study of Tbilisi atmospheric air pollution. By means of 3D non-linear non-steady numerical model a peculiarity of city atmosphere pollution is investigated during background western light air. Dust concentration spatial and time changes are determined. There are identified the zones of high, average and less pollution, dust accumulation areas, transfer directions etc. By numerical modeling, there is shown that the process of air pollution by the dust proceeds in four stages, and they depend on the intensity of motor traffic, the micro-relief of the city, and the location of city mains. In the interval of time 06:00-09:00 the intensive growth, 09:00-15:00 a constancy or weak decrease, 18:00-21:00 an increase, and from 21:00 to 06:00 a reduction of the dust concentrations take place. The highly polluted areas are located in the vicinity of the city center and at some peripherical territories of the city, where the maximum dust concentration at 9PM is equal to 2 maximum allowable concentrations. The similar investigations conducted in case of various meteorological situations will enable us to compile the map of background urban pollution and to elaborate practical measures for ambient air protection.

Keywords: Numerical modelling, source of pollution, dust propagation, western light air.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 489
1683 Finite-Horizon Tracking Control for Repetitive Systems with Uncertain Initial Conditions

Authors: Sung Wook Yun, Yun Jong Choi, Kyong-min Lee, Poogyeon Park*

Abstract:

Repetitive systems stand for a kind of systems that perform a simple task on a fixed pattern repetitively, which are widely spread in industrial fields. Hence, many researchers have been interested in those systems, especially in the field of iterative learning control (ILC). In this paper, we propose a finite-horizon tracking control scheme for linear time-varying repetitive systems with uncertain initial conditions. The scheme is derived both analytically and numerically for state-feedback systems and only numerically for output-feedback systems. Then, it is extended to stable systems with input constraints. All numerical schemes are developed in the forms of linear matrix inequalities (LMIs). A distinguished feature of the proposed scheme from the existing iterative learning control is that the scheme guarantees the tracking performance exactly even under uncertain initial conditions. The simulation results demonstrate the good performance of the proposed scheme.

Keywords: Finite time horizon, linear matrix inequality (LMI), repetitive system, uncertain initial condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893
1682 Preconditioned Mixed-Type Splitting Iterative Method For Z-Matrices

Authors: Li Jiang, Baoguang Tian

Abstract:

In this paper, we present the preconditioned mixed-type splitting iterative method for solving the linear systems, Ax = b, where A is a Z-matrix. And we give some comparison theorems to show that the convergence rate of the preconditioned mixed-type splitting iterative method is faster than that of the mixed-type splitting iterative method. Finally, we give a numerical example to illustrate our results.

Keywords: Z-matrix, mixed-type splitting iterative method, precondition, comparison theorem, linear system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1202
1681 Aging Evaluation of Ammonium Perchlorate/Hydroxyl Terminated Polybutadiene-Based Solid Rocket Engine by Reactive Molecular Dynamics Simulation and Thermal Analysis

Authors: R. F. B. Gonçalves, E. N. Iwama, J. A. F. F. Rocco, K. Iha

Abstract:

Propellants based on Hydroxyl Terminated Polybutadiene/Ammonium Perchlorate (HTPB/AP) are the most commonly used in most of the rocket engines used by the Brazilian Armed Forces. This work aimed at the possibility of extending its useful life (currently in 10 years) by performing kinetic-chemical analyzes of its energetic material via Differential Scanning Calorimetry (DSC) and also performing computer simulation of aging process using the software Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). Thermal analysis via DSC was performed in triplicates and in three heating ratios (5 ºC, 10 ºC, and 15 ºC) of rocket motor with 11 years shelf-life, using the Arrhenius equation to obtain its activation energy, using Ozawa and Kissinger kinetic methods, allowing comparison with manufacturing period data (standard motor). In addition, the kinetic parameters of internal pressure of the combustion chamber in 08 rocket engines with 11 years of shelf-life were also acquired, for comparison purposes with the engine start-up data.

Keywords: Shelf-life, thermal analysis, Ozawa method, Kissinger method, LAMMPS software, thrust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 821
1680 Simple Agents Benefit Only from Simple Brains

Authors: Valeri A. Makarov, Nazareth P. Castellanos, Manuel G. Velarde

Abstract:

In order to answer the general question: “What does a simple agent with a limited life-time require for constructing a useful representation of the environment?" we propose a robot platform including the simplest probabilistic sensory and motor layers. Then we use the platform as a test-bed for evaluation of the navigational capabilities of the robot with different “brains". We claim that a protocognitive behavior is not a consequence of highly sophisticated sensory–motor organs but instead emerges through an increment of the internal complexity and reutilization of the minimal sensory information. We show that the most fundamental robot element, the short-time memory, is essential in obstacle avoidance. However, in the simplest conditions of no obstacles the straightforward memoryless robot is usually superior. We also demonstrate how a low level action planning, involving essentially nonlinear dynamics, provides a considerable gain to the robot performance dynamically changing the robot strategy. Still, however, for very short life time the brainless robot is superior. Accordingly we suggest that small organisms (or agents) with short life-time does not require complex brains and even can benefit from simple brain-like (reflex) structures. To some extend this may mean that controlling blocks of modern robots are too complicated comparative to their life-time and mechanical abilities.

Keywords: Neural network, probabilistic control, robot navigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
1679 Chaotic Oscillations of Diaphragm Supported by Nonlinear Springs with Hysteresis

Authors: M. Sasajima, T. Yamaguchi, Y. Koike, A. Hara

Abstract:

This paper describes vibration analysis using the finite element method for a small earphone, especially for the diaphragm shape with a low-rigidity. The viscoelastic diaphragm is supported by multiple nonlinear concentrated springs with linear hysteresis damping. The restoring forces of the nonlinear springs have cubic nonlinearity. The finite elements for the nonlinear springs with hysteresis are expressed and are connected to the diaphragm that is modeled by linear solid finite elements in consideration of a complex modulus of elasticity. Further, the discretized equations in physical coordinates are transformed into the nonlinear ordinary coupled equations using normal coordinates corresponding to the linear natural modes. We computed the nonlinear stationary and non-stationary responses due to the internal resonance between modes with large amplitude in the nonlinear springs and elastic modes in the diaphragm. The non-stationary motions are confirmed as the chaos due to the maximum Lyapunov exponents with a positive number. From the time histories of the deformation distribution in the chaotic vibration, we identified nonlinear modal couplings.

Keywords: Nonlinear Vibration, Finite Element Method, Chaos , Small Earphone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
1678 Reducing Uncertainty of Monte Carlo Estimated Fatigue Damage in Offshore Wind Turbines Using FORM

Authors: Jan-Tore H. Horn, Jørgen Juncher Jensen

Abstract:

Uncertainties related to fatigue damage estimation of non-linear systems are highly dependent on the tail behaviour and extreme values of the stress range distribution. By using a combination of the First Order Reliability Method (FORM) and Monte Carlo simulations (MCS), the accuracy of the fatigue estimations may be improved for the same computational efforts. The method is applied to a bottom-fixed, monopile-supported large offshore wind turbine, which is a non-linear and dynamically sensitive system. Different curve fitting techniques to the fatigue damage distribution have been used depending on the sea-state dependent response characteristics, and the effect of a bi-linear S-N curve is discussed. Finally, analyses are performed on several environmental conditions to investigate the long-term applicability of this multistep method. Wave loads are calculated using state-of-the-art theory, while wind loads are applied with a simplified model based on rotor thrust coefficients.

Keywords: Fatigue damage, FORM, monopile, monte carlo simulation, reliability, wind turbine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1189
1677 FIR Filter Design via Linear Complementarity Problem, Messy Genetic Algorithm, and Ising Messy Genetic Algorithm

Authors: A.M. Al-Fahed Nuseirat, R. Abu-Zitar

Abstract:

In this paper the design of maximally flat linear phase finite impulse response (FIR) filters is considered. The problem is handled with totally two different approaches. The first one is completely deterministic numerical approach where the problem is formulated as a Linear Complementarity Problem (LCP). The other one is based on a combination of Markov Random Fields (MRF's) approach with messy genetic algorithm (MGA). Markov Random Fields (MRFs) are a class of probabilistic models that have been applied for many years to the analysis of visual patterns or textures. Our objective is to establish MRFs as an interesting approach to modeling messy genetic algorithms. We establish a theoretical result that every genetic algorithm problem can be characterized in terms of a MRF model. This allows us to construct an explicit probabilistic model of the MGA fitness function and introduce the Ising MGA. Experimentations done with Ising MGA are less costly than those done with standard MGA since much less computations are involved. The least computations of all is for the LCP. Results of the LCP, random search, random seeded search, MGA, and Ising MGA are discussed.

Keywords: Filter design, FIR digital filters, LCP, Ising model, MGA, Ising MGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023
1676 Exponential Stability of Linear Systems under a Class of Unbounded Perturbations

Authors: Safae El Alaoui, Mohamed Ouzahra

Abstract:

In this work, we investigate the exponential stability of a linear system described by x˙ (t) = Ax(t) − ρBx(t). Here, A generates a semigroup S(t) on a Hilbert space, the operator B is supposed to be of Desch-Schappacher type, which makes the investigation more interesting in many applications. The case of Miyadera-Voigt perturbations is also considered. Sufficient conditions are formulated in terms of admissibility and observability inequalities and the approach is based on some energy estimates. Finally, the obtained results are applied to prove the uniform exponential stabilization of bilinear partial differential equations.

Keywords: Exponential stabilization, unbounded operator, Desch-Schappacher, Miyadera-Voigt operator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 363
1675 Fractal Patterns for Power Quality Detection Using Color Relational Analysis Based Classifier

Authors: Chia-Hung Lin, Mei-Sung Kang, Cong-Hui Huang, Chao-Lin Kuo

Abstract:

This paper proposes fractal patterns for power quality (PQ) detection using color relational analysis (CRA) based classifier. Iterated function system (IFS) uses the non-linear interpolation in the map and uses similarity maps to construct various fractal patterns of power quality disturbances, including harmonics, voltage sag, voltage swell, voltage sag involving harmonics, voltage swell involving harmonics, and voltage interruption. The non-linear interpolation functions (NIFs) with fractal dimension (FD) make fractal patterns more distinguishing between normal and abnormal voltage signals. The classifier based on CRA discriminates the disturbance events in a power system. Compared with the wavelet neural networks, the test results will show accurate discrimination, good robustness, and faster processing time for detecting disturbing events.

Keywords: Power Quality (PQ), Color Relational Analysis(CRA), Iterated Function System (IFS), Non-linear InterpolationFunction (NIF), Fractal Dimension (FD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
1674 Optimal Planning of Waste-to-Energy through Mixed Integer Linear Programming

Authors: S. T. Tan, H. Hashim, W. S. Ho, C. T. Lee

Abstract:

Rapid economic development and population growth in Malaysia had accelerated the generation of solid waste. This issue gives pressure for effective management of municipal solid waste (MSW) to take place in Malaysia due to the increased cost of landfill. This paper discusses optimal planning of waste-to-energy (WTE) using a combinatorial simulation and optimization model through mixed integer linear programming (MILP) approach. The proposed multi-period model is tested in Iskandar Malaysia (IM) as case study for a period of 12 years (2011 -2025) to illustrate the economic potential and tradeoffs involved in this study. In this paper, 3 scenarios have been used to demonstrate the applicability of the model: (1) Incineration scenario (2) Landfill scenario (3) Optimal scenario. The model revealed that the minimum cost of electricity generation from 9,995,855 tonnes of MSW is estimated as USD 387million with a total electricity generation of 50MW /yr in the optimal scenario.

Keywords: Mixed Integer Linear Programming (MILP), optimization, solid waste management (SWM), Waste-to-energy (WTE).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2987
1673 Dimension Reduction of Microarray Data Based on Local Principal Component

Authors: Ali Anaissi, Paul J. Kennedy, Madhu Goyal

Abstract:

Analysis and visualization of microarraydata is veryassistantfor biologists and clinicians in the field of diagnosis and treatment of patients. It allows Clinicians to better understand the structure of microarray and facilitates understanding gene expression in cells. However, microarray dataset is a complex data set and has thousands of features and a very small number of observations. This very high dimensional data set often contains some noise, non-useful information and a small number of relevant features for disease or genotype. This paper proposes a non-linear dimensionality reduction algorithm Local Principal Component (LPC) which aims to maps high dimensional data to a lower dimensional space. The reduced data represents the most important variables underlying the original data. Experimental results and comparisons are presented to show the quality of the proposed algorithm. Moreover, experiments also show how this algorithm reduces high dimensional data whilst preserving the neighbourhoods of the points in the low dimensional space as in the high dimensional space.

Keywords: Linear Dimension Reduction, Non-Linear Dimension Reduction, Principal Component Analysis, Biologists.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
1672 Feature Reduction of Nearest Neighbor Classifiers using Genetic Algorithm

Authors: M. Analoui, M. Fadavi Amiri

Abstract:

The design of a pattern classifier includes an attempt to select, among a set of possible features, a minimum subset of weakly correlated features that better discriminate the pattern classes. This is usually a difficult task in practice, normally requiring the application of heuristic knowledge about the specific problem domain. The selection and quality of the features representing each pattern have a considerable bearing on the success of subsequent pattern classification. Feature extraction is the process of deriving new features from the original features in order to reduce the cost of feature measurement, increase classifier efficiency, and allow higher classification accuracy. Many current feature extraction techniques involve linear transformations of the original pattern vectors to new vectors of lower dimensionality. While this is useful for data visualization and increasing classification efficiency, it does not necessarily reduce the number of features that must be measured since each new feature may be a linear combination of all of the features in the original pattern vector. In this paper a new approach is presented to feature extraction in which feature selection, feature extraction, and classifier training are performed simultaneously using a genetic algorithm. In this approach each feature value is first normalized by a linear equation, then scaled by the associated weight prior to training, testing, and classification. A knn classifier is used to evaluate each set of feature weights. The genetic algorithm optimizes a vector of feature weights, which are used to scale the individual features in the original pattern vectors in either a linear or a nonlinear fashion. By this approach, the number of features used in classifying can be finely reduced.

Keywords: Feature reduction, genetic algorithm, pattern classification, nearest neighbor rule classifiers (k-NNR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1765
1671 Fuzzy EOQ Models for Deteriorating Items with Stock Dependent Demand and Non-Linear Holding Costs

Authors: G. C. Mahata, A. Goswami

Abstract:

This paper deals with infinite time horizon fuzzy Economic Order Quantity (EOQ) models for deteriorating items with  stock dependent demand rate and nonlinear holding costs by taking deterioration rate θ0 as a triangular fuzzy number  (θ0 −δ 1, θ0, θ0 +δ 2), where 1 2 0 0 <δ ,δ <θ are fixed real numbers. The traditional parameters such as unit cost and ordering  cost have been kept constant but holding cost is considered to vary. Two possibilities of variations in the holding cost function namely, a non-linear function of the length of time for which the item is held in stock and a non-linear function of the amount of on-hand inventory have been used in the models. The approximate optimal solution for the fuzzy cost functions in both these cases have been obtained and the effect of non-linearity in holding costs is studied with the help of a numerical example.

Keywords: Inventory Model, Deterioration, Holding Cost, Fuzzy Total Cost, Extension Principle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
1670 Extension of a Smart Piezoelectric Ceramic Rod

Authors: Ali Reza Pouladkhan, Jalil Emadi, Hamed Habibolahiyan

Abstract:

This paper presents an exact solution and a finite element method (FEM) for a Piezoceramic Rod under static load. The cylindrical rod is made from polarized ceramics (piezoceramics) with axial poling. The lateral surface of the rod is traction-free and is unelectroded. The two end faces are under a uniform normal traction. Electrically, the two end faces are electroded with a circuit between the electrodes, which can be switched on or off. Two cases of open and shorted electrodes (short circuit and open circuit) will be considered. Finally, a finite element model will be used to compare the results with an exact solution. The study uses ABAQUS (v.6.7) software to derive the finite element model of the ceramic rod.

Keywords: Finite element method, Ceramic rod; Axial poling, Normal traction, Short circuit, Open circuit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948
1669 One-DOF Precision Position Control using the Combined Piezo-VCM Actuator

Authors: Yung-Tien Liu, Chun-Chao Wang

Abstract:

This paper presents the control performance of a high-precision positioning device using the hybrid actuator composed of a piezoelectric (PZT) actuator and a voice-coil motor (VCM). The combined piezo-VCM actuator features two main characteristics: a large operation range due to long stroke of the VCM, and high precision and heavy load positioning ability due to PZT impact force. A one-degree-of-freedom (DOF) experimental setup was configured to examine the fundamental characteristics, and the control performance was effectively demonstrated by using a switching controller. In rough positioning state, an integral variable structure controller (IVSC) was used for the VCM to conduct long range of operation; in precision positioning state, an impact force controller (IFC) for the PZT actuator coupled with presliding states of the sliding table was used to obtain high-precision position control and achieve both forward and backward actuations. The experimental results showed that the sliding table having a mass of 881g and with a preload of 10 N was successfully positioned within the positioning accuracy of 10 nm in both forward and backward position controls.

Keywords: Integral variable structure controller (IVSC), impact force, precision positioning, presliding, PZT actuator, voice-coil motor (VCM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937
1668 The Validity Range of LSDP Robust Controller by Exploiting the Gap Metric Theory

Authors: Ali Ameur Haj Salah, Tarek Garna, Hassani Messaoud

Abstract:

This paper attempts to define the validity domain of LSDP (Loop Shaping Design Procedure) controller system, by determining the suitable uncertainty region, so that linear system be stable. Indeed the LSDP controller cannot provide stability for any perturbed system. For this, we will use the gap metric tool that is introduced into the control literature for studying robustness properties of feedback systems with uncertainty. A 2nd order electric linear system example is given to define the validity domain of LSDP controller and effectiveness gap metric.

Keywords: LSDP, Gap metric, Robust Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
1667 The Multi-Layered Perceptrons Neural Networks for the Prediction of Daily Solar Radiation

Authors: Radouane Iqdour, Abdelouhab Zeroual

Abstract:

The Multi-Layered Perceptron (MLP) Neural networks have been very successful in a number of signal processing applications. In this work we have studied the possibilities and the met difficulties in the application of the MLP neural networks for the prediction of daily solar radiation data. We have used the Polack-Ribière algorithm for training the neural networks. A comparison, in term of the statistical indicators, with a linear model most used in literature, is also performed, and the obtained results show that the neural networks are more efficient and gave the best results.

Keywords: Daily solar radiation, Prediction, MLP neural networks, linear model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328
1666 On the Algorithmic Iterative Solutions of Conjugate Gradient, Gauss-Seidel and Jacobi Methods for Solving Systems of Linear Equations

Authors: H. D. Ibrahim, H. C. Chinwenyi, H. N. Ude

Abstract:

In this paper, efforts were made to examine and compare the algorithmic iterative solutions of conjugate gradient method as against other methods such as Gauss-Seidel and Jacobi approaches for solving systems of linear equations of the form Ax = b, where A is a real n x n symmetric and positive definite matrix. We performed algorithmic iterative steps and obtained analytical solutions of a typical 3 x 3 symmetric and positive definite matrix using the three methods described in this paper (Gauss-Seidel, Jacobi and Conjugate Gradient methods) respectively. From the results obtained, we discovered that the Conjugate Gradient method converges faster to exact solutions in fewer iterative steps than the two other methods which took much iteration, much time and kept tending to the exact solutions.

Keywords: conjugate gradient, linear equations, symmetric and positive definite matrix, Gauss-Seidel, Jacobi, algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 473
1665 Convergence Analysis of Training Two-Hidden-Layer Partially Over-Parameterized ReLU Networks via Gradient Descent

Authors: Zhifeng Kong

Abstract:

Over-parameterized neural networks have attracted a great deal of attention in recent deep learning theory research, as they challenge the classic perspective of over-fitting when the model has excessive parameters and have gained empirical success in various settings. While a number of theoretical works have been presented to demystify properties of such models, the convergence properties of such models are still far from being thoroughly understood. In this work, we study the convergence properties of training two-hidden-layer partially over-parameterized fully connected networks with the Rectified Linear Unit activation via gradient descent. To our knowledge, this is the first theoretical work to understand convergence properties of deep over-parameterized networks without the equally-wide-hidden-layer assumption and other unrealistic assumptions. We provide a probabilistic lower bound of the widths of hidden layers and proved linear convergence rate of gradient descent. We also conducted experiments on synthetic and real-world datasets to validate our theory.

Keywords: Over-parameterization, Rectified Linear Units (ReLU), convergence, gradient descent, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 896
1664 New Efficient Iterative Optimization Algorithm to Design the Two Channel QMF Bank

Authors: Ram Kumar Soni, Alok Jain, Rajiv Saxena

Abstract:

This paper proposes an efficient method for the design of two channel quadrature mirror filter (QMF) bank. To achieve minimum value of reconstruction error near to perfect reconstruction, a linear optimization process has been proposed. Prototype low pass filter has been designed using Kaiser window function. The modified algorithm has been developed to optimize the reconstruction error using linear objective function through iteration method. The result obtained, show that the performance of the proposed algorithm is better than that of the already exists methods.

Keywords: Filterbank, near perfect reconstruction, Kaiserwindow, QMF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676
1663 Face Recognition using Radial Basis Function Network based on LDA

Authors: Byung-Joo Oh

Abstract:

This paper describes a method to improve the robustness of a face recognition system based on the combination of two compensating classifiers. The face images are preprocessed by the appearance-based statistical approaches such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). LDA features of the face image are taken as the input of the Radial Basis Function Network (RBFN). The proposed approach has been tested on the ORL database. The experimental results show that the LDA+RBFN algorithm has achieved a recognition rate of 93.5%

Keywords: Face recognition, linear discriminant analysis, radial basis function network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2122