Search results for: Artificial Bee Colony (ABC) algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4153

Search results for: Artificial Bee Colony (ABC) algorithm

3613 Estimation of Real Power Transfer Allocation Using Intelligent Systems

Authors: H. Shareef, A. Mohamed, S. A. Khalid, Aziah Khamis

Abstract:

This paper presents application artificial intelligent (AI) techniques, namely artificial neural network (ANN), adaptive neuro fuzzy interface system (ANFIS), to estimate the real power transfer between generators and loads. Since these AI techniques adopt supervised learning, it first uses modified nodal equation method (MNE) to determine real power contribution from each generator to loads. Then the results of MNE method and load flow information are utilized to estimate the power transfer using AI techniques. The 25-bus equivalent system of south Malaysia is utilized as a test system to illustrate the effectiveness of both AI methods compared to that of the MNE method. The mean squared error of the estimate of ANN and ANFIS power transfer allocation methods are 1.19E-05 and 2.97E-05, respectively. Furthermore, when compared to MNE method, ANN and ANFIS methods computes generator contribution to loads within 20.99 and 39.37msec respectively whereas the MNE method took 360msec for the calculation of same real power transfer allocation. 

Keywords: Artificial intelligence, Power tracing, Artificial neural network, ANFIS, Power system deregulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2586
3612 A Branch and Bound Algorithm for Resource Constrained Project Scheduling Problem Subject to Cumulative Resources

Authors: A. Shirzadeh Chaleshtari, Sh. Shadrokh

Abstract:

Renewable and non-renewable resource constraints have been vast studied in theoretical fields of project scheduling problems. However, although cumulative resources are widespread in practical cases, the literature on project scheduling problems subject to these resources is scant. So in order to study this type of resources more, in this paper we use the framework of a resource constrained project scheduling problem (RCPSP) with finish-start precedence relations between activities and subject to the cumulative resources in addition to the renewable resources. We develop a branch and bound algorithm for this problem customizing precedence tree algorithm of RCPSP. We perform extensive experimental analysis on the algorithm to check its effectiveness and performance for solving different instances of the problem in question.

Keywords: Resource constrained project scheduling problem, cumulative resources, branch and bound algorithm, precedence tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2909
3611 Emission Constrained Hydrothermal Scheduling Algorithm

Authors: Sayeed Salam

Abstract:

This paper presents an efficient emission constrained hydrothermal scheduling algorithm that deals with nonlinear functions such as the water discharge characteristics, thermal cost, and transmission loss. It is then incorporated into the hydrothermal coordination program. The program has been tested on a practical utility system having 32 thermal and 12 hydro generating units. Test results show that a slight increase in production cost causes a substantial reduction in emission.

Keywords: Emission constraint, Hydrothermal coordination, and Hydrothermal scheduling algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1372
3610 Optimal Planning of Ground Grid Based on Particle Swam Algorithm

Authors: Chun-Yao Lee, Yi-Xing Shen

Abstract:

This paper presents an application of particle swarm optimization (PSO) to the grounding grid planning which compares to the application of genetic algorithm (GA). Firstly, based on IEEE Std.80, the cost function of the grounding grid and the constraints of ground potential rise, step voltage and touch voltage are constructed for formulating the optimization problem of grounding grid planning. Secondly, GA and PSO algorithms for obtaining optimal solution of grounding grid are developed. Finally, a case of grounding grid planning is shown the superiority and availability of the PSO algorithm and proposal planning results of grounding grid in cost and computational time.

Keywords: Genetic algorithm, particle swarm optimization, grounding grid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2084
3609 Artificial Intelligent (AI) Based Cascade Multi-Level Inverter for Smart Nano Grid

Authors: S. Chatterji, S. L. Shimi

Abstract:

As wind, solar and other clean and green energy sources gain popularity worldwide, engineers are seeking ways to make renewable energy systems more affordable and to integrate them with existing ac power grids. In the present paper an attempt has been made for integrating the PV arrays to the smart nano grid using an artificial intelligent (AI) based solar powered cascade multilevel inverter. The AI based controller switching scheme has been used for improving the power quality by reducing the Total Harmonic Distortion (THD) of the multi-level inverter output voltage.

Keywords: Artificial Intelligent (AI), Solar Powered Multi-level Inverter, Smart nano grid, Total Harmonic Distortion (THD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3423
3608 Distributed Estimation Using an Improved Incremental Distributed LMS Algorithm

Authors: Amir Rastegarnia, Mohammad Ali Tinati, Azam Khalili

Abstract:

In this paper we consider the problem of distributed adaptive estimation in wireless sensor networks for two different observation noise conditions. In the first case, we assume that there are some sensors with high observation noise variance (noisy sensors) in the network. In the second case, different variance for observation noise is assumed among the sensors which is more close to real scenario. In both cases, an initial estimate of each sensor-s observation noise is obtained. For the first case, we show that when there are such sensors in the network, the performance of conventional distributed adaptive estimation algorithms such as incremental distributed least mean square (IDLMS) algorithm drastically decreases. In addition, detecting and ignoring these sensors leads to a better performance in a sense of estimation. In the next step, we propose a simple algorithm to detect theses noisy sensors and modify the IDLMS algorithm to deal with noisy sensors. For the second case, we propose a new algorithm in which the step-size parameter is adjusted for each sensor according to its observation noise variance. As the simulation results show, the proposed methods outperforms the IDLMS algorithm in the same condition.

Keywords: Distributes estimation, sensor networks, adaptive filter, IDLMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447
3607 Influence of Model Hydrometeor Form on Probability of Discharge Initiation from Artificial Charged Water Aerosol Cloud

Authors: A. G. Temnikov, O. S. Belova, L. L. Chernensky, T. K. Gerastenok, N. Y. Lysov, A. V. Orlov, D. S. Zhuravkova

Abstract:

Hypothesis of the lightning initiation on the arrays of large hydrometeors are in the consideration. There is no agreement about the form the hydrometeors that could be the best for the lightning initiation from the thundercloud. Artificial charged water aerosol clouds of the positive or negative polarity could help investigate the possible influence of the hydrometeor form on the peculiarities and the probability of the lightning discharge initiation between the thundercloud and the ground. Artificial charged aerosol clouds that could create the electric field strength in the range of 5-6 kV/cm to 16-18 kV/cm have been used in experiments. The array of the model hydrometeors of the volume and plate form has been disposed near the bottom cloud boundary. It was established that the different kinds of the discharge could be initiated in the presence of the model hydrometeors array – from the cloud discharges up to the diffuse and channel discharges between the charged cloud and the ground. It was found that the form of the model hydrometeors could significantly influence the channel discharge initiation from the artificial charged aerosol cloud of the negative or positive polarity correspondingly. Analysis and generalization of the experimental results have shown that the maximal probability of the channel discharge initiation and propagation stimulation has been observed for the artificial charged cloud of the positive polarity when the arrays of the model hydrometeors of the cylinder revolution form have been used. At the same time, for the artificial charged clouds of the negative polarity, application of the model hydrometeor array of the plate rhombus form has provided the maximal probability of the channel discharge formation between the charged cloud and the ground. The established influence of the form of the model hydrometeors on the channel discharge initiation and from the artificial charged water aerosol cloud and its following successful propagation has been related with the different character of the positive and negative streamer and volume leader development on the model hydrometeors array being near the bottom boundary of the charged cloud. The received experimental results have shown the possibly important role of the form of the large hail particles precipitated in thundercloud on the discharge initiation.

Keywords: Cloud and channel discharges, hydrometeor form, lightning initiation, negative and positive artificial charged aerosol cloud.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 877
3606 3D Mesh Coarsening via Uniform Clustering

Authors: Shuhua Lai, Kairui Chen

Abstract:

In this paper, we present a fast and efficient mesh coarsening algorithm for 3D triangular meshes. Theis approach can be applied to very complex 3D meshes of arbitrary topology and with millions of vertices. The algorithm is based on the clustering of the input mesh elements, which divides the faces of an input mesh into a given number of clusters for clustering purpose by approximating the Centroidal Voronoi Tessellation of the input mesh. Once a clustering is achieved, it provides us an efficient way to construct uniform tessellations, and therefore leads to good coarsening of polygonal meshes. With proliferation of 3D scanners, this coarsening algorithm is particularly useful for reverse engineering applications of 3D models, which in many cases are dense, non-uniform, irregular and arbitrary topology. Examples demonstrating effectiveness of the new algorithm are also included in the paper.

Keywords: Coarsening, mesh clustering, shape approximation, mesh simplification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406
3605 Smart Technology for Hygrothermal Performance of Low Carbon Material Using an Artificial Neural Network Model

Authors: Manal Bouasria, Mohammed-Hichem Benzaama, Valérie Pralong, Yassine El Mendili

Abstract:

Reducing the quantity of cement in cementitious composites can help to reduce the environmental effect of construction materials. Byproducts such as ferronickel slags (FNS), fly ash (FA), and waste as Crepidula fornicata shells (CR) are promising options for cement replacement. In this work, we investigated the relevance of substituting cement with FNS-CR and FA-CR on the mechanical properties of mortar and on the thermal properties of concrete. Foraging intervals ranging from 2 days to 28 days, the mechanical properties are obtained by 3-point bending and compression tests. The chosen mix is used to construct a prototype in order to study the material’s hygrothermal performance. The data collected by the sensors placed on the prototype were utilized to build an artificial neural network.

Keywords: Artificial neural network, cement, circular economy, concrete, byproducts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 356
3604 Fractional Delay FIR Filters Design with Enhanced Differential Evolution

Authors: Krzysztof Walczak

Abstract:

Fractional delay FIR filters design method based on the differential evolution algorithm is presented. Differential evolution is an evolutionary algorithm for solving a global optimization problems in the continuous search space. In the proposed approach, an evolutionary algorithm is used to determine the coefficients of a fractional delay FIR filter based on the Farrow structure. Basic differential evolution is enhanced with a restricted mating technique, which improves the algorithm performance in terms of convergence speed and obtained solution. Evolutionary optimization is carried out by minimizing an objective function which is based on the amplitude response and phase delay errors. Experimental results show that the proposed algorithm leads to a reduction in the amplitude response and phase delay errors relative to those achieved with the Least-Squares method.

Keywords: Fractional Delay Filters, Farrow Structure, Evolutionary Computation, Differential Evolution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865
3603 A New Derivative-Free Quasi-Secant Algorithm For Solving Non-Linear Equations

Authors: F. Soleymani, M. Sharifi

Abstract:

Most of the nonlinear equation solvers do not converge always or they use the derivatives of the function to approximate the root of such equations. Here, we give a derivative-free algorithm that guarantees the convergence. The proposed two-step method, which is to some extent like the secant method, is accompanied with some numerical examples. The illustrative instances manifest that the rate of convergence in proposed algorithm is more than the quadratically iterative schemes.

Keywords: Non-linear equation, iterative methods, derivative-free, convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
3602 Genetic Algorithm Based Optimal Control for a 6-DOF Non Redundant Stewart Manipulator

Authors: A. Omran, G. El-Bayiumi, M. Bayoumi, A. Kassem

Abstract:

Applicability of tuning the controller gains for Stewart manipulator using genetic algorithm as an efficient search technique is investigated. Kinematics and dynamics models were introduced in detail for simulation purpose. A PD task space control scheme was used. For demonstrating technique feasibility, a Stewart manipulator numerical-model was built. A genetic algorithm was then employed to search for optimal controller gains. The controller was tested onsite a generic circular mission. The simulation results show that the technique is highly convergent with superior performance operating for different payloads.

Keywords: Stewart kinematics, Stewart dynamics, task space control, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894
3601 New Hybrid Algorithm for Task Scheduling in Grid Computing to Decrease missed Task

Authors: Z. Pooranian, A. Harounabadi, M. Shojafar, N. Hedayat

Abstract:

The purpose of Grid computing is to utilize computational power of idle resources which are distributed in different areas. Given the grid dynamism and its decentralize resources, there is a need for an efficient scheduler for scheduling applications. Since task scheduling includes in the NP-hard problems various researches have focused on invented algorithms especially the genetic ones. But since genetic is an inherent algorithm which searches the problem space globally and does not have the efficiency required for local searching, therefore, its combination with local searching algorithms can compensate for this shortcomings. The aim of this paper is to combine the genetic algorithm and GELS (GAGELS) as a method to solve scheduling problem by which simultaneously pay attention to two factors of time and number of missed tasks. Results show that the proposed algorithm can decrease makespan while minimizing the number of missed tasks compared with the traditional methods.

Keywords: Grid Computing, Genetic Algorithm, Gravitational Emulation Local Search (GELS), missed task

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946
3600 Controlling the Angle of Attack of an Aircraft Using Genetic Algorithm Based Flight Controller

Authors: S. Swain, P. S Khuntia

Abstract:

In this paper, the unstable angle of attack of a FOXTROT aircraft is controlled by using Genetic Algorithm based flight controller and the result is compared with the conventional techniques like Tyreus-Luyben (TL), Ziegler-Nichols (ZN) and Interpolation Rule (IR) for tuning the PID controller. In addition, the performance indices like Mean Square Error (MSE), Integral Square Error (ISE), and Integral Absolute Time Error (IATE) etc. are improved by using Genetic Algorithm. It was established that the error by using GA is very less as compared to the conventional techniques thereby improving the performance indices of the dynamic system.

Keywords: Angle of Attack, Genetic Algorithm, Performance Indices, PID Controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773
3599 The Load Balancing Algorithm for the Star Interconnection Network

Authors: Ahmad M. Awwad, Jehad Al-Sadi

Abstract:

The star network is one of the promising interconnection networks for future high speed parallel computers, it is expected to be one of the future-generation networks. The star network is both edge and vertex symmetry, it was shown to have many gorgeous topological proprieties also it is owns hierarchical structure framework. Although much of the research work has been done on this promising network in literature, it still suffers from having enough algorithms for load balancing problem. In this paper we try to work on this issue by investigating and proposing an efficient algorithm for load balancing problem for the star network. The proposed algorithm is called Star Clustered Dimension Exchange Method SCDEM to be implemented on the star network. The proposed algorithm is based on the Clustered Dimension Exchange Method (CDEM). The SCDEM algorithm is shown to be efficient in redistributing the load balancing as evenly as possible among all nodes of different factor networks.

Keywords: Interconnection networks, Load balancing, Star network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109
3598 Comparing Autoregressive Moving Average (ARMA) Coefficients Determination using Artificial Neural Networks with Other Techniques

Authors: Abiodun M. Aibinu, Momoh J. E. Salami, Amir A. Shafie, Athaur Rahman Najeeb

Abstract:

Autoregressive Moving average (ARMA) is a parametric based method of signal representation. It is suitable for problems in which the signal can be modeled by explicit known source functions with a few adjustable parameters. Various methods have been suggested for the coefficients determination among which are Prony, Pade, Autocorrelation, Covariance and most recently, the use of Artificial Neural Network technique. In this paper, the method of using Artificial Neural network (ANN) technique is compared with some known and widely acceptable techniques. The comparisons is entirely based on the value of the coefficients obtained. Result obtained shows that the use of ANN also gives accurate in computing the coefficients of an ARMA system.

Keywords: Autoregressive moving average, coefficients, back propagation, model parameters, neural network, weight.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2292
3597 Design and Simulation of Low Speed Axial Flux Permanent Magnet (AFPM) Machine

Authors: Ahmad Darabi, Hassan Moradi, Hossein Azarinfar

Abstract:

In this paper presented initial design of Low Speed Axial Flux Permanent Magnet (AFPM) Machine with Non-Slotted TORUS topology type by use of certain algorithm (Appendix). Validation of design algorithm studied by means of selected data of an initial prototype machine. Analytically design calculation carried out by means of design algorithm and obtained results compared with results of Finite Element Method (FEM).

Keywords: Axial Flux Permanent Magnet (AFPM) Machine, Design Algorithm, Finite Element Method (FEM), TORUS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3310
3596 Levenberg-Marquardt Algorithm for Karachi Stock Exchange Share Rates Forecasting

Authors: Syed Muhammad Aqil Burney, Tahseen Ahmed Jilani, C. Ardil

Abstract:

Financial forecasting is an example of signal processing problems. A number of ways to train/learn the network are available. We have used Levenberg-Marquardt algorithm for error back-propagation for weight adjustment. Pre-processing of data has reduced much of the variation at large scale to small scale, reducing the variation of training data.

Keywords: Gradient descent method, jacobian matrix.Levenberg-Marquardt algorithm, quadratic error surfaces,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2475
3595 A Multi-objective Fuzzy Optimization Method of Resource Input Based on Genetic Algorithm

Authors: Tao Zhao, Xin Wang

Abstract:

With the increasing complexity of engineering problems, the traditional, single-objective and deterministic optimization method can not meet people-s requirements. A multi-objective fuzzy optimization model of resource input is built for M chlor-alkali chemical eco-industrial park in this paper. First, the model is changed into the form that can be solved by genetic algorithm using fuzzy theory. And then, a fitness function is constructed for genetic algorithm. Finally, a numerical example is presented to show that the method compared with traditional single-objective optimization method is more practical and efficient.

Keywords: Fitness function, genetic algorithm, multi-objectivefuzzy optimization, satisfaction degree membership function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1356
3594 Adaptive Total Variation Based on Feature Scale

Authors: Jianbo Hu, Hongbao Wang

Abstract:

The widely used Total Variation de-noising algorithm can preserve sharp edge, while removing noise. However, since fixed regularization parameter over entire image, small details and textures are often lost in the process. In this paper, we propose a modified Total Variation algorithm to better preserve smaller-scaled features. This is done by allowing an adaptive regularization parameter to control the amount of de-noising in any region of image, according to relative information of local feature scale. Experimental results demonstrate the efficient of the proposed algorithm. Compared with standard Total Variation, our algorithm can better preserve smaller-scaled features and show better performance.

Keywords: Adaptive, de-noising, feature scale, regularizationparameter, Total Variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1240
3593 A Modified Fuzzy C-Means Algorithm for Natural Data Exploration

Authors: Binu Thomas, Raju G., Sonam Wangmo

Abstract:

In Data mining, Fuzzy clustering algorithms have demonstrated advantage over crisp clustering algorithms in dealing with the challenges posed by large collections of vague and uncertain natural data. This paper reviews concept of fuzzy logic and fuzzy clustering. The classical fuzzy c-means algorithm is presented and its limitations are highlighted. Based on the study of the fuzzy c-means algorithm and its extensions, we propose a modification to the cmeans algorithm to overcome the limitations of it in calculating the new cluster centers and in finding the membership values with natural data. The efficiency of the new modified method is demonstrated on real data collected for Bhutan-s Gross National Happiness (GNH) program.

Keywords: Adaptive fuzzy clustering, clustering, fuzzy logic, fuzzy clustering, c-means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1992
3592 A Meta-Heuristic Algorithm for Vertex Covering Problem Based on Gravity

Authors: S. Raja Balachandar, K.Kannan

Abstract:

A new Meta heuristic approach called "Randomized gravitational emulation search algorithm (RGES)" for solving vertex covering problems has been designed. This algorithm is found upon introducing randomization concept along with the two of the four primary parameters -velocity- and -gravity- in physics. A new heuristic operator is introduced in the domain of RGES to maintain feasibility specifically for the vertex covering problem to yield best solutions. The performance of this algorithm has been evaluated on a large set of benchmark problems from OR-library. Computational results showed that the randomized gravitational emulation search algorithm - based heuristic is capable of producing high quality solutions. The performance of this heuristic when compared with other existing heuristic algorithms is found to be excellent in terms of solution quality.

Keywords: Vertex covering Problem, Velocity, Gravitational Force, Newton's Law, Meta Heuristic, Combinatorial optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013
3591 An Investigation into the Application of Artificial Neural Networks to the Prediction of Injuries in Sport

Authors: J. McCullagh, T. Whitfort

Abstract:

Artificial Neural Networks (ANNs) have been used successfully in many scientific, industrial and business domains as a method for extracting knowledge from vast amounts of data. However the use of ANN techniques in the sporting domain has been limited. In professional sport, data is stored on many aspects of teams, games, training and players. Sporting organisations have begun to realise that there is a wealth of untapped knowledge contained in the data and there is great interest in techniques to utilise this data. This study will use player data from the elite Australian Football League (AFL) competition to train and test ANNs with the aim to predict the onset of injuries. The results demonstrate that an accuracy of 82.9% was achieved by the ANNs’ predictions across all examples with 94.5% of all injuries correctly predicted. These initial findings suggest that ANNs may have the potential to assist sporting clubs in the prediction of injuries.

Keywords: Artificial Neural Networks, data, injuries, sport

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2897
3590 Investigation on the Antimicrobial Effect of Ammonyx on Some Pathogenic Microbes Observed on Sweatshirt Sport

Authors: A. Ashjaran, R. Ghazi-saeidi, E. Yazdanshenas, A. Rashidi

Abstract:

In this research, the main aim is to investigate the antimicrobial effectiveness of ammonyx solutions finishing on Sweatshirt Sport with immersion method. 60 Male healthy subjects (football player) participated in this study. They were dressed in a Sweatshirt for 14 days and some microbes found on them were investigated. The antimicrobial effect of different ammonyx solutions(1/100, 1/500, 1/1000, 1/2000 v/v solutions of Ammonyx) on the identified microbes was studied by the zone inhabitation method in vitro. In the next step the Sweatshirt Sports were treated with the same different solutions of ammonyx and the antimicrobial effectiveness was assessed by colony count method in different times and the results were compared whit untreated ones. Some mechanical properties of treated cotton/polyester yarn that used in Sweatshirt Sport were measured after 30 days and were compared with untreated one. Finally after finishing, scanning electron microscopy (SEM) was used to compare the surfaces of the finished and unfinished specimens. The results showed the presence of five pathogenic microbes on Sweatshirt Sports such as Escherichia coli, Staphylococcus aureus, Aspergillus, Mucor and Candida. The inhalation time for treated on Sweatshirt Sports improved. The amount of colony growth on treated clothes reduced considerably and moreover the mechanical tests results showed no significant deterioration effect of studies properties in comparison to the untreated yarn. The visual examination of the SEM indicated that the antimicrobial treatments were applied usefully to fabrics.

Keywords: Pathogenic microbes, Sweatshirt Sports, Ammonyx, antimicrobial treatment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
3589 Algorithm Design and Performance Evaluation of Equivalent CMOS Model

Authors: Parvinder S. Sandhu, Iqbaldeep Kaur, Amit Verma, Inderpreet Kaur, Birinderjit S. Kalyan

Abstract:

This work is a proposed model of CMOS for which the algorithm has been created and then the performance evaluation of this proposition has been done. In this context, another commonly used model called ZSTT (Zero Switching Time Transient) model is chosen to compare all the vital features and the results for the Proposed Equivalent CMOS are promising. In the end, the excerpts of the created algorithm are also included

Keywords: Dual Capacitor Model, ZSTT, CMOS, SPICEMacro-Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1331
3588 A Fuzzy Classifier with Evolutionary Design of Ellipsoidal Decision Regions

Authors: Leehter Yao, Kuei-Song Weng, Cherng-Dir Huang

Abstract:

A fuzzy classifier using multiple ellipsoids approximating decision regions for classification is to be designed in this paper. An algorithm called Gustafson-Kessel algorithm (GKA) with an adaptive distance norm based on covariance matrices of prototype data points is adopted to learn the ellipsoids. GKA is able toadapt the distance norm to the underlying distribution of the prototypedata points except that the sizes of ellipsoids need to be determined a priori. To overcome GKA's inability to determine appropriate size ofellipsoid, the genetic algorithm (GA) is applied to learn the size ofellipsoid. With GA combined with GKA, it will be shown in this paper that the proposed method outperforms the benchmark algorithms as well as algorithms in the field.

Keywords: Ellipsoids, genetic algorithm, classification, fuzzyc-means (FCM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
3587 A Hybrid CamShift and l1-Minimization Video Tracking Algorithm

Authors: Clark Van Dam, Gagan Mirchandani

Abstract:

The Continuously Adaptive Mean-Shift (CamShift) algorithm, incorporating scene depth information is combined with the l1-minimization sparse representation based method to form a hybrid kernel and state space-based tracking algorithm. We take advantage of the increased efficiency of the former with the robustness to occlusion property of the latter. A simple interchange scheme transfers control between algorithms based upon drift and occlusion likelihood. It is quantified by the projection of target candidates onto a depth map of the 2D scene obtained with a low cost stereo vision webcam. Results are improved tracking in terms of drift over each algorithm individually, in a challenging practical outdoor multiple occlusion test case.

Keywords: CamShift, l1-minimization, particle filter, stereo vision, video tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2044
3586 An Efficient Algorithm for Reliability Lower Bound of Distributed Systems

Authors: Mohamed H. S. Mohamed, Yang Xiao-zong, Liu Hong-wei, Wu Zhi-bo

Abstract:

The reliability of distributed systems and computer networks have been modeled by a probabilistic network or a graph G. Computing the residual connectedness reliability (RCR), denoted by R(G), under the node fault model is very useful, but is an NP-hard problem. Since it may need exponential time of the network size to compute the exact value of R(G), it is important to calculate its tight approximate value, especially its lower bound, at a moderate calculation time. In this paper, we propose an efficient algorithm for reliability lower bound of distributed systems with unreliable nodes. We also applied our algorithm to several typical classes of networks to evaluate the lower bounds and show the effectiveness of our algorithm.

Keywords: Distributed systems, probabilistic network, residual connectedness reliability, lower bound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
3585 A Novel In-Place Sorting Algorithm with O(n log z) Comparisons and O(n log z) Moves

Authors: Hanan Ahmed-Hosni Mahmoud, Nadia Al-Ghreimil

Abstract:

In-place sorting algorithms play an important role in many fields such as very large database systems, data warehouses, data mining, etc. Such algorithms maximize the size of data that can be processed in main memory without input/output operations. In this paper, a novel in-place sorting algorithm is presented. The algorithm comprises two phases; rearranging the input unsorted array in place, resulting segments that are ordered relative to each other but whose elements are yet to be sorted. The first phase requires linear time, while, in the second phase, elements of each segment are sorted inplace in the order of z log (z), where z is the size of the segment, and O(1) auxiliary storage. The algorithm performs, in the worst case, for an array of size n, an O(n log z) element comparisons and O(n log z) element moves. Further, no auxiliary arithmetic operations with indices are required. Besides these theoretical achievements of this algorithm, it is of practical interest, because of its simplicity. Experimental results also show that it outperforms other in-place sorting algorithms. Finally, the analysis of time and space complexity, and required number of moves are presented, along with the auxiliary storage requirements of the proposed algorithm.

Keywords: Auxiliary storage sorting, in-place sorting, sorting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1912
3584 Orthogonal Regression for Nonparametric Estimation of Errors-in-Variables Models

Authors: Anastasiia Yu. Timofeeva

Abstract:

Two new algorithms for nonparametric estimation of errors-in-variables models are proposed. The first algorithm is based on penalized regression spline. The spline is represented as a piecewise-linear function and for each linear portion orthogonal regression is estimated. This algorithm is iterative. The second algorithm involves locally weighted regression estimation. When the independent variable is measured with error such estimation is a complex nonlinear optimization problem. The simulation results have shown the advantage of the second algorithm under the assumption that true smoothing parameters values are known. Nevertheless the use of some indexes of fit to smoothing parameters selection gives the similar results and has an oversmoothing effect.

Keywords: Grade point average, orthogonal regression, penalized regression spline, locally weighted regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2140