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Abstract—A new Meta heuristic approach called ”Randomized
gravitational emulation search algorithm (RGES)” for solving vertex
covering problems has been designed. This algorithm is found upon
introducing randomization concept along with the two of the four pri-
mary parameters ’velocity’ and ’gravity’ in physics. A new heuristic
operator is introduced in the domain of RGES to maintain feasibility
specifically for the vertex covering problem to yield best solutions.
The performance of this algorithm has been evaluated on a large
set of benchmark problems from OR-library. Computational results
showed that the randomized gravitational emulation search algorithm
- based heuristic is capable of producing high quality solutions. The
performance of this heuristic when compared with other existing
heuristic algorithms is found to be excellent in terms of solution
quality.

Keywords—Vertex covering Problem, Velocity, Gravitational
Force, Newton’s Law, Meta Heuristic, Combinatorial optimization.

I. INTRODUCTION

There is a class of problems, whose exponential complex-
ities have been established theoretically are known as NP
problems. Designing polynomial time algorithms for such
a class of problems is still open. Due to the demand for
solving such problems, Researchers are constantly attempting
to provide heuristic solutions one after the other focusing
the optimality by introducing several operators with salient
features such as (i) reducing the computational complexity,
(ii) randomization etc.,
Some NP problems are Set covering problem, Traveling
salesman problem, Problem of Hamiltonian paths, Knapsack
problem, Problem of optimal graph coloring. If a polynomial
time solution can be found for any of these problems, then
all of the NP problems would have polynomial solutions. NP
complete problems are described more detail in [8]. In 1972,
in a landmark paper Karp[19] has shown that the vertex cover
problem is NP - complete, meaning that it is exceedingly
unlikely that to find an algorithm with polynomial worst - case
running time. The minimum vertex cover problem remains NP
- complete even for certain restricted graphs, for example, the
bounded degree graphs[9] .

Vertex cover problem (VCP) has attracted researchers and
practitioners not only because of the NP - completeness but
also because of many difficult real - life problems which can be
formulated as instances of the minimum weighted vertex cover.
Examples of such areas where the minimum weighted vertex
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cover problem occurs in real world applications are commu-
nications, particularly in wireless telecommunications, civil,
electrical engineering, circuit design, network flow, problem
of placing guards[32] are worthmentioning. Though both exact
(optimal) and heuristic approaches have been presented in the
literature, this problem is still a difficult NP-complete problem.
A vertex cover for an undirected graph G = (V, E) is set of
vertices such that all the edges in the graph are incident upon at
least one vertex in the cover. The minimum cardinality vertex
cover for a graph is a vertex cover with the least number of
vertices. A weighted vertex cover problem(WVCP) is defined
as follows: Given G(V, E) and weight function w : V → R,
find a cover of minimum total weight. Thus the problem can
be mathematically transformed into the following optimization
problem

minimize

n∑
j=1

wjvj (1)

subject to
n∑
j=1

vi + vj ≥ 1, ∀(vi, vj) ∈ E (2)

vj ∈ {0, 1} , j = 1, 2, 3, ..., n (3)

Equation (2) ensures that each edge is covered by at least
one vertex and (3) is the integral of constraint. The cost
coefficients wj are equal to 1 the problem is referred to as
the unicost VCP, otherwise,the problem is called the weighted
or weighted VCP.

The minimum weighted vertex cover problem is closely
related to many other hard probelms and it is of interest to
the researchers in the field of design of optimization and
approximation algorithms. Minimum weighted vertex cover
problem is a special case of set covering problem[5][12]
[14]and the independent set problem[2][9][19] is similar to
the minimum vertex cover problem because a minimum vertex
cover defines a maximum independent set and vice versa.
Another interesting problem is closely related to the minimum
vertex is the edge cover which seeks the smallest set of edges
such that each vertex is included in one of the edges.

In this paper, a new optimization algorithm based on the law
of gravity, namely Randomized gravitational emulation search
algorithm (RGES) is proposed. This algorithm is based on the
Newtonian gravity: ” Every particle in the universe attracts
every other particle with a force that is directly proportional
to the product of their masses and inversely proportional to
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the square of the distance between them”.
This article demonstrates that RGES technique is capable of
producing better quality results for the large size set covering
problem than other heuristic approaches.
This paper is organized as follows: A brief survey of various
approaches pertaining to this problem is elucidated in section
II. In section III, we introduce the basic concepts of our
algorithm. The proposed RGES is presented in section IV.
The algorithm’s utility is illustrated with help of benchmark
problems in section V and we include the extensive compar-
ative study of result of our heuristic with existing state-of-art
heuristics. Salient features of this algorithm are enumerated
in section VI, finally concluding remarks are given in section
VII.

II. PREVIOUS WORK

WVCP is known to be NP-Hard, even if all the weights are 1
and the graph is planar[8] . Due to computational intractability
of the MWVC problem, many researchers have instead fo-
cused their attention on the design of heuristic/approximation
algorithm for delivering quality solutions in a reasonable time.

Johnson[16] gave the first(greedy) logarithmic ratio ap-
proximation for the unweighted uncapacited cover problem.
Consider the case where all vertices have the same weight.
Since goal becomes the minimization of the cardinality of a
subset of V such that each edge (u,v) in E, at least one of u
and v is in the subset, it is intuitive to successively select the
vertex with the largest degree until all of the edges are covered
by the vertices in subset of V. This straightforward heuristic
can be further generalized as and applied to MWVCP. The
generalization proposed and analyzed by Chvatal[3] collects a
vertex at each stage with the smallest ratio between its weight
and current degree. Clarkson[4] presented a heuristic algorithm
that exhibits a performance guarantee of 2.

Pitt[27] gave a randomized algorithm which randomly se-
lects an end vertex of an arbitrary edge with a probability
inversely proportional to its weight. For a comprehensive sur-
vey on the analysis of approximation algorithms for MWVC,
the reader is referred to Monien and Speckenmeyer[30] ,
Motwani[25] , Hastad[13] , Shyu, Yin and Lin[31] , Likas
and Stafylopatis [22] . The first fixed parameter tractable
algorithm for k - vertex cover problem was done by Fellows
[7]. Recently, Dehne et al[6] have reported that they used
fixed parameter tractable algorithm to solve the minimum
vertex cover problem on coarse-grained parallel machines suc-
cessfully. Neidermeier and Rossmanith[26] presented efficient
fixed parameter algorithm for the minimum weighted vertex
cover problem. Shyu[31] presented a meta-heuristic approach
Ant colony Optimization Algorithm(ACO) for WVCP and
compared the performance of ACO with other heuristic and
meta-heuristic like, genetic algorithm, tabu search, and simu-
lated annealing for random graphs.

In this paper, we have designed a meta heuristic algorithm
based on gravity and we enhanced the performance of RGES
through feasibility operator to obtain best solutions at less
computational cost.

III. THE LAW OF GRAVITY

The gravitation is the tendency of masses to accelerate
toward each other. It is one of the four fundamental inter-
actions in nature [29] (the others are: the electromagnetic
force, the weak nuclear force, and the strong nuclear force).
Every particle in the universe attracts every other particle.
Gravity is everywhere. The inescapability of gravity makes
it different from all other natural forces. The way Newton’s
gravitational force behaves is called ”action at a distance”.
This means gravity acts between separated particles without
any intermediary and without any delay. In the Newton law
of gravity, each particle attracts every other particle with
a ’gravitational force’ [29][15] [28]. The gravitational force
between two particles is directly proportional to the product
of their masses and inversely proportional to the square of the
distance between them [15]:

F =
GM1M2

R2
(4)

where F is the magnitude of the gravitational force, G is
gravitational constant, M1 and M2 are the mass of the first and
second particles respectively, and R is the distance between the
two particles. Newton’s second law says that when a force, F,
is applied to a particle, its acceleration, a, depends only on the
force and its mass, M [15]:

a =
F

M
(5)

Based on (4) and (5), there is an attracting gravity force
among all particles of the universe where the effect of bigger
and the closer particle is higher. An increase in the distance
between two particles means decreasing the gravity force
between them as it is illustrated in Fig.1. In this figure, F1j

is the force that acting on M1 from Mj and F1 is the overall
force that acts on M1 and causes the acceleration vector a1.
In addition, due to the effect of decreasing gravity, the actual
value of the ”‘gravitational constant” depends on the actual age
of the universe. Eq. (6) gives the decrease of the gravitational
constant, G, with the age [23]:

G(t) = G(to) × (
to

t
)β , β < 1, (6)

where G(t) is the value of the gravitational constant at
time t. G(to) is the value of the gravitational constant at the
first cosmic quantum-interval of time to [23]. Three kinds of
masses are defined in theoretical physics:
Active gravitational mass, Ma, is a measure of the strength of
the gravitational field due to a particular object. Gravitational
field of an object with small active gravitational mass is weaker
than the object with more active gravitational mass.
Passive gravitational mass, Mp, is a measure of the strength
of an object’s interaction with the gravitational field. Within
the same gravitational field, an object with a smaller passive
gravitational mass experiences a smaller force than an object
with a larger passive gravitational mass.
Inertial mass, Mi, is a measure of an object resistance to
changing its state of motion when a force is applied. An
object with large inertial mass changes its motion more slowly,
and an object with small inertial mass changes it rapidly.
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Fig. 1. Every mass accelerate toward the result force that act it from the
other masses

Now, considering the above-mentioned aspects, we rewrite
Newton’s laws. The gravitational force, Fij , that acts on mass
i by mass j, is proportional to the product of the active
gravitational of mass j and passive gravitational of mass i, and
inversely proportional to the square distance between them.
ai is proportional to Fij and inversely proportional to inertia
mass of i. More precisely, one can rewrite Eqs. (4) and (5) as
follows:

Fij =
GMajMpi

R2
, (7)

ai =
Fij

Mii

, (8)

where Maj and Mpi represent the active gravitational mass
of particle i and passive gravitational mass of particle j,
respectively, and Mii represents the inertia mass of particle
i.

Although inertial mass, passive gravitational mass, and ac-
tive gravitational mass are conceptually distinct, no experiment
has ever unambiguously demonstrated any difference between
them. The theory of general relativity rests on the assumption
that inertial and passive gravitational mass are equivalent. This
is known as the weak equivalence principle [20] [23]. Standard
general relativity also assumes the equivalence of inertial mass
and active gravitational mass; this equivalence is sometimes
called the strong equivalent principle [20].

IV. RANDOMIZED GRAVITATIONAL EMULATION SEARCH

ALGORITHM(RGES)

In this section, we introduce our optimization algorithm
based on the law of gravity [28]. In the proposed algorithm,
agents are considered as objects and their performance is
measured by their masses. All these objects attract each
other by the gravity force, and this force causes a global
movement of all objects towards the objects with heavier

masses. Hence, masses cooperate using a direct form of
communication, through gravitational force. The heavy masses
- which correspond to good solutions - move more slowly
than lighter ones, this guarantees the exploitation step of the
algorithm. In RGES, each mass (agent) has four specifications:
position, inertial mass, active gravitational mass, and passive
gravitational mass. The position of the mass corresponds to
a solution of the problem, and its gravitational and inertial
masses are determined using a fitness function. In other words,
each mass presents a solution, and the algorithm is navigated
by properly adjusting the gravitational and inertia masses.
By lapse of time, we expect that masses be attracted by the
heaviest mass. This mass will present an optimum solution in
the search space. The RGES could be considered as an isolated
system of masses. It is like a small artificial world of masses
obeying the Newtonian laws of gravitation and motion. More
precisely, masses obey the following laws:
Law of gravity: each particle attracts every other particle
and the gravitational force between two particles is directly
proportional to the product of their masses and inversely
proportional to the distance between them, R. We use here
R instead of R2, because according to our experiment results,
R provides better results than R2 in all experimental cases.
Law of motion: the current velocity of any mass is equal to the
sum of the fraction of its previous velocity and the variation
in the velocity. Variation in the velocity or acceleration of any
mass is equal to the force acted on the system divided by mass
of inertia.

A. Initiation

Now, consider a system with N agents (masses). We define
the position of the ith agent by:

Xi = (x1
i , x

2
i , ..., x

d
i , ..., x

n
i ) for i = 1, 2, 3, ..., N, (9)

where xdi presents the position of ith agent in the dth
dimension. At a specific time ’t’, we define the force acting
on mass ’i’ from mass ’j’ as following:

F dij(t) = G(t)
Mpi(t) ×Maj(t)

Rij(t)+ ∈
(xdi (t) − xdi (t)), (10)

where Maj is the active gravitational mass related to agent
j, Mpi is the passive gravitational mass related to agent i, G(t)
is gravitational constant at time t, ∈ is a small constant, and
Rij(t) is the Euclidian distance between two agents i and j:

Rij = ‖Xi(t), Xj(t)‖2 , (11)

To give a stochastic characteristic to our algorithm, we
suppose that the total force that acts on agent i in a dimension
d be a randomly weighted sum of dth components of the forces
exerted from other agents:

F di (t) =

N∑
j=1,j �=i

randjF
d
ij(t), (12)

where randj is a random number in the interval [0, 1].
Hence, by the law of motion, the acceleration of the agent i
at time t, and in direction dth, adi (t),is given as follows:
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adi (t) =
F di (t)

Mii(t)
, (13)

where Mii is the inertial mass of ith agent. Furthermore,
the next velocity of an agent is considered as a fraction of
its current velocity added to its acceleration. Therefore, its
position and its velocity could be calculated as follows:

vdi (t+ 1) = randi × vdi (t) + adi (t), (14)

xdi (t+ 1) = xdi (t) + vdi (t+ 1), (15)

where randi is a uniform random variable in the interval
[0, 1]. We use this random number to give a randomized
characteristic to the search. The gravitational constant, G, is
initialized at the beginning and will be reduced with time to
control the search accuracy. In other words, G is a function of
the initial value (Go) and time (t):

G(t) = G(Go, t), (16)

B. Evaluation of fitness and updating

Gravitational and inertia masses are simply calculated by
the fitness evaluation. A heavier mass means a more efficient
agent. This means that better agents have higher attractions and
walk more slowly. Assuming the equality of the gravitational
and inertia mass, the values of masses are calculated using the
map of fitness. We update the gravitational and inertial masses
by the following equations:

Mai = Mpi = Mii = Mi, i = 1, 2, 3, ..., N, (17)

mi(t) =
fiti(t) − worst(t)

best(t) − worst(t)
(18)

Mi(t) =
mi(t)∑N

j=1 mj(t)
, (19)

where fiti(t) represent the fitness value of the agent i at
time t, and, worst(t) and best(t) are defined as follows for a
minimization problem:

best(t) = min︸︷︷︸
j∈1,...,N

fitj(t), (20)

worst(t) = max︸︷︷︸
j∈1,...,N

fitj(t), (21)

One way to perform a good compromise between exploration
and exploitation is to reduce the number of agents with lapse
of time in Eq. (12). Hence, we propose only a set of agents
with bigger mass apply their force to the other. However, we
should be careful of using this policy because it may reduce
the exploration power and increase the exploitation capability.
We remind that in order to avoid trapping in a local optimum
the algorithm must use the exploration at beginning. By lapse
of iterations, exploration must fade out and exploitation must
fade in. To improve the performance of RGES by controlling
exploration and exploitation only the Kbest agents will attract

the others. Kbest is a function of time, with the initial value
Ko at the beginning and decreasing with time. In such a way,
at the beginning, all agents apply the force, and as time passes,
Kbest is decreased linearly and at the end there will be just one
agent applying force to the others. Therefore, Eq.(12) could
be modified as:

F di (t) =
∑

j∈Kbest,j �=i

randjF
d
ij(t), (22)

where Kbest is the set of first K agents with the best fitness
value and biggest mass.

C. Repair operator

The solutions(agents) may violate constraints. To make all
the solutions feasible an additional operator is needed. Here
a proposed heuristic operator consists of two phases namely
ADD phase and DROP phase that maintains the feasibility
of the solutions in the neighborhood being generated. The
steps required to make each solution feasible involve the
identification of all uncovered rows and the addition of
columns such that all rows are covered. This is done by the
ADD phase. Once columns are added, a solution becomes
feasible. DROP phase (a local optimization procedure) is
applied to remove any redundant column such that by
removing it from the solution, the solution still remains
feasible. In the algorithm, steps (i) and (ii) identify the
uncovered rows and add the least cost column to the solution
vector. Steps (iii) and (iv) identify the redundant column with
high cost and dropped from the solution. The time complexity
of this repair operator is O(mn).
Different steps of the repair operator are the followings

S1xn = solution vector
Bnxm = transpose of the adjacency matrix
D1xn = temporary solution vector
C1xm = counter vector ( 0 entry of any position is used to
identify the uncovered rows)
(i)C = S ×B ( matrix multiplication)
(ii) ADD Phase
(a) For each 0 entry in C , find the first column j( cost of j is
in increasing order)
(b) Add j to S ie., S(j) = 1.
(c) D = S ( temporary )
(iii)DROP Phase
(a) Identify the column j ( cost in the decreasing order)
(b) Remove j from D, if C = D ×B have no zero entry, ie.,
D(j) = 0.
(c) S=D is a feasible solution for SCP that contains no
redundant columns.
The different steps of the proposed RGES algorithm are the
followings:

(a) Search space identification.
(b) Randomized initialization.
(c) Repair operator.
(d) Fitness evaluation of agents.
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(e) Update G(t), best(t), worst(t) and Mi(t) for i = 1, 2, ..., N.
(f) Calculation of the total force in different directions.
(g) Calculation of acceleration and velocity.
(h) Updating agents’ position.
(i) Repeat steps c to h until the stop criteria is reached.
(j) End.

V. EXPERIMENTAL RESULTS AND ANALYSIS

The RGES has been coded in MATLAB7. The heuristic
tested on 44 instances corresponding to two groups; the
first group contains the test instances namely mvcp1-12 with
weight 1, it is tested by Khuri [21] and second group consists
of 32 test instances namely wvcp1-30 with weight which are
randomly generated [1] [33]and used by shyu[31].

In our experimental study, 10 trials RGES heuristic were
made for each of the test problems with n(number of vertices)
random solutions. Each trial was terminated, once 1000 itera-
tions are completed or velocity is equal to zero. This algorithm
was implemented in C and tested in P-IV, 3.2GHz processor
and 512 MB RAM running under Windows XP.

Experiment 1: Minimum Vertex Cover
In order to bring out the efficiency of the proposed RGES

algorithm the solutions of the same set of test instances
have been compared with the other approaches (Tabu Search,
Genetic Algorithm, Simulated Annealing). TABLE I provides
a summary of the solutions obtained by these methods and
solution quality for these different heuristics namely average
gap (average = (solution - BKS)/BKS x 100), number of
optimum solutions and best solutions. RGES found the optimal
/ best-known solutions for all the 12 test instances. From this
table, we can observe that RGES, CFT, and Meta-RaPS have
zero deviation from the best-known or optimal solutions for
these test problems.

TABLE I
SOLUTIONS OF MINIMUM VERTEX COVER PROBLEM

Instance Opt GA SA TS RGES

Obj

Value

100-01 53 54 55 55 53

100-02 50 53 53 54 50

100-03 55 57 57 55 55

100-04 54 55 55 54 54

100-05 55 55 57 57 55

PS100 34 34 34 34 34

200-01 110 113 113 131 110

200-02 110 120 120 132 110

200-03 110 128 120 130 110

200-04 110 140 136 140 110

200-05 110 110 110 110 110

PS202 68 68 68 68 68

Avg Error - 5.74 4,56 8.33 0.00

Experiment 2: Weighted Minimum Vertex Cover In this
experiment the parameter set opted like small - large scale
problems , the number of vertices n is 50,100,150,200,250 or
300. For each setting of n, we let m be ranged from 50 to
5000. For practical considerations, we assume that the wight

on each vertex is propotional to the degree of the vertex ( more
transportation benefits)on a vertex might induce more weight
( more running costs) on it. Let weight w(i) on vertex i be
randomly distruted over the interval [1, d(i)2 ], where d(i) is
the degree of the vertex i, 1 and ten randomly generated data
instances for each pair of n an m.

We implemented the following heuristics
REP(pite gr,1985)[27]. The method randomly selects an

end vertex of an arbitrary edge considering the probability
inversely proportional to its weight.
GM ( Chavatal, 1979; Motwani,1992)[3][24]. The method
greedily selects the vertex with minimum ratio between its
weight and current degree.
MGM(Clarkson,1983)[4]. The method greedily selects the
vertex with minimum ratio between its weight and current
degree where the weight is modified as the heuristic progesses.
ACO( Shyu, 2004)[31]. Ant Colony Optimization algorithm.
SA( johnson )[17][18]. Simulated Annealing.
TS( glover)[10][11]. Tabu Search.
GA(Khuri, 1994 )[21]. Genetic Algorithm.

The results of RGES,REP,GM,MGM,ACO,TS,GA,SA for
second set are presented in TABLE II. The first two columns
indicate that number of vertices (V) and number of edges
(E). The next SEVEN columns indicated that best solutions
of differnt algorithms. It is clear that RGES found minimum
solutions for all the 32 test instances. So the RGES has
identified high quality solutions for large instances also.Note
that in the point of solution quality, GM,SA and TS give
deviations of 7.98, 6.50 and 6.53 percentage from RGES,
respectively. Since the weights on vertices in this experiment
were randomly generated over the interval [1, d(i)2],a vertex
with larger degree would be cline to having a heavier weight.
The heuristic that GM deployed would be less competitive
in such a situation as compared to ACO and REGS, even
when GM was further improved by simulated annealing or
tabu search. Hence, we can see that the quality of the solution
delivered by RGES are much better than the other heuristics
involved in this experiment even though weights on vertexes
are proportional to the degrees.

VI. FEATURES OF ALGORITHM

To see how the proposed algorithm is efficient some remarks
are noted: Since each agent could observe the performance of
the others, the gravitational force is an information-transferring
tool. Due to the force that acts on an agent from its neighbor-
hood agents, it can see space around itself. A heavy mass has
a large effective attraction radius and hence a great intensity of
attraction. Therefore, agents with a higher performance have a
greater gravitational mass. As a result, the agents tend to move
toward the best agent. The inertia mass is against the motion
and make the mass movement slow. Hence, agents with heavy
inertia mass move slowly and hence search the space more
locally. So, it can be considered as an adaptive learning rate.
Gravitational constant adjusts the accuracy of the search, so it
decreases with time (similar to the temperature in a Simulated
Annealing algorithm). RGES is a memory-less algorithm.
However, it works efficiently like the algorithms with memory.
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Our experimental results show the good convergence rate of
the RGES. Here, we assume that the gravitational and the
inertia masses are the same. However, for some applications
different values for them can be used. A bigger inertia mass
provides a slower motion of agents in the search space and
hence a more precise search. Conversely, a bigger gravitational
mass causes a higher attraction of agents. This permits a faster
convergence.

VII. CONCLUSION

A feasibility operator based heuristic for the vertex covering
problem based on RGES has been developed. Randomization
enables the algorithm to escape from the local search and
pave a way leading to find optimal solutions. Computational
results indicate that our heuristic is able to generate optimal
solutions for small size problems in less time. For large size
problems the deviation from the optimal solutions are very
less and are much below the deviations obtained by other
existing algorithms. The successful applications of the RGES
approach to complex optimization problems are extending the
study of meta heuristic. For further research, it is of potential

TABLE II
SOLUTIONS OF MINIMUM WEIGHTED VERTEX COVER PROBLEM

N M REP GM MGM SA TS ACO RGES

50 50 113.1 95.1 98.7 93.5 93.5 83.9 83.9

100 355 305.2 312.7 299.9 299.9 276.2 276.2

250 2319 2051.5 2138.4 1990.9 2006.7 1886.8 1886.4

500 9189.4 8196.6 8635.6 8115.5 8115.5 7915.9 7914.5

750 22246.7 20604.9 21676 20574.6 20604.9 20134.1 20134.1

100 50 90.3 73.2 73.8 71.7 71.7 67.4 67.4

100 224.9 186.1 198.9 183.7 184.1 169.1 169.1

250 1150.2 995.5 1053.9 986.7 983.9 901.7 890.4

500 4740.8 3991.8 4307.7 3937.8 3937.8 3726.7 3725.3

750 10236.1 9256.9 9771.9 9172.4 9172.4 8754.5 8745.5

150 50 88.6 71.2 72.6 70.6 70.6 65.8 65.8

100 196.5 159.6 165.3 157.9 157.9 144.7 144.7

250 848.5 692.5 735.1 679.5 679.1 625.7 624.4

500 3148.9 2577.6 2734.9 2519.4 2526.2 2375 2365.2

750 7441 6236.1 6628.7 6090.8 6105.9 5799.2 5798.6

200 50 74.3 62 63.2 61.2 61.2 59.6 59.6

100 173.5 146.8 151 145.1 145.2 134.7 132.6

250 658.2 543.2 576.4 537 537 488.7 488.4

500 2368.3 2004.6 2157.8 1989 1989 1843.6 1843.6

750 5165.7 4422.9 4727.4 4376.4 4383.7 4112.8 4112.8

250 250 602.7 469.1 492.2 462.1 463.1 423.2 423.2

500 1933.5 1602.6 1697.9 1591.8 1591.8 1457.4 1457.4

750 4332.2 3564.1 3888.6 3512.1 3513.3 3315.9 3315.9

1000 7723.3 6554.6 6954.4 6438.7 6436 6058.2 6058.2

2000 31475.8 27360.2 29130.6 26925.4 26864 26149.1 26149.1

5000 193232.3 176245.2 183612.8 174037.5 173902.9 171917.2 171917.2

300 250 534 447.3 469.9 441.2 441.3 403.9 403.9

500 1648.1 1361.3 1451.1 1348.6 1347.4 1239.1 1239.1

750 3596 2924.2 3121.2 2878.7 2879.4 2678.2 2678.2

1000 6428 5274.3 5718.4 5229.9 5227.4 4895.5 4895.5

2000 26106.6 22432.5 23997.8 22061.2 21983.6 21295.2 21295.2

5000 163003.3 147406.4 154929.6 145276.6 145121.4 143243.5 143243.5

interest to apply the RGES approach to other problems that
are not necessarily based on graphs. Extending the generic
RGES model by incorporating specific behaviours of physical
parameters or computer technologies, such as parallel process-
ing, to enhance its problem solving capability may be another
research direction.
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