WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/15540,
	  title     = {Wind Energy Development in the African Great Lakes Region to Supplement the Hydroelectricity in the Locality: A Case Study from Tanzania},
	  author    = {R.M. Kainkwa},
	  country	= {},
	  institution	= {},
	  abstract     = {The African Great Lakes Region refers to the zone
around lakes Victoria, Tanganyika, Albert, Edward, Kivu, and
Malawi. The main source of electricity in this region is hydropower
whose systems are generally characterized by relatively weak,
isolated power schemes, poor maintenance and technical deficiencies
with limited electricity infrastructures. Most of the hydro sources are
rain fed, and as such there is normally a deficiency of water during
the dry seasons and extended droughts. In such calamities fossil fuels
sources, in particular petroleum products and natural gas, are
normally used to rescue the situation but apart from them being nonrenewable,
they also release huge amount of green house gases to our
environment which in turn accelerates the global warming that has at
present reached an amazing stage. Wind power is ample, renewable,
widely distributed, clean, and free energy source that does not
consume or pollute water. Wind generated electricity is one of the
most practical and commercially viable option for grid quality and
utility scale electricity production. However, the main shortcoming
associated with electric wind power generation is fluctuation in its
output both in space and time. Before making a decision to establish
a wind park at a site, the wind speed features there should therefore
be known thoroughly as well as local demand or transmission
capacity. The main objective of this paper is to utilise monthly
average wind speed data collected from one prospective site within
the African Great Lakes Region to demonstrate that the available
wind power there is high enough to generate electricity. The mean
monthly values were calculated from records gathered on hourly
basis for a period of 5 years (2001 to 2005) from a site in Tanzania.
The documentations that were collected at a height of 2 m were
projected to a height of 50 m which is the standard hub height of
wind turbines. The overall monthly average wind speed was found to
be 12.11 m/s whereas June to November was established to be the
windy season as the wind speed during the session is above the
overall monthly wind speed. The available wind power density
corresponding to the overall mean monthly wind speed was evaluated
to be 1072 W/m2, a potential that is worthwhile harvesting for the
purpose of electric generation.},
	    journal   = {International Journal of Environmental and Ecological Engineering},
	  volume    = {4},
	  number    = {1},
	  year      = {2010},
	  pages     = {1 - 5},
	  ee        = {https://publications.waset.org/pdf/15540},
	  url   	= {https://publications.waset.org/vol/37},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 37, 2010},
	}