Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32726
Smart Technology for Hygrothermal Performance of Low Carbon Material Using an Artificial Neural Network Model

Authors: Manal Bouasria, Mohammed-Hichem Benzaama, Valérie Pralong, Yassine El Mendili


Reducing the quantity of cement in cementitious composites can help to reduce the environmental effect of construction materials. Byproducts such as ferronickel slags (FNS), fly ash (FA), and waste as Crepidula fornicata shells (CR) are promising options for cement replacement. In this work, we investigated the relevance of substituting cement with FNS-CR and FA-CR on the mechanical properties of mortar and on the thermal properties of concrete. Foraging intervals ranging from 2 days to 28 days, the mechanical properties are obtained by 3-point bending and compression tests. The chosen mix is used to construct a prototype in order to study the material’s hygrothermal performance. The data collected by the sensors placed on the prototype were utilized to build an artificial neural network.

Keywords: Artificial neural network, cement, circular economy, concrete, byproducts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 258


[1] S. Ogbeide, “Developing an optimization model for CO2 reduction in cement production process,” J. Eng. Sci. Technol. Rev., vol. 3, Jun. 2010.
[2] X. Shi, Z. Yang, Y. Liu, and D. Cross, “Strength and corrosion properties of Portland cement mortar and concrete with mineral admixtures,” Constr. Build. Mater., vol. 8, no. 25, pp. 3245–3256, 2011.
[3] A. M. Rashad, “A brief on high-volume Class F fly ash as cement replacement – A guide for Civil Engineer,” Int. J. Sustain. Built Environ., vol. 4, no. 2, pp. 278–306, Dec. 2015.
[4] A. Mehta, R. Siddique, T. Ozbakkaloglu, F. Uddin Ahmed Shaikh, and R. Belarbi, “Fly ash and ground granulated blast furnace slag-based alkali-activated concrete: Mechanical, transport and microstructural properties,” Constr. Build. Mater., vol. 257, p. 119548, Oct. 2020.
[5] Y. Jeong, S.-H. Kang, M. O. Kim, and J. Moon, “Acceleration of cement hydration from supplementary cementitious materials: Performance comparison between silica fume and hydrophobic silica,” Cem. Concr. Compos., vol. 112, p. 103688, Sep. 2020.
[6] W. Xu, Y. Zhang, and B. Liu, “Influence of silica fume and low curing temperature on mechanical property of cemented paste backfill,” Constr. Build. Mater., vol. 254, p. 119305, Sep. 2020.
[7] G. L. Golewski, “Improvement of fracture toughness of green concrete as a result of addition of coal fly ash. Characterization of fly ash microstructure,” Mater. Charact., vol. 134, Nov. 2017.
[8] P. K. Mehta, “Sustainable Cements and Concrete for the Climate Change Era – A Review,” p. 10.
[9] S. W. Tang, X. H. Cai, Z. He, H. Y. Shao, Z. J. Li, and E. Chen, “Hydration process of fly ash blended cement pastes by impedance measurement,” Constr. Build. Mater., vol. 113, pp. 939–950, Jun. 2016.
[10] J. Yu, C. Lu, C. K. Y. Leung, and G. Li, “Mechanical properties of green structural concrete with ultrahigh-volume fly ash,” Constr. Build. Mater., vol. 147, pp. 510–518, Aug. 2017.
[11] S. S. Sui Jiang, J. L. Hao, and J. N. De Carli, “Hygrothermal and mechanical performance of sustainable concrete: A simulated comparison of mix designs,” J. Build. Eng., vol. 34, p. 101859, Feb. 2021.
[12] A. Tijskens, S. Roels, and H. Janssen, “Neural networks for metamodelling the hygrothermal behavior of building components,” Build. Environ., vol. 162, p. 106282, Sep. 2019.
[13] A. Tijskens, S. Roels, and H. Janssen, “Hygrothermal assessment of timber frame walls using a convolutional neural network,” Build. Environ., vol. 193, p. 107652, Apr. 2021.
[14] O. May Tzuc, O. Rodríguez Gamboa, R. Aguilar Rosel, M. Che Poot, H. Edelman, M. Jiménez Torres, and A. Bassam, “Modeling of hygrothermal behavior for green facade’s concrete wall exposed to nordic climate using artificial intelligence and global sensitivity analysis,” J. Build. Eng., vol. 33, p. 101625, Jan. 2021.
[15] E.-H. Yang, Y. Yang, and V. C. Li, “Use of High Volumes of Fly Ash to Improve ECC Mechanical Properties and Material Greenness,” Mater. J., vol. 104, no. 6, pp. 620–628, Nov. 2007.
[16] D. Bentz, M. Peltz, A. Durán-Herrera, P. Valdez, and C. Juárez, “Thermal properties of high-volume fly ash mortars and concretes,” J. Build. Phys., vol. 34, no. 3, pp. 263–275, Jan. 2011.
[17] L. Lam, Y. L. Wong, and C. S. Poon, “Degree of hydration and gel/space ratio of high-volume fly ash/cement systems,” Cem. Concr. Res., vol. 30, no. 5, pp. 747–756, May 2000.
[18] E. E. Berry, R. T. Hemmings, and B. J. Cornelius, “Mechanisms of hydration reactions in high volume fly ash pastes and mortars,” Cem. Concr. Compos., vol. 12, no. 4, pp. 253–261, Jan. 1990.
[19] B. Lothenbach, K. Scrivener, and R. D. Hooton, “Supplementary cementitious materials,” Cem. Concr. Res., vol. 41, no. 12, pp. 1244–1256, Dec. 2011.
[20] J.-I. Escalante-Garcia and J. H. Sharp, “The chemical composition and microstructure of hydration products in blended cements,” Cem. Concr. Compos., vol. 26, no. 8, pp. 967–976, Nov. 2004.
[21] G. Millán-Corrales, J. R. González-López, Á. Palomo, and A. Fernández-Jiménez, “Replacing fly ash with limestone dust in hybrid cements,” 2020.
[22] “FNS: a promising construction material for the Pacific Region,” 2017. (Online). Available: (Accessed: 12-Apr-2022).
[23] B. V. Tangahu, I. Warmadewanthi, D. Saptarini, L. Pudjiastuti, M. A. M. Tardan, and A. Luqman, “Ferronickel Slag Performance from Reclamation Area in Pomalaa, Southeast Sulawesi, Indonesia,” Adv. Chem. Eng. Sci., vol. 05, no. 03, pp. 408–412, 2015.
[24] J. Sun, Z. Wang, and Z. Chen, “Hydration mechanism of composite binders containing blast furnace ferronickel slag at different curing temperatures,” J. Therm. Anal. Calorim., vol. 131, no. 3, pp. 2291–2301, Mar. 2018.
[25] The European Cement Association (CEMBUREAU), “Activity Report,” Belgium, first ed, 2017.
[26] “Chiffres clés de la filière pêche et aquaculture en France,” 2019. (Online). Available: (Accessed: 08-Oct-2021).
[27] B. A. Tayeh, M. W. Hasaniyah, A. M. Zeyad, and M. O. Yusuf, “Properties of concrete containing recycled seashells as cement partial replacement: A review,” J. Clean. Prod., vol. 237, p. 117723, Nov. 2019.
[28] W. A. S. B. W. Mohammad, N. Hazurina Othman, M. H. W. Ibrahim, M. A. Rahim, S. Shahidan, and R. A. Rahman, “A review on seashells ash as partial cement replacement,” vol. 271, p. 012059, Nov. 2017.
[29] S. Mosher, W. G. Cope, F. X. Weber, D. Shea, and T. J. Kwak, “Effects of lead on Na+, K+-ATPase and hemolymph ion concentrations in the freshwater mussel Elliptio complanata,” Environ. Toxicol., vol. 27, no. 5, pp. 268–276, May 2012.
[30] “EN 196-1,” 2016.
[31] G. Nervetti and F. Soma, La verifica termoigrometrica delle pareti. Milano: Hoepli, 1982.
[32] Reglementation environnementale des bâtiments neufs (RE 2020). 2022.