A Fuzzy Classifier with Evolutionary Design of Ellipsoidal Decision Regions
Authors: Leehter Yao, Kuei-Song Weng, Cherng-Dir Huang
Abstract:
A fuzzy classifier using multiple ellipsoids approximating decision regions for classification is to be designed in this paper. An algorithm called Gustafson-Kessel algorithm (GKA) with an adaptive distance norm based on covariance matrices of prototype data points is adopted to learn the ellipsoids. GKA is able toadapt the distance norm to the underlying distribution of the prototypedata points except that the sizes of ellipsoids need to be determined a priori. To overcome GKA's inability to determine appropriate size ofellipsoid, the genetic algorithm (GA) is applied to learn the size ofellipsoid. With GA combined with GKA, it will be shown in this paper that the proposed method outperforms the benchmark algorithms as well as algorithms in the field.
Keywords: Ellipsoids, genetic algorithm, classification, fuzzyc-means (FCM)
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1332148
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698References:
[1] P. K. Simpson, ''Fuzzy min-max neural networks-Part 1: Classification,''IEEE trans. Neural Networks, vol. 3, pp. 776-786, Sept. 1992.
[2] S. Abe and M.-S. Lan, ''A method for fuzzy rules extraction directly fromnumerical data and its application to pattern classification,'' IEEE Trans.Fuzzy Syst., vol. 3, pp. 18-28, Jan. 1995.
[3] F. Uebele, S. Abe and M.-S. Lan, ''A neural network-based fuzzy classifier,'' IEEE Trans. Syst., Man, Cybern., vol. 25, pp. 353-361, Mar.1995.
[4] J. A. Dickerson and B. Kosdo, ''Fuzzy function approximation with ellipsoidal rules,'' IEEE Trans. Syst., Man, Cybern., pt. B, vol. 26, pp.542-560, Aug. 1996.
[5] R. H. Dav and R. Krishnapuram, ''Robust Clustering Methods: A Unified View,'' IEEE Trans. Fuzzy Systems, vol. 5, no. 2, pp. 270-293, May 1997.
[6] S. Abe and R. Thawonmas, ''A fuzzy classifier with ellipsoidal regions,'' IEEE Trans. Fuzzy Systems, vol.5, no. 3, pp. 358-368, Aug. 1997.
[7] S. Abe, ''Dynamic cluster generation for a fuzzy classifier with ellipsoidal regions,'' IEEE Trans. Syst., Man, Cybern., pt. B, vol. 28, no 6, pp.869-876, Dec. 1998.
[8] S. Abe, R. Thawonmas and M. Kayama, ''A Fuzzy Classifier withEllipsoidal Regions for Diagnosis Problems,'' IEEE Trans. Syst., Man,Cybern., pt. C, vol. 29, no. 1, pp. 140-149, Feb. 1999.
[9] L. Yao, ''Nonparametric learning of decision regions via the genetic algorithm,'' IEEE Trans. System, Man, and Cybernetics, Vol. 26, No. 2, pp.313-321, April 1996.
[10] S. Wu, M. J. Er and Y. Gao, ''A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks,'' IEEE Trans.Fuzzy Systems, vol. 9, no. 4, pp. 578-594, Aug. 2001.
[11] G. D. Tattersall and K. Yi, ''Packed hyper-ellipsoid classifiers,'' Electronics Letters, vol. 30, no. 5, pp. 427-428, March 1994.
[12] J. K. Kishore, L. M. Patnaik, V. Mani, and V. K. Agrawal, ''Application ofgenetic programming for multicategory pattern classification,'' IEEETrans. Evolutionary Computation, vol. 4, no. 3, pp. 242-258, Sep. 2000.
[13] Kushchu, ''Genetic programming and evolutionary generalization,'' IEEETrans. Evolutionary Computation, vol. 6, no. 5, pp. 431-442, Oct. 2002.
[14] M. M. Rizki, M. a. Zmuda, and L. a. Tamburino, ''Evolving patternrecognition systems,'' IEEE Trans. Evolutionary Computation, vol. 6, no. 6, pp. 594-609, Dec. 2002.
[15] D. P. Muni, N. R. Pal, and J. Das, ''A novel approach to design classifiersusing genetic programming,'' IEEE Trans. Evolutionary Computation, vol.8, no. 2, pp. 183-196, April 2004.
[16] C. Zhou, W. Xiao, T. M. Tirpak, and P. C. Nelson, ''Evolving accurate and compact classification rules with gene expression programming,'' IEEETrans. Evolutionary Computation, vol. 7, no. 6, pp. 519-531, Dec. 2003.
[17] J. Bezdek, Pattern Recognition with Fuzzy Objective Function, PlenumPress, New York, 1981.
[18] D. E. Gustafson and W. C. Kessel, ''Fuzzy clustering with a fuzzycovariance matrix,'' in Proc. IEEE Conf. Decision Contr., San Diego, CA,1979, pp. 761-766
[19]R.Babuška, Fuzzy modeling for control, Kluwer Academic Publishers: Massachusetts, 1998.
[20] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Reading, MA: Addison-Wesley, 1989.
[21] S. K. Pal, S. Bandyopadhyay, and C. A. Murthy, ''Genetic algorithms forgeneration of class boundaries,'' IEEE Trans. Syst., Man, Cybern., vol. 28,pp. 816-828, Dec. 1998.
[22] C. Blake, E. Keogh, and C. J. Merz, UCI Repository of Machine Learning Databases, University of California at Irvine, Dept. Inform. Comput. Sci.,CA., available at http://www.ics.uci.edu/~mlearn/MLRepository.html