Search results for: low-grade energy source
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4025

Search results for: low-grade energy source

3515 Modeling of Surface Roughness for Flow over a Complex Vegetated Surface

Authors: Wichai Pattanapol, Sarah J. Wakes, Michael J. Hilton, Katharine J.M. Dickinson

Abstract:

Turbulence modeling of large-scale flow over a vegetated surface is complex. Such problems involve large scale computational domains, while the characteristics of flow near the surface are also involved. In modeling large scale flow, surface roughness including vegetation is generally taken into account by mean of roughness parameters in the modified law of the wall. However, the turbulence structure within the canopy region cannot be captured with this method, another method which applies source/sink terms to model plant drag can be used. These models have been developed and tested intensively but with a simple surface geometry. This paper aims to compare the use of roughness parameter, and additional source/sink terms in modeling the effect of plant drag on wind flow over a complex vegetated surface. The RNG k-ε turbulence model with the non-equilibrium wall function was tested with both cases. In addition, the k-ω turbulence model, which is claimed to be computationally stable, was also investigated with the source/sink terms. All numerical results were compared to the experimental results obtained at the study site Mason Bay, Stewart Island, New Zealand. In the near-surface region, it is found that the results obtained by using the source/sink term are more accurate than those using roughness parameters. The k-ω turbulence model with source/sink term is more appropriate as it is more accurate and more computationally stable than the RNG k-ε turbulence model. At higher region, there is no significant difference amongst the results obtained from all simulations.

Keywords: CFD, canopy flow, surface roughness, turbulence models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2940
3514 Behaviours of Energy Spectrum at Low Reynolds Numbers in Grid Turbulence

Authors: Md. Kamruzzaman, L. Djenidi, R. A. Antonia

Abstract:

This paper reports an experimental investigation of the energy spectrum of turbulent velocity fields at low Reynolds numbers in grid turbulence. Hot wire measurements are carried out in grid turbulence with subjected to a 1.36:1 contraction of the wind tunnel. Three different grids are used: (i) large square perforated grid (mesh size 43.75mm), (ii) small square perforated grid (mesh size 14. and (iii) woven mesh grid (mesh size 5mm). The results indicate that the energy spectrum at small Reynolds numbers does not follow Kolmogorov’s universal scaling. It is further found that the critical Reynolds number, below which the scaling breaks down, is around 25.

Keywords: Decay exponent, Energy spectrum, Taylor microscale Reynolds number, Taylor microscale, Turbulent kinetic energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2396
3513 Lateral Crushing of Square and Rectangular Metallic Tubes under Different Quasi-Static Conditions

Authors: Sajjad Dehghanpour, Ali Yousefi

Abstract:

Impact is one of very important subjects which always have been considered in mechanical science. Nature of impact is such that which makes its control a hard task. Therefore it is required to present the transfer of impact to other vulnerable part of a structure, when it is necessary, one of the best method of absorbing energy of impact, is by using Thin-walled tubes these tubes collapses under impact and with absorption of energy, it prevents the damage to other parts.Purpose of recent study is to survey the deformation and energy absorption of tubes with different type of cross section (rectangular or square) and with similar volumes, height, mean cross section thickness, and material under loading with different speeds. Lateral loading of tubes are quasi-static type and beside as numerical analysis, also experimental experiences has been performed to evaluate the accuracy of the results. Results from the surveys is indicates that in a same conditions which mentioned above, samples with square cross section ,absorb more energy compare to rectangular cross section, and also by increscent in speed of loading, energy absorption would be more.

Keywords: absorbed energy, lateral loading, quasi-static.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2899
3512 Municipal Solid Waste Management Using Life Cycle Assessment Approach: Case Study of Maku City, Iran

Authors: L. Heidari, M. Jalili Ghazizade

Abstract:

This paper aims to determine the best environmental and economic scenario for Municipal Solid Waste (MSW) management of the Maku city by using Life Cycle Assessment (LCA) approach. The functional elements of this study are collection, transportation, and disposal of MSW in Maku city. Waste composition and density, as two key parameters of MSW, have been determined by field sampling, and then, the other important specifications of MSW like chemical formula, thermal energy and water content were calculated. These data beside other information related to collection and disposal facilities are used as a reliable source of data to assess the environmental impacts of different waste management options, including landfills, composting, recycling and energy recovery. The environmental impact of MSW management options has been investigated in 15 different scenarios by Integrated Waste Management (IWM) software. The photochemical smog, greenhouse gases, acid gases, toxic emissions, and energy consumption of each scenario are measured. Then, the environmental indices of each scenario are specified by weighting these parameters. Economic costs of scenarios have been also compared with each other based on literature. As final result, since the organic materials make more than 80% of the waste, compost can be a suitable method. Although the major part of the remaining 20% of waste can be recycled, due to the high cost of necessary equipment, the landfill option has been suggested. Therefore, the scenario with 80% composting and 20% landfilling is selected as superior environmental and economic scenario. This study shows that, to select a scenario with practical applications, simultaneously environmental and economic aspects of different scenarios must be considered.

Keywords: IWM software, life cycle assessment, Maku, municipal solid waste management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1303
3511 Energy Retrofitting Application Research to Achieve Energy Efficiency in Hot-Arid Climates in Residential Buildings: A Case Study of Saudi Arabia

Authors: A. Felimban, A. Prieto, U. Knaack, T. Klein

Abstract:

This study aims to present an overview of recent research in building energy-retrofitting strategy applications and analyzing them within the context of hot arid climate regions which is in this case study represented by the Kingdom of Saudi Arabia. The main goal of this research is to do an analytical study of recent research approaches to show where the primary gap in knowledge exists and outline which possible strategies are available that can be applied in future research. Also, the paper focuses on energy retrofitting strategies at a building envelop level. The study is limited to specific measures within the hot arid climate region. Scientific articles were carefully chosen as they met the expression criteria, such as retrofitting, energy-retrofitting, hot-arid, energy efficiency, residential buildings, which helped narrow the research scope. Then the papers were explored through descriptive analysis and justified results within the Saudi context in order to draw an overview of future opportunities from the field of study for the last two decades. The conclusions of the analysis of the recent research confirmed that the field of study had a research shortage on investigating actual applications and testing of newly introduced energy efficiency applications, lack of energy cost feasibility studies and there was also a lack of public awareness. In terms of research methods, it was found that simulation software was a major instrument used in energy retrofitting application research. The main knowledge gaps that were identified included the need for certain research regarding actual application testing; energy retrofitting strategies application feasibility; the lack of research on the importance of how strategies apply first followed by the user acceptance of developed scenarios.

Keywords: Energy efficiency, energy retrofitting, hot arid climate, Saudi Arabia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713
3510 Deposition Rate and Energy Enhancements of TiN Thin-Film in a Magnetized Sheet Plasma Source

Authors: Hamdi Muhyuddin D. Barra, Henry J. Ramos

Abstract:

Titanium nitride (TiN) has been synthesized using the sheet plasma negative ion source (SPNIS). The parameters used for its effective synthesis has been determined from previous experiments and studies. In this study, further enhancement of the deposition rate of TiN synthesis and advancement of the SPNIS operation is presented. This is primarily achieved by the addition of Sm-Co permanent magnets and a modification of the configuration in the TiN deposition process. The magnetic enhancement is aimed at optimizing the sputtering rate and the sputtering yield of the process. The Sm-Co permanent magnets are placed below the Ti target for better sputtering by argon. The Ti target is biased from –250V to – 350V and is sputtered by Ar plasma produced at discharge current of 2.5–4A and discharge potential of 60–90V. Steel substrates of dimensions 20x20x0.5mm3 were prepared with N2:Ar volumetric ratios of 1:3, 1:5 and 1:10. Ocular inspection of samples exhibit bright gold color associated with TiN. XRD characterization confirmed the effective TiN synthesis as all samples exhibit the (200) and (311) peaks of TiN and the non-stoichiometric Ti2N (220) facet. Cross-sectional SEM results showed increase in the TiN deposition rate of up to 0.35μm/min. This doubles what was previously obtained [1]. Scanning electron micrograph results give a comparative morphological picture of the samples. Vickers hardness results gave the largest hardness value of 21.094GPa.

Keywords: Chemical vapor deposition, Magnetized sheetplasma, Thin-film synthesis, Titanium nitride.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
3509 Loss Analysis by Loading Conditions of Distribution Transformers

Authors: A. Bozkurt, C. Kocatepe, R. Yumurtaci, İ. C. Tastan, G. Tulun

Abstract:

Efficient use of energy, the increase in demand of energy and also with the reduction of natural energy sources, has improved its importance in recent years. Most of the losses in the system from electricity produced until the point of consumption is mostly composed by the energy distribution system. In this study, analysis of the resulting loss in power distribution transformer and distribution power cable is realized which are most of the losses in the distribution system. Transformer losses in the real distribution system are analyzed by CYME Power Engineering Software program. These losses are disclosed for different voltage levels and different loading conditions.

Keywords: Distribution system, distribution transformer, power cable, technical losses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2695
3508 Optimized Hybrid Renewable Energy System of Isolated Islands in Smart-Grid Scenario - A Case Study in Indian Context

Authors: Aurobi Das, V. Balakrishnan

Abstract:

This paper focuses on the integration of hybrid renewable energy resources available in remote isolated islands of Sundarban-24 Parganas-South of Eastern part of India to National Grid of conventional power supply to give a Smart-Grid scenario. Before grid-integration, feasibility of optimization of hybrid renewable energy system is monitored through an Intelligent Controller proposed to be installed at Moushuni Island of Sundarban. The objective is to ensure the reliability and efficiency of the system to optimize the utilization of the hybrid renewable energy sources and also a proposition of how theses isolated Hybrid Renewable Energy Systems at remote islands can be grid-connected is analyzed towards vision of green smart-grid.

Keywords: Intelligent controller, hybrid renewable, solar photo voltaic, smart-grid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2843
3507 Energy Consumption and GHG Production in Railway and Road Passenger Regional Transport

Authors: Martin Kendra, Tomas Skrucany, Jozef Gnap, Jan Ponicky

Abstract:

Paper deals with the modeling and simulation of energy consumption and GHG production of two different modes of regional passenger transport – road and railway. These two transport modes use the same type of fuel – diesel. Modeling and simulation of the energy consumption in transport is often used due to calculation satisfactory accuracy and cost efficiency. Paper deals with the calculation based on EN standards and information collected from technical information from vehicle producers and characteristics of tracks. Calculation included maximal theoretical capacity of bus and train and real passenger’s measurement from operation. Final energy consumption and GHG production is calculated by using software simulation. In evaluation of the simulation is used system “well to wheel”.

Keywords: Bus, energy consumption, GHG, production, simulation, train.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
3506 Energy and Exergy Analysis of Dual Purpose Solar Collector

Authors: I. Jafari, A. Ershadi, E. Najafpour, N. Hedayat

Abstract:

Energy and exergy study of air-water combined solar collector which is called dual purpose solar collector (DPSC) is investigated. The method of ε - NTU is used. Analysis is performed for triangle channels. Parameters like the air flow rate and water inlet temperature are studied. Results are shown that DPSC has better energy and exergy efficiency than single collector. In addition, the triangle passage with water inlet temperature of 60O C has shown better exergy and energy efficiency.

Keywords: Efficiency, Exergy, Irreversibility, Solar collector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2620
3505 Embodied Energy in Concrete and Structural Masonry on Typical Brazilian Buildings

Authors: Marco A. S. González, Marlova P. Kulakowski, Luciano G. Breitenbach, Felipe Kirch

Abstract:

The AEC sector has an expressive environmental responsibility. Actually, most building materials have severe environmental impacts along their production cycle. Professionals enrolled in building design may choice the materials and techniques with less impact among the viable options. This work presents a study about embodied energy in materials of two typical Brazilian constructive alternatives. The construction options considered are reinforced concrete structure and structural masonry. The study was developed for the region of São Leopoldo, southern Brazil. Results indicated that the energy embodied in these two constructive systems is approximately 1.72 GJ·m-2 and 1.26 GJ·m-2, respectively. It may be concluded that the embodied energy is lower in the structural masonry system, with a reduction around to 1/4 in relation to the traditional option. The results can be used to help design decisions.

Keywords: Civil construction, sustainability, embodied energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2741
3504 Analysis of Energy Consumption Based on Household Appliances in Jodhpur, India

Authors: A. Kumar, V. Devadas

Abstract:

Energy is the basic element for any country’s economic development. India is one of the most populated countries, and is dependent on fossil fuel and nuclear-based energy generation. The energy sector faces huge challenges and is dependent on the import of energy from neighboring countries to fulfill the gap in demand and supply. India has huge setbacks for efficient energy generation, distribution, and consumption, therefore they consume more quantity of energy to produce the same amount of Gross Domestic Product (GDP) compared to the developed countries. Technology and technique use, availability, and affordability in the various sectors are varying according to their economic status. In this paper, an attempt is made to quantify the domestic electrical energy consumption in Jodhpur, India. Survey research methods have been employed and stratified sampling technique-based households were chosen for conducting the investigation. Pre-tested survey schedules are used to investigate the grassroots level study. The collected data are analyzed by employing statistical techniques. Thereafter, a multiple regression model is developed to understand the functions of total electricity consumption in the domestic sector corresponding to other independent variables including electrical appliances, age of the building, household size, education, etc. The study resulted in identifying the governing variable in energy consumption at the household level and their relationship with the efficiency of household-based electrical and energy appliances. The analysis is concluded with the recommendation for optimizing the gap in peak electrical demand and supply in the domestic sector.

Keywords: Appliance, consumption, electricity, households.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 461
3503 Energy Benefits of Urban Platooning with Self-Driving Vehicles

Authors: Eduardo F. Mello, Peter H. Bauer

Abstract:

The primary focus of this paper is the generation of energy-optimal speed trajectories for heterogeneous electric vehicle platoons in urban driving conditions. Optimal speed trajectories are generated for individual vehicles and for an entire platoon under the assumption that they can be executed without errors, as would be the case for self-driving vehicles. It is then shown that the optimization for the “average vehicle in the platoon” generates similar transportation energy savings to optimizing speed trajectories for each vehicle individually. The introduced approach only requires the lead vehicle to run the optimization software while the remaining vehicles are only required to have adaptive cruise control capability. The achieved energy savings are typically between 30% and 50% for stop-to-stop segments in cities. The prime motivation of urban platooning comes from the fact that urban platoons efficiently utilize the available space and the minimization of transportation energy in cities is important for many reasons, i.e., for environmental, power, and range considerations.

Keywords: Electric vehicles, energy efficiency, optimization, platooning, self-driving vehicles, urban traffic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1242
3502 Fixture Layout Optimization Using Element Strain Energy and Genetic Algorithm

Authors: Zeshan Ahmad, Matteo Zoppi, Rezia Molfino

Abstract:

The stiffness of the workpiece is very important to reduce the errors in manufacturing process. The high stiffness of the workpiece can be achieved by optimal positioning of fixture elements in the fixture. The minimization of the sum of the nodal deflection normal to the surface is used as objective function in previous research. The deflection in other direction has been neglected. The 3-2-1 fixturing principle is not valid for metal sheets due to its flexible nature. We propose a new fixture layout optimization method N-3-2-1 for metal sheets that uses the strain energy of the finite elements. This method combines the genetic algorithm and finite element analysis. The objective function in this method is to minimize the sum of all the element strain energy. By using the concept of element strain energy, the deformations in all the directions have been considered. Strain energy and stiffness are inversely proportional to each other. So, lower the value of strain energy, higher will be the stiffness. Two different kinds of case studies are presented. The case studies are solved for both objective functions; element strain energy and nodal deflection. The result are compared to verify the propose method.

Keywords: Fixture layout, optimization, fixturing element, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2553
3501 Energy Production Potential from Co-Digestion between Frozen Seafood Wastewater and Decanter Cake in Thailand

Authors: Thaniya Kaosol, Narumol Sohgrathok

Abstract:

In this paper, a Biochemical Methane Potential (BMP) test provides a measure of the energy production potential from codigestion between the frozen seafood wastewater and the decanter cake. The experiments were conducted in laboratory-scale. The suitable ratio of the frozen seafood wastewater and the decanter cake was observed in the BMP test. The ratio of the co-digestion between the frozen seafood wastewater and the decanter cake has impacts on the biogas production and energy production potential. The best performance for energy production potential using BMP test observed from the 180 ml of the frozen seafood wastewater and 10 g of the decanter cake ratio. This ratio provided the maximum methane production at 0.351 l CH4/g TCODremoval. The removal efficiencies are 76.18%, 83.55%, 43.16% and 56.76% at TCOD, SCOD, TS and VS, respectively. The result can be concluded that the decanter cake can improve the energy production potential of the frozen seafood wastewater. The energy provides from co-digestion between frozen seafood wastewater and decanter cake approximately 19x109 MJ/year in Thailand.

Keywords: Frozen seafood wastewater, decanter cake, biogas, methane, BMP test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2258
3500 A Metallography Study of Secondary A226 Aluminium Alloy Used in Automotive Industries

Authors: Lenka Hurtalová, Eva Tillová, Mária Chalupová, Juraj Belan, Milan Uhríčik

Abstract:

The secondary alloy A226 is used for many automotive casting produced by mould casting and high pressure die casting. This alloy has excellent castability, good mechanical properties and cost-effectiveness. Production of primary aluminium alloys belong to heavy source fouling of life environs. The European Union calls for the emission reduction and reduction in energy consumption therefore increase production of recycled (secondary) aluminium cast alloys. The contribution is deal with influence of recycling on the quality of the casting made from A226 in automotive industry. The properties of the casting made from secondary aluminium alloys were compared with the required properties of primary aluminium alloys. The effect of recycling on microstructure was observed using combination different analytical techniques (light microscopy upon black-white etching, scanning electron microscopy - SEM upon deep etching and energy dispersive X-ray analysis - EDX). These techniques were used for the identification of the various structure parameters, which was used to compare secondary alloy microstructure with primary alloy microstructure.

Keywords: A226 secondary aluminium alloy, deep etching, mechanical properties, recycling foundry aluminium alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3299
3499 Mechanical Simulation with Electrical and Dimensional Tests for AISHa Containment Chamber

Authors: F. Noto, G. Costa, L. Celona, F. Chines, G. Ciavola, G. Cuttone, S. Gammino, O. Leonardi, S. Marletta, G. Torrisi

Abstract:

At Istituto Nazionale di Fisica Nucleare – Laboratorio Nazionale del Sud (INFN-LNS), a broad experience in the design, construction and commissioning of ECR and microwave ion sources is available. The AISHa ion source has been designed by taking into account the typical requirements of hospital-based facilities, where the minimization of the mean time between failures (MTBF) is a key point together with the maintenance operations, which should be fast and easy. It is intended to be a multipurpose device, operating at 18 GHz, in order to achieve higher plasma densities. It should provide enough versatility for future needs of the hadron therapy, including the ability to run at larger microwave power to produce different species and highly charged ion beams. The source is potentially interesting for any hadron therapy facility using heavy ions. In this paper, we analyzed the dimensional test and electrical test about an innovative solution for the containment chamber that allows us to solve our isolation and structural problems.

Keywords: FEM Analysis, ECR ion source, dielectrical measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1090
3498 Wind Energy Development in the African Great Lakes Region to Supplement the Hydroelectricity in the Locality: A Case Study from Tanzania

Authors: R.M. Kainkwa

Abstract:

The African Great Lakes Region refers to the zone around lakes Victoria, Tanganyika, Albert, Edward, Kivu, and Malawi. The main source of electricity in this region is hydropower whose systems are generally characterized by relatively weak, isolated power schemes, poor maintenance and technical deficiencies with limited electricity infrastructures. Most of the hydro sources are rain fed, and as such there is normally a deficiency of water during the dry seasons and extended droughts. In such calamities fossil fuels sources, in particular petroleum products and natural gas, are normally used to rescue the situation but apart from them being nonrenewable, they also release huge amount of green house gases to our environment which in turn accelerates the global warming that has at present reached an amazing stage. Wind power is ample, renewable, widely distributed, clean, and free energy source that does not consume or pollute water. Wind generated electricity is one of the most practical and commercially viable option for grid quality and utility scale electricity production. However, the main shortcoming associated with electric wind power generation is fluctuation in its output both in space and time. Before making a decision to establish a wind park at a site, the wind speed features there should therefore be known thoroughly as well as local demand or transmission capacity. The main objective of this paper is to utilise monthly average wind speed data collected from one prospective site within the African Great Lakes Region to demonstrate that the available wind power there is high enough to generate electricity. The mean monthly values were calculated from records gathered on hourly basis for a period of 5 years (2001 to 2005) from a site in Tanzania. The documentations that were collected at a height of 2 m were projected to a height of 50 m which is the standard hub height of wind turbines. The overall monthly average wind speed was found to be 12.11 m/s whereas June to November was established to be the windy season as the wind speed during the session is above the overall monthly wind speed. The available wind power density corresponding to the overall mean monthly wind speed was evaluated to be 1072 W/m2, a potential that is worthwhile harvesting for the purpose of electric generation.

Keywords: Hydro power, windy season, available wind powerdensity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
3497 Software Technology Behind Computer Accounting

Authors: M. Župan, V. Budimir

Abstract:

The main problems of data centric and open source project are large number of developers and changes of core framework. Model-View-Control (MVC) design pattern significantly improved the development and adjustments of complex projects. Entity framework as a Model layer in MVC architecture has simplified communication with the database. How often are the new technologies used and whether they have potentials for designing more efficient Enterprise Resource Planning (ERP) system that will be more suited to accountants?

Keywords: Accounting, Enterprise Resource Planning, Model- View-Control, Object Role Modeling, Open Source

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880
3496 Energy-Aware Scheduling in Real-Time Systems: An Analysis of Fair Share Scheduling and Priority-Driven Preemptive Scheduling

Authors: Su Xiaohan, Jin Chicheng, Liu Yijing, Burra Venkata Durga Kumar

Abstract:

Energy-aware scheduling in real-time systems aims to minimize energy consumption, but issues related to resource reservation and timing constraints remain challenges. This study focuses on analyzing two scheduling algorithms, Fair-Share Scheduling (FFS) and Priority-Driven Preemptive Scheduling (PDPS), for solving these issues and energy-aware scheduling in real-time systems. Based on research on both algorithms and the processes of solving two problems, it can be found that FFS ensures fair allocation of resources but needs to improve with an imbalanced system load. And PDPS prioritizes tasks based on criticality to meet timing constraints through preemption but relies heavily on task prioritization and may not be energy efficient. Therefore, improvements to both algorithms with energy-aware features will be proposed. Future work should focus on developing hybrid scheduling techniques that minimize energy consumption through intelligent task prioritization, resource allocation, and meeting time constraints.

Keywords: Energy-aware scheduling, fair-share scheduling, priority-driven preemptive scheduling, real-time systems, optimization, resource reservation, timing constraints.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 88
3495 Program Camouflage: A Systematic Instruction Hiding Method for Protecting Secrets

Authors: Yuichiro Kanzaki, Akito Monden, Masahide Nakamura, Ken-ichi Matsumoto

Abstract:

This paper proposes an easy-to-use instruction hiding method to protect software from malicious reverse engineering attacks. Given a source program (original) to be protected, the proposed method (1) takes its modified version (fake) as an input, (2) differences in assembly code instructions between original and fake are analyzed, and, (3) self-modification routines are introduced so that fake instructions become correct (i.e., original instructions) before they are executed and that they go back to fake ones after they are executed. The proposed method can add a certain amount of security to a program since the fake instructions in the resultant program confuse attackers and it requires significant effort to discover and remove all the fake instructions and self-modification routines. Also, this method is easy to use (with little effort) because all a user (who uses the proposed method) has to do is to prepare a fake source code by modifying the original source code.

Keywords: Copyright protection, program encryption, program obfuscation, self-modification, software protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494
3494 Wind Diesel Hybrid System without Battery Energy Storage Using Imperialist Competitive Algorithm

Authors: H. Rezvani, A. Hekmati

Abstract:

Nowadays, the use of renewable energy sources has been increasingly great because of the cost increase and public demand for clean energy sources. One of the fastest growing sources is wind energy. In this paper, Wind Diesel Hybrid System (WDHS) comprising a Diesel Generator (DG), a Wind Turbine Generator (WTG), the Consumer Load, a Battery-based Energy Storage System (BESS), and a Dump Load (DL) is used. Voltage is controlled by Diesel Generator; the frequency is controlled by BESS and DL. The BESS elimination is an efficient way to reduce maintenance cost and increase the dynamic response. Simulation results with graphs for the frequency of Power System, active power, and the battery power are presented for load changes. The controlling parameters are optimized by using Imperialist Competitive Algorithm (ICA). The simulation results for the BESS/no BESS cases are compared. Results show that in no BESS case, the frequency control is more optimal than the BESS case by using ICA. 

Keywords: Renewable Energy, Wind Diesel System, Induction Generator, Energy Storage, Imperialist Competitive Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2505
3493 Aeration Optimization in an Activated Sludge Wastewater Treatment Plant Based on CFD Method: A Case Study

Authors: Seyed Sina Khamesi, Rana Rafiei

Abstract:

The extensive aeration process is widely used for wastewater treatment. However, due to the high energy consumption of this process, which is closely related to the issues of environmental sustainability and global climate change, this article presents a simple solution to reduce energy consumption in this process. The amount of required energy is one of the critical considerations for various wastewater treatment techniques. For this purpose, an industrial wastewater treatment plant and all energy-consumer equipment in terms of energy consumption have been analyzed. The investigations and measurements revealed that the aeration unit has the highest energy consumption rate. To address this, an innovative approach is proposed to reduce energy consumption in the identified high-consumer unit. The proposed solution involves introducing baffles to divide the tank into multiple parts and using a tank with a small width and long length to enhance the mixing process. This approach reduces the need for additional equipment and significantly lowers energy consumption. To thoroughly scrutinize the proposed solution and analyze the behavior of the multi-phase fluid inside the tank, the sewage flow has been modeled using the computational fluid dynamics (CFD) method. The study presents an optimal design for the aeration unit based on these findings. The results indicate that implementing the technique suggested in this article can decrease total energy consumption by 33.15% and can be applied to all types of biological treatment plants.

Keywords: Wastewater treatment, aeration, energy consumption, Computational Fluid Dynamics, activated sludge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 234
3492 Preliminary Study on Fixture Layout Optimization Using Element Strain Energy

Authors: Zeshan Ahmad, Matteo Zoppi, Rezia Molfino

Abstract:

The objective of positioning the fixture elements in the fixture is to make the workpiece stiff, so that geometric errors in the manufacturing process can be reduced. Most of the work for optimal fixture layout used the minimization of the sum of the nodal deflection normal to the surface as objective function. All deflections in other direction have been neglected. We propose a new method for fixture layout optimization in this paper, which uses the element strain energy. The deformations in all the directions have been considered in this way. The objective function in this method is to minimize the sum of square of element strain energy. Strain energy and stiffness are inversely proportional to each other. The optimization problem is solved by the sequential quadratic programming method. Three different kinds of case studies are presented, and results are compared with the method using nodal deflections as objective function to verify the propose method.

Keywords: Fixture layout, optimization, strain energy, quadratic programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538
3491 Study on the Addition of Solar Generating and Energy Storage Units to a Power Distribution System

Authors: T. Costa, D. Narvaez, K. Melo, M. Villalva

Abstract:

Installation of micro-generators based on renewable energy in power distribution system has increased in recent years, with the main renewable sources being solar and wind. Due to the intermittent nature of renewable energy sources, such micro-generators produce time-varying energy which does not correspond at certain times of the day to the peak energy consumption of end users. For this reason, the use of energy storage units next to the grid contributes to the proper leveling of the buses’ voltage level according to Brazilian energy quality standards. In this work, the effect of the addition of a photovoltaic solar generator and a store of energy in the busbar voltages of an electric system is analyzed. The consumption profile is defined as the average hourly use of appliances in a common residence, and the generation profile is defined as a function of the solar irradiation available in a locality. The power summation method is validated with analytical calculation and is used to calculate the modules and angles of the voltages in the buses of an electrical system based on the IEEE standard, at each hour of the day and with defined load and generation profiles. The results show that bus 5 presents the worst voltage level at the power consumption peaks and stabilizes at the appropriate range with the inclusion of the energy storage during the night time period. Solar generator maintains improvement of the voltage level during the period when it receives solar irradiation, having peaks of production during the 12 pm (without exceeding the appropriate maximum levels of tension).

Keywords: Energy storage, power distribution system, solar generator, voltage level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 809
3490 Node Pair Selection Scheme in Relay-Aided Communication Based On Stable Marriage Problem

Authors: Tetsuki Taniguchi, Yoshio Karasawa

Abstract:

This paper describes a node pair selection scheme in relay-aided multiple source multiple destination communication system based on stable marriage problem. A general case is assumed in which all of source, relay and destination nodes are equipped with multiantenna and carry out multistream transmission. Based on several metrics introduced from inter-node channel condition, the preference order is determined about all source-relay and relay-destination relations, and then the node pairs are determined using Gale-Shapley algorithm. The computer simulations show that the effectiveness of node pair selection is larger in multihop communication. Some additional aspects which are different from relay-less case are also investigated.

Keywords: Relay, multiple input multiple output (MIMO), multiuser, amplify and forward, stable marriage problem, Gale-Shapley algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1925
3489 Optimization for the Hydraulic Clamping System of an Internal Circulation Two-Platen Injection Molding Machine

Authors: Jian Wang, Lu Yang, Jiong Peng

Abstract:

Internal circulation two-platen clamping system for injection molding machine (IMM) has many potential advantages on energy-saving. In order to estimate its properties, experiments were carried out in this paper. Displacement and pressure of the components were measured. In comparison, the model of hydraulic clamping system was established by using AMESim. The related parameters as well as the energy consumption could be calculated. According to the analysis, the hydraulic system was optimized in order to reduce the energy consumption.

Keywords: AMESim, energy-saving, injection molding machine, internal circulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2830
3488 Electricity Power Planning: the Role of Wind Energy

Authors: Paula Ferreira, Madalena Araújo, M.E.J. O’Kelly

Abstract:

Combining energy efficiency with renewable energy sources constitutes a key strategy for a sustainable future. The wind power sector stands out as a fundamental element for the achievement of the European renewable objectives and Portugal is no exception to the increase of the wind energy for the electricity generation. This work proposes an optimization model for the long range electricity power planning in a system similar to the Portuguese one, where the expected impacts of the increasing installed wind power on the operating performance of thermal power plants are taken into account. The main results indicate that the increasing penetration of wind power in the electricity system will have significant effects on the combined cycle gas power plants operation and on the theoretically expected cost reduction and environmental gains. This research demonstrated the need to address the impact that energy sources with variable output may have, not only on the short-term operational planning, but especially on the medium to long range planning activities, in order to meet the strategic objectives for the energy sector.

Keywords: Wind power, electricity planning model, cost, emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1598
3487 Multi-Modal Film Boiling Simulations on Adaptive Octree Grids

Authors: M. Wasy Akhtar

Abstract:

Multi-modal film boiling simulations are carried out on adaptive octree grids. The liquid-vapor interface is captured using the volume-of-fluid framework adjusted to account for exchanges of mass, momentum, and energy across the interface. Surface tension effects are included using a volumetric source term in the momentum equations. The phase change calculations are conducted based on the exact location and orientation of the interface; however, the source terms are calculated using the mixture variables to be consistent with the one field formulation used to represent the entire fluid domain. The numerical model on octree representation of the computational grid is first verified using test cases including advection tests in severely deforming velocity fields, gravity-based instabilities and bubble growth in uniformly superheated liquid under zero gravity. The model is then used to simulate both single and multi-modal film boiling simulations. The octree grid is dynamically adapted in order to maintain the highest grid resolution on the instability fronts using markers of interface location, volume fraction, and thermal gradients. The method thus provides an efficient platform to simulate fluid instabilities with or without phase change in the presence of body forces like gravity or shear layer instabilities.

Keywords: Boiling flows, dynamic octree grids, heat transfer, interface capturing, phase change.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 726
3486 Optimal Conditions for Carotenoid Production and Antioxidation Characteristics by Rhodotorula rubra

Authors: N. Chanchay, S. Sirisansaneeyakul, C. Chaiyasut, N. Poosaran

Abstract:

This study aims to screen out and to optimize the major nutrients for maximum carotenoid production and antioxidation characteristics by Rhodotorula rubra. It was found that supplementary of 10 g/l glucose as carbon source, 1 g/l ammonium sulfate as nitrogen source and 1 g/l yeast extract as growth factor in the medium provided the better yield of carotenoid content of 30.39 μg/g cell dry weight the amount of antioxidation of Rhodotorula rubra by DPPH, ABTS and MDA method were 1.463%, 34.21% and 34.09 μmol/l, respectively.

Keywords: Carotenoid, Rhodotorula rubra, Antioxidation, DPPH, ABTS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2932