Search results for: material strength analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10775

Search results for: material strength analysis

10265 Prediction of Compressive Strength of Concrete from Early Age Test Result Using Design of Experiments (RSM)

Authors: Salem Alsanusi, Loubna Bentaher

Abstract:

Response Surface Methods (RSM) provide statistically validated predictive models that can then be manipulated for finding optimal process configurations. Variation transmitted to responses from poorly controlled process factors can be accounted for by the mathematical technique of propagation of error (POE), which facilitates ‘finding the flats’ on the surfaces generated by RSM. The dual response approach to RSM captures the standard deviation of the output as well as the average. It accounts for unknown sources of variation. Dual response plus propagation of error (POE) provides a more useful model of overall response variation. In our case, we implemented this technique in predicting compressive strength of concrete of 28 days in age. Since 28 days is quite time consuming, while it is important to ensure the quality control process. This paper investigates the potential of using design of experiments (DOE-RSM) to predict the compressive strength of concrete at 28th day. Data used for this study was carried out from experiment schemes at university of Benghazi, civil engineering department. A total of 114 sets of data were implemented. ACI mix design method was utilized for the mix design. No admixtures were used, only the main concrete mix constituents such as cement, coarseaggregate, fine aggregate and water were utilized in all mixes. Different mix proportions of the ingredients and different water cement ratio were used. The proposed mathematical models are capable of predicting the required concrete compressive strength of concrete from early ages.

Keywords: Mix proportioning, response surface methodology, compressive strength, optimal design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218
10264 Effect of Waste Bottle Chips on Strength Parameters of Silty Soil

Authors: Seyed Abolhasan Naeini, Hamidreza Rahmani

Abstract:

Laboratory consolidated undrained triaxial (CU) tests were carried out to study the strength behavior of silty soil reinforced with randomly plastic waste bottle chips. Specimens mixed with plastic waste chips in triaxial compression tests with 0.25, 0.50, 0.75, 1.0, and 1.25% by dry weight of soil and tree different length including 4, 8, and 12 mm. In all of the samples, the width and thickness of plastic chips were kept constant. According to the results, the amount and size of plastic waste bottle chips played an important role in the increasing of the strength parameters of reinforced silt compared to the pure soil. Because of good results, the suggested method of soil improvement can be used in many engineering problems such as increasing the bearing capacity and settlement reduction in foundations.

Keywords: Soil improvement, waste bottle chips, reinforcement, silt, Triaxial test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973
10263 Re-Use of Waste Marble in Producing Green Concrete

Authors: Hasan Şahan Arel

Abstract:

In this study, literature related to the replacement of cement with waste marble and the use of waste marble as an aggregate in concrete production was examined. Workability of the concrete decreased when marble powder was used as a substitute for fine aggregate. Marble powder contributed to the compressive strength of concrete because of the CaCO3 and SiO2 present in the chemical structure of the marble. Additionally, the use of marble pieces in place of coarse aggregate revealed that this contributed to the workability and mechanical properties of the concrete. When natural standard sand was replaced with marble dust at a ratio of 15% and 75%, the compressive strength and splitting tensile strength of the concrete increased by 20%-26% and 10%-15%, respectively. However, coarse marble aggregates exhibited the best performance at a 100% replacement ratio. Additionally, there was a greater improvement in the mechanical properties of concrete when waste marble was used in a coarse aggregate form when compared to that of when marble was used in a dust form. If the cement was replaced with marble powder in proportions of 20% or more, then adverse effects were observed on the compressive strength and workability of the concrete. This study indicated that marble dust at a cement-replacement ratio of 5%-10% affected the mechanical properties of concrete by decreasing the global annual CO2 emissions by 12% and also lowering the costs from US$40/m3 to US$33/m3.

Keywords: Cement production, concrete, CO2 emission, marble, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232
10262 The Anti-Noise and Anti-Wear Systems for Railways

Authors: Brigita Altenbaher

Abstract:

In recent years there has been a continuous increase of axle loads, tonnage, train speed and train length which has increased both the productivity in the rail sector and the risk of rail breaks and derailments. On the other hand, the environmental requirements (e.g. noise reduction) for railway operations will become tighter in the future. In our research we developed a new composite material which does not change braking properties, is capable of taking extremely high pressure loads, reduces noise and is environmentally friendly. Part of our research was also the development of technology which will be able to apply this material to the rail. The result of our research was the system which reduces the wear out significantly and almost completely eliminates the squealing noise at the same time, and by using only one special material.

Keywords: Active protection, composite material, lubrication, noise reduction, reduction at source, railway.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2255
10261 Application of Metakaolin from Northeast of Thailand Used as Binder in Casting Process of Rice Polishing Cylinder

Authors: T. Boonkang, C. Santhaweesuk, N. Pianthong, P. Neeramon, A. Phimhlo, S. Bangphan

Abstract:

The objective of this research was to apply metakaolin from northeast of Thailand as a binder in the casting process of rice polishing cylinder in replacement of the imported calcined magnesite cement and to reduce the production cost of the cylinder. Metakaolin was obtained from three different regions (Udon Thani, Nakhon Phanom, and Ubon Ratchathani). The design of experiment analysis using the MINITAB Release 14 based on the compressive strength and tensile strength testing was conducted. According to the analysis results, it was found that the optimal proportions were calcined magnesite cement: metakaolin from Udon Thani, Nakhon Phanom and Ubon Ratchathani equal to 63:37, 71:29, and 100:0, respectively. When used this formula to cast the cylinder and test the rice milling, it was found that the average broken rice percent was 32.52 and 38.29 for the cylinder contained the metakaolin from Udon Thani and Nakhon Phanom, respectively, which implied that the cylinder which contained the metakaolin from Udon Thani has higher efficiency than the cylinder which contained the metakaolin from Nakhon Phanom at 0.05 level of statistical significance. Whereas, the average wear rate of cylinder from both resources were 7.27 and 6.53 g/h, respectively.

Keywords: Binder, casting, metakaolin, rice polishing cylinder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1160
10260 Tensile Properties of Aluminum Silicon Nickel Iron Vanadium High Entropy Alloys

Authors: Sefiu A. Bello, Nasirudeen K. Raji, Jeleel A. Adebisi, Sadiq A. Raji

Abstract:

Pure metals are not used in most cases for structural applications because of their limited properties. Presently, high entropy alloys (HEAs) are emerging by mixing comparative proportions of metals with the aim of maximizing the entropy leading to enhancement in structural and mechanical properties. Aluminum Silicon Nickel Iron Vanadium (AlSiNiFeV) alloy was developed using stir cast technique and analysed. Results obtained show that the alloy grade G0 contains 44 percentage by weight (wt%) Al, 32 wt% Si, 9 wt% Ni, 4 wt% Fe, 3 wt% V and 8 wt% for minor elements with tensile strength and elongation of 106 Nmm-2 and 2.68%, respectively. X-ray diffraction confirmed intermetallic compounds having hexagonal closed packed (HCP), orthorhombic and cubic structures in cubic dendritic matrix. This affirmed transformation from the cubic structures of elemental constituents of the HEAs to the precipitated structures of the intermetallic compounds. A maximum tensile strength of 188 Nmm-2 with 4% elongation was noticed at 10wt% of silica addition to the G0. An increase in tensile strength with an increment in silica content could be attributed to different phases and crystal geometries characterizing each HEA.

Keywords: High entropy alloys, phases, model, tensile strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 751
10259 Study of Ageing Deterioration of Silicone Rubber Housing Material for Outdoor Polymer Insulators

Authors: S. Thong-om, W. Payakcho, J. Grasasom, B. Marungsri

Abstract:

This paper presents the experimental results of salt fog ageing test of silicone rubber housing material for outdoor polymer insulator based on IEC 61109. Four types of HTV silicone rubber sheet with different amount of ATH were tested continuously 1000<=hours in salt fog chamber. By visual observation after tested, slightly surface erosion was observed on tested specimen surface near the energized end. Furthermore, increasing in hardness and reduction in hydrophobicity were measured on tested specimen comparing with new specimen. In addition, chemical analysis by ATRFTIR was conducted in order to elucidate the chemical change of tested specimens comparing with new specimen. Physical and chemical results confirmed the experimental results as well.

Keywords: Accelerated ageing test, HTV silicone rubber, housing material, salt fog test, surface erosion, polymer insulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2087
10258 Land Reclamation Using Waste as Fill Material: A Case Study in Jakarta

Authors: Q. Han, W. Schaefer, N. Barry

Abstract:

To coop with urbanization issues and the economic need for expansion, the city of Jakarta is planning to reclaim more land in the Jakarta Bay. However, the reclamation activities of some islands have barely started and already the developers are facing difficulties in finding sufficient quantities of sand as fill material. When addressing the problem of sand scarcity in the case of Jakarta where, an excess of waste production, an inadequate solid waste management system and a lack of dumping ground pose a major problem, it is hard not to think of the use of waste as alternative fill material. This paper analyses the possibilities of using waste in the land reclamation projects, considering the governmental, social, environmental and economic context of the city. The results identify types of waste that could be used, ways of using those types of waste and implementation conditions for the city of Jakarta.

Keywords: Waste Management systems, Land reclamation, Multi Criteria Analysis, Scenario planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5362
10257 Steel–CFRP Composite (CFRP Laminate Sandwiched between Mild Steel Strips) and It-s Behavior as Stirrup in Beams

Authors: Faris Abbas Jawad Uriayer, Mehtab Alam

Abstract:

In this present study, experimental work was conducted to study the effectiveness of newly innovated steel-CFRP composite (CFRP laminates sandwiched between two steel strips) as stirrups. A total numbers of eight concrete beams were tested under four point loads. Each beam measured 1600 mm long, 160mm width and 240 mm depth. The beams were reinforced with different shear reinforcements; one without stirrups, one with steel stirrups and six with different types and numbers of steel-CRFR stirrups. Test results indicated that the steel-CFRP stirrups had enhanced the shear strength capacity of beams. Moreover, the tests revealed that steel- CFRP stirrups reached to their ultimate tensile strength unlike FRP stirrups which rupture at much lower level than their ultimate strength as werereported in various researches.

Keywords: Steel-CFRP Composite, Stirrups, Concrete Beams, Shear Span.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931
10256 Feasibility Study of Friction Stir Welding Application for Kevlar Material

Authors: Ahmet Taşan, Süha Tirkeş, Yavuz Öztürk, Zafer Bingül

Abstract:

Friction stir welding (FSW) is a joining process in the solid state, which eliminates problems associated with the material melting and solidification, such as cracks, residual stresses and distortions generated during conventional welding. Among the most important advantages of FSW are; easy automation, less distortion, lower residual stress and good mechanical properties in the joining region. FSW is a recent approach to metal joining and although originally intended for aluminum alloys, it is investigated in a variety of metallic materials. The basic concept of FSW is a rotating tool, made of non-consumable material, specially designed with a geometry consisting of a pin and a recess (shoulder). This tool is inserted as spinning on its axis at the adjoining edges of two sheets or plates to be joined and then it travels along the joining path line. The tool rotation axis defines an angle of inclination with which the components to be welded. This angle is used for receiving the material to be processed at the tool base and to promote the gradual forge effect imposed by the shoulder during the passage of the tool. This prevents the material plastic flow at the tool lateral, ensuring weld closure on the back of the pin. In this study, two 4 mm Kevlar® plates which were produced with the Kevlar® fabrics, are analyzed with COMSOL Multiphysics in order to investigate the weldability via FSW. Thereafter, some experimental investigation is done with an appropriate workbench in order to compare them with the analysis results.

Keywords: Analytical modeling, composite materials welding, friction stir welding, heat generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1117
10255 The Simulation and Experimental Investigation to Study the Strain Distribution Pattern during the Closed Die Forging Process

Authors: D. B. Gohil

Abstract:

Closed die forging is a very complex process, and measurement of actual forces for real material is difficult and time consuming. Hence, the modelling technique has taken the advantage of carrying out the experimentation with the proper model material which needs lesser forces and relatively low temperature. The results of experiments on the model material then may be correlated with the actual material by using the theory of similarity. There are several methods available to resolve the complexity involved in the closed die forging process. Finite Element Method (FEM) and Finite Difference Method (FDM) are relatively difficult as compared to the slab method. The slab method is very popular and very widely used by the people working on shop floor because it is relatively easy to apply and reasonably accurate for most of the common forging load requirement computations.

Keywords: Experimentation, forging, process modeling, strain distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1367
10254 Inelastic Strength of Laterally Unsupported Top- Loaded Built-Up Slender Beams

Authors: M. Massoud El Sa'adawy, F. F. F. El Dib

Abstract:

Lateral-torsional buckling (LTB) is one of the phenomenae controlling the ultimate bending strength of steel Ibeams carrying distributed loads on top flange. Built-up I-sections are used as main beams and distributors. This study investigates the ultimate bending strength of such beams with sections of different classes including slender elements. The nominal strengths of the selected beams are calculated for different unsupported lengths according to the Provisions of the American Institute of Steel Constructions (AISC-LRFD). These calculations are compared with results of a nonlinear inelastic study using accurate FE model for this type of loading. The goal is to investigate the performance of the provisions for the selected sections. Continuous distributed load at the top flange of the beams was applied at the FE model. Imperfections of different values are implemented to the FE model to examine their effect on the LTB of beams at failure, and hence, their effect on the ultimate strength of beams. The study also introduces a procedure for evaluating the performance of the provisions compared with the accurate FEA results of the selected sections. A simplified design procedure is given and recommendations for future code updates are made.

Keywords: Lateral buckling, Top Loading, Ultimate load, Slender Sections.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2701
10253 Nonlinear Finite Element Analysis of Optimally Designed Steel Angelina™ Beams

Authors: Ferhat Erdal, Osman Tunca, Serkan Tas, Serdar Carbas

Abstract:

Web-expanded steel beams provide an easy and economical solution for the systems having longer structural members. The main goal of manufacturing these beams is to increase the moment of inertia and section modulus, which results in greater strength and rigidity. Until recently, there were two common types of open web-expanded beams: with hexagonal openings, also called castellated beams, and beams with circular openings referred to as cellular beams, until the generation of sinusoidal web-expanded beams. In the present research, the optimum design of a new generation beams, namely sinusoidal web-expanded beams, will be carried out and the design results will be compared with castellated and cellular beam solutions. Thanks to a reduced fabrication process and substantial material savings, the web-expanded beam with sinusoidal holes (Angelina™ Beam) meets the economic requirements of steel design problems while ensuring optimum safety. The objective of this research is to carry out non-linear finite element analysis (FEA) of the web-expanded beam with sinusoidal holes. The FE method has been used to predict their entire response to increasing values of external loading until they lose their load carrying capacity. FE model of each specimen that is utilized in the experimental studies is carried out. These models are used to simulate the experimental work to verify of test results and to investigate the non-linear behavior of failure modes such as web-post buckling, shear buckling and vierendeel bending of beams.

Keywords: Steel structures, web-expanded beams, Angelina™ beam, optimum design, failure modes, finite element analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
10252 Evaluation of Shear Strength Parameters of Amended Loess through Using Common Admixtures in Gorgan, Iran

Authors: Seyed Erfan Hosseini, Mohammad K. Alizadeh, Amir Mesbah

Abstract:

Non-saturated soils that while saturation greatly decrease their volume, have sudden settlement due to increasing humidity, fracture and structural crack are called loess soils. Whereas importance of civil projects including: dams, canals and constructions bearing this type of soil and thereof problems, it is required for carrying out more research and study in relation to loess soils. This research studies shear strength parameters by using grading test, Atterberg limit, compression, direct shear and consolidation and then effect of using cement and lime additives on stability of loess soils is studied. In related tests, lime and cement are separately added to mixed ratios under different percentages of soil and for different times the stabilized samples are processed and effect of aforesaid additives on shear strength parameters of soil is studied. Results show that upon passing time the effect of additives and collapsible potential is greatly decreased and upon increasing percentage of cement and lime the maximum dry density is decreased; however, optimum humidity is increased. In addition, liquid limit and plastic index is decreased; however, plastic index limit is increased. It is to be noted that results of direct shear test reveal increasing shear strength of soil due to increasing cohesion parameter and soil friction angle.

Keywords: Loess Soils, Shear Strength, Cement, Lime.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009
10251 Role of Dispersion of Multiwalled Carbon Nanotubes on Compressive Strength of Cement Paste

Authors: Jyoti Bharj, Sarabjit Singh, Subhash Chander, Rabinder Singh

Abstract:

The outstanding mechanical properties of Carbon  nanotubes (CNTs) have generated great interest for their potential as  reinforcements in high performance cementitious composites. The  main challenge in research is the proper dispersion of carbon  nanotubes in the cement matrix. The present work discusses the role  of dispersion of multiwalled carbon nanotubes (MWCNTs) on the  compressive strength characteristics of hydrated Portland IS 1489  cement paste. Cement-MWCNT composites with different mixing  techniques were prepared by adding 0.2% (by weight) of MWCNTs  to Portland IS 1489 cement. Rectangle specimens of size  approximately 40mm × 40mm ×160mm were prepared and curing of  samples was done for 7, 14, 28 and 35days. An appreciable increase  in compressive strength with both techniques; mixture of MWCNTs  with cement in powder form and mixture of MWCNTs with cement  in hydrated form 7 to 28 days of curing time for all the samples was  observed.

 

Keywords: Carbon Nanotubes, Portland Cement, Composite, Compressive Strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3137
10250 Properties of Bacterial Nanocellulose for Scenic Arts

Authors: B. Suárez, G. Forman

Abstract:

Kombucha (a symbiotic culture of bacteria and yeast) produces material capable of acquiring multiple shapes and textures that change significantly under different environment or temperature variations (e.g., when it is exposed to wet conditions), properties that may be explored in the scenic industry. This paper presents an analysis of its specific characteristics, exploring them as a non-conventional material for arts and performance. Costume Design uses surfaces as a powerful way of expression to represent concepts and stories; it may apply the unique features of nano bacterial cellulose (NBC) as assets in this artistic context. A mix of qualitative and quantitative (interventionist) methodology approaches were used such as review of relevant literature to deepen knowledge on the research topic (crossing bibliography from different fields of studies: biology, art, costume design, etc.); as well as descriptive methods: laboratorial experiments, document quantities, observation to identify material properties and possibilities used to express a multiple narrative ideas, concepts and feelings. The results confirmed that NBC is an interactive and versatile material viable to be used in an alternative scenic context; its unique aesthetic and performative qualities, which change in contact to moisture, are resources that can be used to show a visual and poetic impact on stage.

Keywords: Biotechnological materials, contemporary dance, costume design, nano bacterial cellulose, performing arts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 521
10249 Lightweight Robotic Material Handling in Photovoltaic Module Manufacturing-Silicon Wafer and Thin Film Technologies

Authors: N. Asadi, M. Jackson

Abstract:

Today, the central role of industrial robots in automation in general and in material handling in particular is crystal clear. Based on the current status of Photovoltaics and by focusing on lightweight material handling, PV industry has turned into a potential candidate for introducing a fresh “pick and place" robot technology. Thus, to examine the industry needs in this regard, firstly the best suited applications for such robotic automation,and then the essential prerequisites in PV industry should be identified. The objective of this paper is to present holistic views on the industry trends, general automation status and existing challenges facing lightweight robotic material handling in PV Silicon Wafer and Thin Film technologies. The results of this study show that currently no uniform pick and place solution prevails among PV Silicon Wafer manufacturers and the industry calls for a new robot solution to satisfy its needs in new directions.

Keywords: Automation, Material handling, Photovoltaic, Robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
10248 Effect of Cow bone and Groundnut Shell Reinforced in Epoxy Resin on the Mechanical Properties and Microstructure of the Composites

Authors: O. I. Rufai, G. I. Lawal, B. O. Bolasodun, S. I. Durowaye, J. O. Etoh

Abstract:

It is an established fact that polymers have several physical limitations such as low stiffness and low resistance to impact on loading. Hence, polymers do not usually have requisite mechanical strength for application in various fields. The reinforcement by high strength fibers provides the polymer substantially enhanced mechanical properties and makes them more suitable for a large number of diverse applications. This research evaluates the effects of particulate Cow bone and Groundnut shell additions on the mechanical properties and microstructure of cow bone and groundnut shell reinforced epoxy composite in order to assess the possibility of using it as a material for engineering applications. Cow bone and groundnut shell particles reinforced with epoxy (CBRPC and GSRPC) was prepared by varying the cow bone and groundnut shell particles from 0-25 wt% with 5 wt% intervals. A Hybrid of the Cow bone and Groundnut shell (HGSCB) reinforce with epoxy was also prepared. The mechanical properties of the developed composites were investigated. Optical microscopy was used to examine the microstructure of the composites. The results revealed that mechanical properties did not increase uniformly with additions in filler but exhibited maximum properties at specific percentages of filler additions. From the Microscopic evaluation, it was discovered that homogeneity decreases with increase in % filler, this could be due to poor interfacial bonding.

Keywords: Groundnut shell reinforced polymer composite (GSRPC), Cow bone reinforced polymer composite (CBRPC), Hybrid of ground nutshell and cowbone (HGSCB).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3067
10247 Further Investigations on Higher Mathematics Scores for Chinese University Students

Authors: Xun Ge

Abstract:

Recently, X. Ge and J. Qian investigated some relations between higher mathematics scores and calculus scores (resp. linear algebra scores, probability statistics scores) for Chinese university students. Based on rough-set theory, they established an information system S = (U,CuD,V, f). In this information system, higher mathematics score was taken as a decision attribute and calculus score, linear algebra score, probability statistics score were taken as condition attributes. They investigated importance of each condition attribute with respective to decision attribute and strength of each condition attribute supporting decision attribute. In this paper, we give further investigations for this issue. Based on the above information system S = (U, CU D, V, f), we analyze the decision rules between condition and decision granules. For each x E U, we obtain support (resp. strength, certainty factor, coverage factor) of the decision rule C —>x D, where C —>x D is the decision rule induced by x in S = (U, CU D, V, f). Results of this paper gives new analysis of on higher mathematics scores for Chinese university students, which can further lead Chinese university students to raise higher mathematics scores in Chinese graduate student entrance examination.

Keywords: Rough set, support, strength, certainty factor, coverage factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1371
10246 The Design Optimization for Sound Absorption Material of Multi-Layer Structure

Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Tae-Hyeon Oh, Dae-Kyu Park

Abstract:

Sound absorbing material is used as automotive interior material. Sound absorption coefficient should be predicted to design it. But it is difficult to predict sound absorbing coefficient because it is comprised of several material layers. So, its targets are achieved through many experimental tunings. It causes a lot of cost and time. In this paper, we propose the process to estimate the sound absorption coefficient with multi-layer structure. In order to estimate the coefficient, physical properties of each material are used. These properties also use predicted values by Foam-X software using the sound absorption coefficient data measured by impedance tube. Since there are many physical properties and the measurement equipment is expensive, the values predicted by software are used. Through the measurement of the sound absorption coefficient of each material, its physical properties are calculated inversely. The properties of each material are used to calculate the sound absorption coefficient of the multi-layer material. Since the absorption coefficient of multi-layer can be calculated, optimization design is possible through simulation. Then, we will compare and analyze the calculated sound absorption coefficient with the data measured by scaled reverberation chamber and impedance tubes for a prototype. If this method is used when developing automotive interior materials with multi-layer structure, the development effort can be reduced because it can be optimized by simulation. So, cost and time can be saved.

Keywords: Optimization design, multi-layer nonwoven, sound absorption coefficient, scaled reverberation chamber, impedance tubes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1005
10245 Hardness Variations as Affected by Bar Diameter of AISI 4140 Steel

Authors: Hamad K. Al-Khalid, Ayman M. Alaskari, Samy E. Oraby

Abstract:

Hardness of the widely used structural steel is of vital importance since it may help in the determination of many mechanical properties of a material under loading situations. In order to obtain reliable information for design, properties homogeneity should be validated. In the current study the hardness variation over the different diameters of the same AISI 4140 bar is investigated. Measurements were taken on the two faces of the stock at equally spaced eight sectors and fifteen layers. Statistical and graphical analysis are performed to asses the distribution of hardness measurements over the specified area. Hardness measurements showed some degree of dispersion with about ± 10% of its nominal value provided by manufacturer. Hardness value is found to have a slight decrease trend as the diameter is reduced. However, an opposite behavior is noticed regarding the sequence of the sector indicating a nonuniform distribution over the same area either on the same face or considering the corresponding sector on the other face (cross section) of the same material bar.

Keywords: Hardness; Hardness variation; AISI 4140 steel; Bardiameter; Statistical Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2933
10244 Fabrication of Single Crystal of Mg Alloys Containing Rare Earth Elements

Authors: Joon Ho Kim, Tae Kwon Ha

Abstract:

Single crystals of Magnesium alloys such as Mg-1Al, Mg-1Zn-0.5Y, Mg-3Li, and AZ31 alloys were successfully fabricated in this study by employing the modified Bridgman method. Single crystals of pure Mg were also made in this study. To determine the exact orientation of crystals, Laue back-reflection method and pole figure measurement were carried out on each single crystal. Dimensions of single crystals were 10 mm in diameter and 120 mm in length. Hardness and compression tests were conducted and the results revealed that hardness and the strength strongly depended on the orientation. The closer to basal one the orientation was, the higher hardness and compressive strength were. The effect of alloying was not higher than that of orientation. After compressive deformation of single crystals, the orientation of the crystals was found to rotate and to be parallel to the basal orientation.

Keywords: Compressive strength, Hardness, Mg alloys, Modified Bridgman method, Orientation, Pole figure, Single crystal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1896
10243 Parametric Transition as a Spiral Curve and Its Application in Spur Gear Tooth with FEA

Authors: S. H. Yahaya, J. M. Ali, T.A. Abdullah

Abstract:

The exploration of this paper will focus on the Cshaped transition curve. This curve is designed by using the concept of circle to circle where one circle lies inside other. The degree of smoothness employed is curvature continuity. The function used in designing the C-curve is Bézier-like cubic function. This function has a low degree, flexible for the interactive design of curves and surfaces and has a shape parameter. The shape parameter is used to control the C-shape curve. Once the C-shaped curve design is completed, this curve will be applied to design spur gear tooth. After the tooth design procedure is finished, the design will be analyzed by using Finite Element Analysis (FEA). This analysis is used to find out the applicability of the tooth design and the gear material that chosen. In this research, Cast Iron 4.5 % Carbon, ASTM A-48 is selected as a gear material.

Keywords: Bézier-like cubic function, Curvature continuity, Cshapedtransition curve, Spur gear tooth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2342
10242 Experimental and Numerical Analysis of a Historical Bell Tower

Authors: Milorad Pavlovic, Sebastiano Trevisani, Antonella Cecchi

Abstract:

In this paper, a procedure for the evaluation of seismic behavior of slender masonry structures (towers, bell towers, chimneys, minarets, etc.) is presented. The presented procedure is based on a full three-dimensional modal analyses and frequency measurements. As well-known, masonry is a composite material formed by bricks, or stone blocks, and mortar arranged more or less regularly and adopted for many centuries as structural material. Dynamic actions may represent the major risk of collapse of brickworks, and despite the progress achieved so far in science and mechanics; the assessment of their seismic performance remains a challenging task. Then, reliable physical and numerical models are worthy of recommendation. In this paper, attention is paid to the historical bell tower of the Basilica of Santa Maria Gloriosa dei Frari - usually called Frari - one of the greatest churches in Venice, Italy.

Keywords: Bell tower, FEM, masonry, modal analysis, non-destructive testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1345
10241 Study on Compressive Strength and Setting Times of Fly Ash Concrete after Slump Recovery Using Superplasticizer

Authors: Chaiyakrit Raoupatham, Ram Hari Dhakal, Chalermchai Wanichlamlert

Abstract:

Fresh concrete has one of dynamic properties known as slump. Slump of concrete is design to compatible with placing method. Due to hydration reaction of cement, the slump of concrete is loss through time. Therefore, delayed concrete probably get reject because slump is unacceptable. In order to recover the slump of delayed concrete the second dose of superplasticizer (naphthalene based type F) is added into the system, the slump recovery can be done as long as the concrete is not setting. By adding superplasticizer as solution for recover unusable slump loss concrete may affects other concrete properties. Therefore, this paper was observed setting times and compressive strength of concrete after being re-dose with chemical admixture type F (superplasticizer, naphthalene based) for slump recovery. The concrete used in this study was fly ash concrete with fly ash replacement of 0%, 30% and 50% respectively. Concrete mix designed for test specimen was prepared with paste content (ratio of volume of cement to volume of void in the aggregate) of 1.2 and 1.3, water-to-binder ratio (w/b) range of 0.3 to 0.58, initial dose of superplasticizer (SP) range from 0.5 to 1.6%. The setting times of concrete were tested both before and after re-dosed with different amount of second dose and time of dosing. The research was concluded that addition of second dose of superplasticizer would increase both initial and final setting times accordingly to dosage of addition. As for fly ash concrete, the prolongation effect was higher as the replacement of fly ash increase. The prolongation effect can reach up to maximum about 4 hours. In case of compressive strength, the re-dosed concrete has strength fluctuation within acceptable range of ±10%.

Keywords: Compressive strength, Fly ash concrete, Second dose of superplasticizer, Slump recovery, Setting times.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1935
10240 Optimization of Asphalt Binder Modified with PP/SBS/Nanoclay Nanocomposite using Taguchi Method

Authors: Abolghasem Yazdani, Sara Pourjafar

Abstract:

This study has applied the L16 orthogonal array of the Taguchi method to determine the optimized polymeric Nanocomposite asphalt binder. Three control factors are defined as polypropylene plastomer (PP), styrene-butadiene-styrene elastomer (SBS) and Nanoclay. Four level of concentration contents are introduced for prepared asphalt binder samples. all samples were prepared with 4.5% of bitumen 60/70 content. Compressive strength tests were carried out for defining the optimized sample via QUALITEK-4 software. SBS with 3%, PP with 5 % and Nanoclay with 1.5% of concentrations are defined as the optimized Nanocomposite asphalt binders. The confirmation compressive strength and also softening point tests showed that modification of asphalt binders with this method, improved the compressive strength and softening points of asphalt binders up to 55%.

Keywords: modified asphalt, Polypropylene, SBS, Nanoclay, Taguchi method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3178
10239 Influence of Alccofine on Semi-Light Weight Concrete under Accelerated Curing and Conventional Curing Regimes

Authors: P. Parthiban, J. Karthikeyan

Abstract:

This paper deals with the performance of semi-light weight concrete, prepared by using wood ash pellets as coarse aggregates which were improved by partial replacement of cement with alccofine. Alccofine is a mineral admixture which contains high glass content obtained through the process of controlled granulation. This is finer than cement which carries its own pozzolanic property. Therefore, cement could be replaced by alccofine as 0%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, and 70% to enhance the strength and durability properties of concrete. High range water reducing admixtures (HRWA) were used in these mixes which were dosed up to 1.5% weight of the total cementitious content (alccofine & cement). It also develops the weaker transition zone into more impermeable layer. Specimens were subjected in both the accelerated curing method as well as conventional curing method. Experimental results were compared and reported, in that the maximum compressive strength of 32.6 MPa was achieved on 28th day with 30% replacement level in a density of 2200 kg/m3 to a conventional curing, while in the accelerated curing, maximum compressive strength was achieved at 40% replacement level. Rapid chloride penetration test (RCPT) output results for the conventional curing method at 0% and 70% give 3296.7 and 545.6 coulombs.

Keywords: Alccofine, compressive strength, RCPT, wood ash pellets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 669
10238 Evaluation of Shear Strength Parameters of Rudsar Sandy Soil Stabilized with Waste Rubber Chips

Authors: R. Ziaie Moayed, M. Hamidzadeh

Abstract:

The use of waste rubber chips not only can be of great importance in terms of the environment, but also can be used to increase the shear strength of soils. The purpose of this study was to evaluate the variation of the internal friction angle of liquefiable sandy soil using waste rubber chips. For this purpose, the geotechnical properties of unmodified and modified soil samples by waste lining rubber chips have been evaluated and analyzed by performing the triaxial consolidated drained test. In order to prepare the laboratory specimens, the sandy soil in part of Rudsar shores in Gilan province, north of Iran with high liquefaction potential has been replaced by two percent of waste rubber chips. Samples have been compressed until reaching the two levels of density of 15.5 and 16.7 kN/m3. Also, in order to find the optimal length of chips in sandy soil, the rectangular rubber chips with the widths of 0.5 and 1 cm and the lengths of 0.5, 1, and 2 cm were used. The results showed that the addition of rubber chips to liquefiable sandy soil greatly increases the shear resistance of these soils. Also, it can be seen that decreasing the width and increasing the length-to-width ratio of rubber chips has a direct impact on the shear strength of the modified soil samples with rubber chips.

Keywords: Improvement, shear strength, internal friction angle, sandy soil, rubber chip.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 671
10237 Theoretical Analysis of Damping Due to Air Viscosity in Narrow Acoustic Tubes

Authors: M. Watanabe, T. Yamaguchi, M. Sasajima, Y. Kurosawa, Y. Koike

Abstract:

Headphones and earphones have many extremely small holes or narrow slits; they use sound-absorbing or porous material (i.e., dampers) to suppress vibratory system resonance. The air viscosity in these acoustic paths greatly affects the acoustic properties. Simulation analyses such as the finite element method (FEM) therefore require knowledge of the material properties of sound-absorbing or porous materials, such as the characteristic impedance and propagation constant. The transfer function method using acoustic tubes is a widely known measuring method, but there is no literature on taking measurements up to the audible range. To measure the acoustic properties at high-range frequencies, the acoustic tubes that form the measuring device need to be narrowed, and the distance between the two microphones needs to be reduced. However, when the tubes are narrowed, the characteristic impedance drops below the air impedance. In this study, we considered the effect of air viscosity in an acoustical tube, introduced a theoretical formula for this effect in the form of complex density and complex sonic velocity, and verified the theoretical formula. We also conducted an experiment and observed the effect from air viscosity in the actual measurements.

Keywords: acoustic tube, air viscosity, earphones, FEM, porous material, sound-absorbing material, transfer function method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053
10236 Textile Dyeing with Natural Dye from Sappan Tree (Caesalpinia sappan Linn.) Extract

Authors: Ploysai Ohama, Nattida Tumpat

Abstract:

Natural dye extracted from Caesalpinia sappan Linn. was applied to a cotton fabric and silk yarn by dyeing process. The dyestuff component of Caesalpinia sappan Linn. was extracted using water and ethanol. Analytical studies such as UV–VIS spectrophotometry and gravimetric analysis were performed on the extracts. Brazilein, the major dyestuff component of Caesalpinia sappan Linn. was confirmed in both aqueous and ethanolic extracts by UV–VIS spectrum. The color of each dyed material was investigated in terms of the CIELAB (L*, a* and b*) and K/S values. Cotton fabric dyed without mordant had a shade of reddish-brown, while those post-mordanted with aluminum potassium sulfate, ferrous sulfate and copper sulfate produced a variety of wine red to dark purple color shades. Cotton fabric and silk yarn dyeing was studied using aluminum potassium sulfate as a mordant. The observed color strength was enhanced with increase in mordant concentration.

Keywords: Natural dyes, Plant materials, Dyeing, Mordant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5077