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Extension of a Smart Piezoelectric Ceramic Rod

Ali Reza Pouladkhan, Jalil Emadi and Hamed Habibolahiyan

Abstract—This paper presents an exact solution and a finite
element method (FEM) for a Piezoceramic Rod under static load.
The cylindrical rod is made from polarized ceramics
(piezoceramics) with axial poling. The lateral surface of the rod is
traction-free and is unelectroded. The two end faces are under a
uniform normal traction. Electrically, the two end faces are
electroded with a circuit between the electrodes, which can be
switched on or off. Two cases of open and shorted electrodes
(short circuit and open circuit) will be considered. Finally, a finite
element model will be used to compare the results with an exact
solution. The study uses ABAQUS (v.6.7) software to derive the
finite element model of the ceramic rod.

Keywords—Finite element method; Ceramic rod; Axial
poling; Normal traction; Short circuit; Open circuit.

[. INTRODUCTION

PIEZOELECTRIC materials are used widely in transducers
such as ultrasonic transmitters and receivers, sonar for
underwater applications, and as actuators for precision
positioning devices. Piezoelectric materials exhibit
Electromechanical Coupling, which is useful for the design
of devices for sensing and actuation. The coupling is
exhibited in the fact that piezoelectric materials produce an
electrical displacement when a mechanical stress is applied
and can produce mechanical strain under the application of
an electric field. Due to the fact that the mechanical-to-
electrical coupling was discovered first, this property is
termed the direct piezoelectric effect, while the electrical-to-
mechanical coupling is termed the converse piezoelectric
effect [1]. The physical basis for piezoelectricity in solids is
widely studied by physicists and materials scientists. Most
piezoelectric materials belong to a class of crystalline
solids. Crystals are solids in which the atoms are arranged
in a single pattern repeated throughout the body. Crystalline
materials are highly ordered, and an understanding of the
bulk properties of the material can begin by understanding
the properties of the crystals repeated throughout the solid.
The individual crystals in a solid can be thought of as
building blocks for the material. Joining crystals together
produces a three-dimensional arrangement of the crystals
called a wunit cell. One of the most important properties of a
unit cell in relation to piezoelectricity is the polarity of the
unit cell structure. Crystallographers have studied the
structure of unit cells and classified them into a set of 32
crystal classes or point groups. Each point group is
characterized by a particular arrangement of the constituent
atoms. Of these 32 point groups, 10 have been shown to
exhibit a polar axis in which there is a net separation
between positive charges in the crystal and their associated
negative charges. This separation of charge produces an
electric dipole, which can give rise to piezoelectricity [1,2].
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Induced strain actuators like piezoelectric materials have
been effectively used as integrated sensors and actuators for
monitoring and further controlling the mechanical behavior
of advanced structures [3,4]. Over the past decade, Finite
Element Analysis (FEA) techniques have been employed to
model the overall structural response involving the
electromechanical coupling effects of the piezoelectric
sensing/actuating elements [5]. Superior to analytical
methods, the FEA technique provides greater geometric
flexibility and allows use of more complex electrical and
mechanical boundary conditions. Although much research
effort has been devoted to finite element formulation for the
electromechanical coupling effects of piezoelectric
materials (Tzou and Tseng, 1990; Ha et al., 1991), fully
electromechanical coupled piezoelectric elements have just
recently become available in commercial FEA software [6].

Before the new piezoelectric capability was developed in
commercial FEA codes, the induced strain actuation
function of piezoelectric materials had been modeled using
analogous thermal expansion/contraction characteristics of
structural materials [7]. This method was helpful in the
studies of the resulting stress distribution in actuators and
host substructures and the overall deformation of integrated
structures under static actuation. However, the intrinsic
electromechanical coupling effects of piezoelectric
materials cannot be modeled. Moreover, the dynamic
actuation response of piezoelectric actuators on host
substructures is difficult to implement by this method.

The new piezoelectric finite element capability in
commercial FEA packages gives convenient access to
perform both static and dynamic analysis for the fully
coupled piezoelectric and structural response. In addition,
since most commercialized FEA packages are generally
equipped with well-developed pre and post-processors and
user-friendly interactive graphics working environments,
the time-consuming tasks of finite element model
generation and solution extraction can be significantly
reduced [7].

II. LINEAR PIEZOELECTRICITY FOR INFINITESIMAL FIELDS

Nonlinear theory of Electroelasticity is used for large
deformations and strong electric fields. In linear theory like
Piezoelectricity, we can specialize the nonlinear equations
to the case of infinitesimal deformations and fields, which
results in the linear theory of piezoelectricity. For
Linearization, we reduce the nonlinear -electroelastic
equations in the nonlinear theory to the linear theory of
piezoelectricity for infinitesimal deformations and fields.
We consider small amplitude motions of an electroelastic
body around its reference state due to small mechanical and
electrical loads [8]. It is assumed that the displacement
gradient is infinitesimal in the following sense that :
luik|l « 1 (M
Under some norm, e.g., ||ui‘,(|| =max|u,-,K|. It is also
assumed that the electric potential gradient ¢ is
infinitesimal.
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We neglect powers of u; x and ¢ x higher than the first as
well as their products in all expressions. The linear terms
themselves are also dropped in comparison with any finite
quantity such the Kronecker delta or 1. Under (1),

aui aui aui
0Xi oy v
aui (3)
Y

b =ik = Pibix

Which implies that, to the first order of approximation, the
displacement and potential gradients calculated from the
material and spatial coordinates are numerically equal.
Therefore, within the linear theory, there is no need to
distinguish capital and lowercase indices. Only lowercase
indices will be used in the linear theory. The material time
derivative of an infinitesimal field variable f(y, t) is simply
the partial derivative with respect to t :

Df of of
E = Eleixed = g_l}lyfixed ;
y.
+ a_yl |tfixed a_tL |X fixed (4)
af of _of

= E |yfixed +v; 6_371 = Elyfixed

For the finite strain tensor :

Sk = 2 (uL,K + Uk, + uM,KuM,L)
(5)

~

N| =

(uL,K + uK,L)

In the linear theory, the infinitesimal strain tensor will be
denoted by :

Sk = %(ul,k + Uy) (6)
The material electric field becomes :
Ex = Eiyix = Eibix = Ey (7
Similarly,
o =0,0ll 20,0 =0 =1
My; =0,K;; = Fpj = 804, Ty, = 8,610y (®)
Px = Py, Dg = Dy
Where :
0'5- = Electrostatic strees tensor
a{;’ , My j = Symmetric Maxwell stress tensor in spatial ,
two point
o;; = Cauchy stress tensor
ag > Frjs T2, = Symmetric stress tensor in spatial , two
point , and material form
T;j , K j = Total stress tensor in spatial , two point
Px = Reference electric polarization vector
Dy = Reference electric displacement vector

Since the various stress tensors are either approximately
zero (quadratic in the infinitesimal gradients) or about the
same, we will use T;; to denote the stress tensor that is
linear in the infinitesimal gradients. This is according to the
IEEE Standard on Piezoelectricity. The notation for the rest
of the linear theory will also follow the IEEE Standard [9].
Then :
oy =0f =1; - T
Ky; = Fp; =605 > Ty )
TR, = 8ki61j01j = T
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or small fields the fotal free energy can be approximated
by :

~ 1
PoY(Sk1, Ex) = potb (S, Ex) — 2 & ExEg

= 2 €2 aBcpSaScp — €apcEaSec — EXz asEqEg

1 (10)
- ESOJEKEK
1. 1
- Ecijklsijskl — eijiEi S — EgijEiEj
= H(Sk, Ex)
Where :
& = X21j + €004 (1)

The superscript E in cfjkl indicates that the independent
electric constitutive variable is the electric field E. The
superscript S f] indicates that the mechanical
constitutive variable is the strain tensor S. We have also
denoted the total free energy of the linear theory by H
which is usually called the electric enthalpy. The electrical
enthalpy (H) in a piezoelectric body is an energy quantity
similar to strain energy in an elastic structure. The
constitutive relations generated by H are :

in €

0H 5
T; = as.. = Cijkl'skl — eyijEx
o (12)
0H s
D; = TOE €Skt + ik Eie
Where :

CiEjkl = Elastic stiffness constants
exij = Piezoelectric stress constants

&;x = Dielectric constants
Hence 7', D and P are also infinitesimal. The material
constants in Equation (12) have the following symmetries :

E — E _ E

Cijkt = Cjikt = Ckuij

€kij = Ckji (13)
S S

&j = &

We also assume that the elastic and dielectric material

tensors are positive definite in the following sense :
E —

CijraSijSia = 0 for any S;; = Sj;

and ClEjleijSkl =0- S’-J =0

&5 EE; = 0 for any E;

and ejE;E; =0 - E; = 0

(14)

III. COMPACT MATRIX NOTATION
We now introduce a compact matrix notation. This
notation consists of replacing pairs of indices ij or kl by
single indices p or q where i, j, k and [ take the values of 1,
2, and 3, and p and q take the values 1, 2, 3, 4, 5, and 6
according to [8] :
ijorkl:11 22 33 23 0r32 31o0r 13 12 0r 21 (15)

porq: 1 2 3 4 5 6

Thus

Cijkl = Cpq»€ikt = €ip ., 1ij (16)
- Tp

For the strain tensor, we introduce S, such that :
S1 =811, S2 = 852, S3 = S33

54, = 2523 ) 55 = 2531 ) 56 (17)
=251,
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The constitutive relations in Equation (12) can then be
written as :

— E
Tp = pgSq — ik

D; = e;qSq + €5 Ex (18)
In matrix form, Equation (18) becomes :

T, /Cf1 c, cfs s cfs Cfe\ S:

T, C3i Ch Chs Chy Cs Chg S5
ITs 1 _ C§1 ngz C§3 C§4 CsEs Cge IS5 1

Ty C§1 Ciy Ci3s Cis Cis Cig  Sa
k;sj \CSEl 5, CE CEy  CEs CSEG/ @5)

6 CE1 C& C& Céa Cés Cés ° (19)

/311 €21
€12 €32 €32
E;

€13 €33 €33 E
- 2
€14 €34 €34 }

\915 €25 €35
€16 €26 €36

S S S
&1 &2 &13)\ (B4
+ 5291 figz 5293 E,
S S S
€31 €32 €33
IV. DISPLACEMENT — POTENTIAL FORMULATION

In summary, the linear theory of piezoelectricity consists
of the equations of motion and charge [8] :

Tij+pfi=pu; ,  Dyi=pe (20)
Constitutive relations :
Tij = cijraSi — exijEx » Dy 20

= el'ijjk + EUE]
And the strain-displacement and electric field-potential
relations :
Sij=(w; +u)/2 , E;=—¢; (22)
Where u is the mechanical displacement vector, 7 is the
stress tensor, S is the strain tensor, E is the electric field, D
is the electric displacement (electric flux density), ¢ is the
electric potential, p is the known reference mass density, p,
is the body free charge density, and f'is the body force per
unit mass. We have neglected the superscripts in the
material constants. With successive substitutions from
Equations (21) and (22), Equation (20) can be written as
four equations for # and :
Cijiali + ekijPrj + Pfi

= pi;
CikiUr,ii — EijPij = Pe

(23)

V. EXTENSION OF A CERAMIC ROD

Consider a cylindrical rod of length L made from
polarized ceramics with axial poling. The cross-section of
the rod can be arbitrary. The lateral surface of the rod is
traction-free and is unelectroded. The two end faces are
under a uniform normal traction p, but there is no tangential
traction. Electrically, the two end faces are electroded with
a circuit between the electrodes, which can be switched on
or off. Two cases of open and shorted electrodes (short
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circuit and open circuit) will be considered. This problem is
an electrostatic case which is very formal in the
piezoelectric problems. Figure 1 shows an axially poled
ceramic rod.

/
X1
Electrode T Electrode
< o=
P ) —p — P
X3
AN
X2 \
Traction-free, unelectroded
Fig. 1 An axially poled ceramic rod [8]
A. Boundary Value Problem
The boundary value problem is :
T]-l-']-=0 ) Di,i=0 in V
Sij = StiuTia + dyijEx » Dy
= dilekl + 8,:7]‘(Ek in V
EijkEmnSijym =0 , &k j=01in V
Tyn; =0 , Din; = 0 onthe lateral surface
I33=0, T3, =0, Tss=p , E; =E, (24)

=0, x3=0,L

P (x3 =0)
= ¢(x3 = L) , ifthe end faces are shorted

fD3dA=0 , X3

= 0,L , ifthe end faces are open
Where we have chosen the stress components and the
electric displacement components as the primary unknowns.
Many of these components are known on the lateral surface,
and it is easy to guess what they are like inside the cylinder.
Since many components of 7 will vanish, it is convenient to
use constitutive relations with 7 as the independent
constitutive variable. In this formulation the compatibility
conditions on strains and the curl-free condition on the
electric field have to be satisfied. As suggested by the
boundary conditions on the lateral surface we consider the
following 7 and D fields
T35 =p ,allother T;; =0
D; = constant , D, =D, =0
Which satisfy the equation of motion and the charge
equation. Since the T and D fields are constants, the
constitutive relations imply that the S and E fields are also
constants. Therefore, the compatibility conditions on S and
the curl-free condition on E are satisfied. (25) also satisfies
the boundary conditions on the lateral surface and the
mechanical boundary conditions on the end faces. From the
constitutive relations
S33 =531 =512=0
S33 = s53p +dasEs , Sip = Sa,
=sf3p + d31E;
E; =E, =0, Dy=dyp +eizE;s
Hence the electrical boundary conditions of E; = E, =0
(constant electric potential on an electrode) on the end
electrodes are also satisfied. We consider two cases as
follows.

(25)

(26)
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B. Shorted Electrodes

In this case, there is no potential difference between the
end electrodes. Since E; is constant alon the rod, we must
have

E;=0 27)
Which implies that
D3 =dz3p , S33=s553p (28)

The mechanical work done to the rod per unit volume

during the static extensional process is

1 1
W, = §T33533 = §S§3p2 (29

C. Open Electrodes
In this case, there is no net charge on he end electrodes.
Since D5 is constant over a cross-section, we must have

D;=0 (30)
Which implies that
ds3
E; = ——
3 853 p

ds3

S33 = $53p — ds3 TP 31
€33

2

_ SE 1 d33 p

=S|\ l——F—7F
£33553

The mechanical work done to the rod per nit volume is
1 1 d3
W, = ET33533 = 5553 <1 - £3T:53353> P’ (32)
D. lectromechanical Coupling Fa tor
Since
d3s
€33553
We have
Wy, > W, (34)
Therefore, the rod appears to be stiffer hen the electrodes
are open and an axial electric field is produced. This is
called the piezoelectric stiffening effect. he following ratio
is called the longitudinal electromechani al coupling factor
for the extension of a ceramic rod with xial poling, and is
denoted by

>0 (33)

P N2 _ Wi-Wp _ dis
(kip)? = 02 = (39)

For PZT-5H, a common ceramic, fr m the following
material constants [8] :
S11 =165 , 533 =207 , s44 = 43.5
S, = —4.78 , s;3 = —845x10"2m?/N
ds; = =274 , dis =741 , dss
=593 x107'2C/N
€11 = 3130¢; , 33 = 3400¢,
g =8.854 X 1072 F/m
We have
Y2 = (593 x 10712)2
(kza)” = (3400 x 8.85 x 10~12)(20.7 x 10-12)
= 0.56

ks3 = 0.75

Which is typical for ceramics. Graphic lly, W, , W, and
their difference are represented by area in the following
figure. This figure confirms that a st ffer rod has less
mechanical work, in other words, in sho t circuit case, the
mechanical work done to the rod is mor than open circuit
case (W; > W,).
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Fig. 2 Work done to the cera ic rod per unit volume along
different aths [8]

VI. FINITE ELE ENT METHOD
In this section, a finite elem nt model of the ceramic rod
will be studied. The geom trical configuration of the
piezoceramic rod is shown in f gure 3. =

z

Fig. 3 The geometrical confi uration of the ceramic ro

The loaded configuration of the piezoceramic rod is
shown in figure 4.

z

P
Fig. 4 The loaded configu ation of the ceramic rod

The length of the ceramic ro is assumed to be 10 cm. the
radius of the rod is 1.0 cm. T e uniform normal traction is
assumed to be 1 N/m”. A typic 1 finite element model of the
ceramic rod is shown in figu e 5. It should be noted that
ceramic rod consists of e gh-node 3D linear brick

iezoelectric elements (C3D8 ). The finite element mesh
consists of 1872 elements for piezoceramic rod [10].

Fig. 5 Typical finite elemen model of the ceramic rod

Figure 6 shows the longitudinal displacement of the
iezoceramic rod obtained by inite element analysis.
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Fig. 6 Longitudinal displacement of the cer mic rod by finite
clement analysis

Two cases of short circuit (S.C) and pen circuit (0.C)
as the electrical boundary conditions was investigated and
an exact solution was presented for eac case. It is shown
that the results obtained by the finite element analysis
matches very well with the exact s lutions for each
boundary condition. The results obtai ed by the finite
element analysis and exact solution ar presented in the
following table I

TABLE I
THE RESULTS OBTAINED BY THE FINITE ELEMENT A ALYSIS AND EXACT
SOLUTION FOR PZT-5H CERAMIC OD

Case Dg‘xact S3E'3xact EgE'xact D;EM S3F3EM E3FEM
S.C | 593 20.7 0 594 20.7 0
x 10712 | x 10712 x 10712 | x 10712
0.C 0 9.11 -1.97 0 9.16 —1.95
x 10712 | x 1072 x 10712 | x 1072

VII. CONCLUSION

The piezoelectric finite element c pability recently
made available in commercial FEA pac ages allows both
static and dynamic analysis of fully co pled piezoelectric
and structural responses. This paper reviewed the capability
of the piezoelectric element provided y commercialized
FEA codes, and discussed a simple case of static finite
element analysis involving piezoelect ic and structural
coupling.

Two cases of short circuit and o en circuit as the
electrical boundary conditions was in estigated and an
exact solution was presented for each c¢ se. It was shown
that the results obtained by the finite element analysis
matches very well with the exact s lutions for each
boundary condition.
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