
 

 

 
Abstract—Energy-aware scheduling in real-time systems aims to 

minimize energy consumption, but issues related to resource 
reservation and timing constraints remain challenges. This study 
focuses on analyzing two scheduling algorithms, Fair-Share 
Scheduling (FFS) and Priority-Driven Preemptive Scheduling (PDPS), 
for solving these issues and energy-aware scheduling in real-time 
systems. Based on research on both algorithms and the processes of 
solving two problems, it can be found that FFS ensures fair allocation 
of resources but needs to improve with an imbalanced system load. 
And PDPS prioritizes tasks based on criticality to meet timing 
constraints through preemption but relies heavily on task prioritization 
and may not be energy efficient. Therefore, improvements to both 
algorithms with energy-aware features will be proposed. Future work 
should focus on developing hybrid scheduling techniques that 
minimize energy consumption through intelligent task prioritization, 
resource allocation, and meeting time constraints. 
 

Keywords—Energy-aware scheduling, fair-share scheduling, 
priority-driven preemptive scheduling, real-time systems, 
optimization, resource reservation, timing constraints. 

I. INTRODUCTION 

NE critical aspect of operating system optimization is 
scheduling, which involves determining the order and 

allocation of system resources and time constraints to different 
tasks or processes. Scheduling algorithms significantly impact 
system performance, responsiveness, and resource utilization 
[15]. In the context of real-time systems, scheduling algorithms 
must consider tasks not only deadlines and resource allocation 
but also energy efficiency to address the growing concerns of 
resource constraints and environmental impact [8]. By 
analyzing the energy awareness of these scheduling algorithms, 
this research aims to solve key issues in scheduling in real-time 
systems, determining their effectiveness in minimizing energy 
consumption additionally while meeting real-time task 
deadlines and completing the resource reservation. 

FFS is designed to provide equitable resource allocation 
among multiple tasks or processes, ensuring fairness and 
preventing resource starvation [11]. On the other hand, PDPS 
aims at prioritizing and scheduling tasks based on their 
significance, making sure that high-priority tasks are assigned 
precedence over lower-priority tasks [3]. 

Our research project focuses on the analysis of two 
scheduling algorithms, namely FFS and PDPS, in the 
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environment of real-time systems [8]. The goal is to investigate 
issues solved in energy awareness by these algorithms. And we 
will also conduct research on the solving process. Through 
research, the article will provide insights into the strengths and 
limitations of each algorithm and discuss the possible 
improvements for each algorithm. 

This study’s findings will contribute to optimizing operating 
systems in real-time systems by providing a comprehensive 
understanding of the benefits and challenges associated with 
FFS and PDPS in terms of energy awareness [3]. Ultimately, 
the research aims to enhance the design and implementation of 
scheduling algorithms in operating systems to achieve 
improved energy efficiency and performance in real-time 
computing environments. 

II. BACKGROUND  

A. Introduction of Energy-Aware Scheduling 

Energy-aware scheduling is a scheduling method that 
optimizes job sequencing and resource allocation in order to 
reduce a system's energy consumption. Scheduling that takes 
into account energy sensing takes into account how energy-
intensive computer systems are.  

Through judicious job scheduling and resource management, 
energy sensing scheduling aims to optimize energy in the 
following areas, such as mobile computing, renewable energy 
integration, IoT. It makes an effort to prevent resource wastage 
and cut back on excessive energy use. 

B. Real-Time Systems 

There are actually two main types of real-time systems: 
 Hard real-time systems: In these kinds of systems, missing 

a deadline can lead to catastrophic consequences, such as 
failure of safety-critical systems or loss of life. There are 
many real-world applications of hard real-time systems, 
including aircraft control systems, medical devices, and 
nuclear reactor control systems. In hard real-time systems, 
meeting timing constraints is significantly crucial. 

 Soft real-time systems: In these kinds of systems, missing 
a deadline might cause degraded performance or temporary 
disruptions, but it does not lead to catastrophic 
consequences for its real-world application, including 
video streaming, voice communication, and online gaming. 
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Although meeting the deadline of each task is still 
important in soft real-time systems, occasional deadline 
misses can be tolerated [9]. 

C. The Application of Energy-Aware Scheduling in Real-time 
System 

Real-time systems can use less energy, utilize energy more 
effectively, and schedule tasks such that they are completed in 
real time. It supports the dependability and sustainability of 
real-time systems by meeting time requirements while 
consuming the least amount of energy. As a result, it has been 
used in many real-time system fields. 

An IoT heterogeneous multiprocessor system on a chip 
(MPSoC) job scheduling challenge was investigated by a team 
from China in order to maximize security quality while meeting 
energy, real-time, and task precedence requirements [22]. 
Besides, a new energy-efficient routing technique called 
geographic routing time transfer (GRTT) is suggested in the 
field of workforce monitoring in order to employ sensor node 
topology information for target tracking and coverage 
applications [17]. Last but not least, a team conducted a study 
with a focus on cloud computing, which processes data from 
fog computing that has been gathered by devices. By 
introducing Dynamic Voltage and Frequency Scaling (DVFS) 
technology, they develop a kind of energy-conscious strategy 
that uses less energy [6]. 

III. ISSUE  

A. Issues of Energy-Aware Scheduling in Real-Time Systems 

Energy-aware scheduling in real-time systems brings 
additional challenges. There are some key issues specific to 
energy-aware scheduling in real-time systems, for example, 
time constraints, resource reservation, DVFS, predictability, 
overhead considerations, performance degradation and so on. 
In real-time systems, energy-aware scheduling aims to optimize 
the execution of tasks, which is about task prioritization. And 
meeting time constraints and resource reservation are the two 
main ways to prioritize the tasks based on our research. 
Therefore, in this paper, we mainly focus on the issues of time 
constraints and resource reservations of energy-aware 
scheduling in real-time systems. 

 

 

Fig. 1 Main Issues in Task Prioritization 

B. Issue of Resource Reservations of Energy-Aware 
Scheduling in Real-Time Systems 

A real-time operating system is capable of handling jobs with 
stringent deadlines. High response time requirements for jobs 
thus become a problem, which can result in deteriorated system 

performance or significant breakdowns. When it comes to 
energy-aware scheduling, its application is intended to reduce 
the system's energy usage. As a result, the order in which tasks 
are scheduled and the reservation of resources become 
problematic. 

C. Issue of Time Constraints of Energy-Aware Scheduling in 
Real-Time Systems 

In real-time systems, timing constraints (the time of tasks 
should meet) are one of the most critical requirements that 
should be satisfied for it to make it function correctly; the 
components of the systems can interact well, and they can 
respond promptly to other external events. The issue of meeting 
timing constraints in real-time systems revolves around 
scheduling tasks and ensuring that tasks are executed within 
corresponding deadlines while maintaining high performance 
as well as efficiency. In this case, the process of task 
prioritization can be conducted smoothly. In order to solve this 
issue, there are various scheduling algorithms and techniques 
being applied to the efficient management of task execution. 
And the brief process can be shown in Fig. 2 [2]. 

IV. ALGORITHMS 

A. Introduction of Fair-Share Scheduling Algorithm 

FFS is a scheduling algorithm in the fields of operating 
systems where the usage of CPU is distributed among different 
system users or groups equally, which is opposed to the equal 
distribution of resources in the processes [1]. It can dynamically 
and equally distribute the time quanta to its objects [4]. 

One common way of applying FFS is implementing the 
round-robin scheduling strategy at each level of abstraction 
recursively (users, processes, groups, etc.). The time quantum 
that round-robin requires is arbitrary, and the same results will 
be produced as an equal division of time. Here is an example. 
There are four users (A, B, C, D), and each of them is executing 
a process at the same time; all the users can get the same share 
of the CPU cycles with the help of the scheduler that splits the 
CPU periods equally, which is (100%/4) 25%. 

 
TABLE I 

EXAMPLE OF DISTRIBUTION CPU TIME OF PROCESS BY USING FFS 
Process 1

25%
Process 2 

25%
Process 3 

25% 
Process 4

25% 
 

TABLE II 
EXAMPLE OF DISTRIBUTION CPU TIME OF SUB-PROCESSES BY USING FFS 

Sub1 of Process 1 
50% ∗ 50% 25% 

Sub1 of Process 2 
50% ∗ 25% 12.5%

Sub2 of Process 2 
50% ∗ 25% 12.5%

Sub2 of Process 1 
50% ∗ 50% 25% 

Sub3 of Process 2 
50% ∗ 25% 12.5%

Sub4 of Process 2 
50% ∗ 25% 12.5%

Process 1 Process 2 

 

The scheduler nevertheless logically separates any additional 
sub-processes into another layer of partitioning if there are any. 
For instance, if two processes are running simultaneously and 
each of them has a different number of subprocesses to 
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complete, the algorithm will divide the total time available for 
those processes. 

Besides, this algorithm gives users and queues fair access to 

resources by dividing the processing power of the LSF cluster 
so that monopolizing the resources of the cluster by user or 
queue is impossible, and no queue will be starved. 

 

 

Fig. 2 Process of Solving Issue of Time Constraints 
 

The following details the algorithm's operation: Each user or 
group is first allocated a certain number of shares. These shares 
represent a small portion of the cluster's available resources. 
The most important users or groups will receive the greatest 
number of shares. The dynamic priority of a user may be 
determined by the share assignment. 

The dynamic priority of the person who submitted the job is 
more significant than the sequence in which jobs are queued up. 
When utilizing FFS, LSF will place the first job, which belongs 
to the user with the highest dynamic priority, in the queen [7]. 

Fig. 3 illustrates the entire scheduling procedure. After 
launching, this algorithm will allocate resources depending on 
the stated task priority while also keeping an eye on resource 
utilization. We continue the procedure and allot resources for 
the task until it is finished if the scheduling is not finished. If 
the schedule is finished, we go on to the conclusion. 

B. Resolving Resource Reservations in Energy-Aware 
Scheduling 

Resource reservations are balanced through FFS. While FFS 
can guarantee it, energy-aware scheduling tries to reduce 
system energy consumption. The system may allocate the 
resources needed for energy-sensitive tasks based on the fair 
share of each user or job with the help of FFS. Inadequate 
resources for other jobs are avoided as a result of preventing 
particular users or tasks from abusing resources excessively. In 
addition, the system can set limits on each user's or task's energy 
usage to keep it within the allotted share. This allows the system 
to optimize energy use and prevents energy usage from going 

above or below expectations. 

C. Introduction of Priority-Driven Preemptive Scheduling 
Algorithm 

PDPS Algorithm is an algorithm that can be used to help with 
the management of task prioritization in real-time systems, 
where tasks are assigned priorities based on their time 
constraints or other standards. In PDPS, tasks with higher 
priorities are executed first and right before tasks with lower 
priorities. Besides, if there are tasks with higher priorities, the 
execution process can even be preempted. Moreover, PDPS is 
adaptable to different system requirements and constraints; for 
example, it can be able to provide a framework for employing 
other energy-aware scheduling strategies. 

As we know, the key issue in addressing timing constraints 
is to find the most suitable algorithm and technique that can 
make sure all tasks are executed within the corresponding 
deadline with high efficiency and good performance, which is 
also a significant issue in energy-aware real-time systems.  

According to Fig. 3, PDPS is included in the "Dynamic 
Scheduling" category. Also, PDPS is an algorithm integrated 
with some energy-saving techniques like Dynamic Voltage 
Scaling (DVS) and Dynamic Power Management (DPM). With 
the help of these two techniques, PDPS Algorithm would be a 
great solution for dealing with timing constraints in real-time 
systems. 
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Fig. 3 Process of FFS 

D. Resolving Time Constraints in Energy-Aware Scheduling 
for Real-Time Systems 

After incorporating PDPS into energy-aware scheduling, the 
issue of timing constraints can be effectively addressed. This 
scheduling method can also be adapted to address energy-aware 
scheduling by considering the energy consumption associated 
with each task. The following is a detailed explanation of how 
PDPS solves timing constraints in energy-aware scheduling for 
real-time systems. 

1. Task Model 

Before PDPS is conducted, each task in the system would be 
defined by a tuple (𝐶_𝑖, 𝐷_𝑖, 𝑇_𝑖, 𝐸_𝑖, 𝑃_𝑖 ), where 𝐶_𝑖  is the 
computation time, 𝐷_𝑖 is the relative deadline, 𝑇_𝑖 is the period, 
E_i is the energy consumption, and 𝑃_𝑖 is the priority of the task 
respectively. Besides, tasks are ordered by their priority levels, 
with higher priority tasks having lower priority values (e.g., 
𝑃1  𝑃2) [10]. 

2. Task Prioritization 

In this process, PDPS assigns priorities to tasks based on their 

importance and criticality. The important task will be assigned 
with higher priority and require faster response time or stricter 
time constraints so that tasks are all scheduled and executed in 
a timely manner. 

a. Energy-Aware Priority Assignment  

The priority assignment is executed by considering both 
timing constraints and energy consumption. Generally, the 
fixed-priority assignment will be used by PDPS so that tasks are 
assigned fixed priorities that remain unchanging during 
execution. Also, it simplifies scheduling decisions and analysis, 
which allows for predictable behaviors and facilitates 
schedulability analysis, enabling the determination of whether 
all tasks can be successfully scheduled within their timing 
constraints or not. 

Based on research, one approach proposed by Guo et al. [5] 
is to use the Rate Monotonic Algorithm (RMA) or the Deadline 
Monotonic Algorithm (DMA) to assign priorities according to 
their periods or deadlines, respectively. Then, the tasks with 
similar priorities can be ordered based on their energy 
consumption, with lower energy-consuming tasks having 
higher priority. 

b. Response Time Analysis 

Particularly, PDPS enables response time analysis, which 
estimates the worst-case execution time and response time of 
each task. It helps determine if timing constraints are met, 
making sure that all tasks complete their execution within their 
deadlines. Also, PDPS can provide guarantees on task response 
times, allowing for proper system design and validation after 
considering the worst-case execution times [21]. 

3. Preemptive Scheduling 

Preemption is crucial for meeting timing constraints since it 
makes sure that high-priority tasks will not be delayed or 
blocked by lower-priority tasks. Thus, the scheduler follows the 
preemptive approach, meaning that a task with higher priority 
can preempt a task with lower priority currently being executed, 
or lower-priority tasks would be preempted or temporarily 
suspended to allow the tasks with higher priority to execute. 

When a task arrives, the scheduler will check whether the 
task has a higher priority than the currently running task. If so, 
the running task is preempted, and the task with higher priority 
begins execution. Otherwise, the new task is placed in the queue 
according to its priority, as others do. Putting it in another way, 
when a task with higher priority becomes ready to be executed, 
it preempts the currently running task with lower priority, 
enabling the system to respond promptly to the more critical 
events. 

4. Task Suspension and Resumption 

PDPS allows for task suspension and resumption, which 
means a lower-priority task can be temporarily suspended to 
give way to a higher-priority task, as mentioned above. Once 
the higher-priority task completes or is preempted by an even 
task with higher priority, the lower one is resumed. Task 
suspension and resumption will facilitate efficient scheduling 
and ensure that high-priority tasks obtain the necessary 
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resources to meet their timing constraints. In this case, task 
suspension and resumption are actually a small part of 
preemptive scheduling. 

5. Priority Inheritance 

Priority inheritance protocols can be applied with PDPS to 
mitigate priority inversion problems. Priority inversion happens 
when a high-priority task is blocked or delayed by a lower one 
holding a shared resource. Priority inheritance ensures that the 
priority of the task accessing the shared resource is temporarily 
elevated to the highest priority among the tasks waiting for that 
shared resource. This approach can prevent priority inversion 

and help maintain the timely execution of critical tasks 
efficiently. 

6. Energy-Awareness 

Energy awareness can be achieved by employing DVFS 
techniques. The scheduler can then adjust the operating 
frequency and voltage of the processor to minimize energy 
consumption while still meeting the time constraints of each 
task. This can be done by considering the energy consumption 
and remaining slack time (difference between the deadline and 
the current time) of each task. 

 

 

Fig. 4 Process of How PDPS Algorithm Solves the Issue of Time Constraints of Energy-Aware Scheduling in Real-Time Systems 
 

By applying the technique like PDPS, energy-aware 
scheduling in real-time systems can effectively solve the 
problem of timing constraints.  

Overall, the task model setting, prioritization of tasks, 

energy-aware priority assignment, response time analysis, 
support for preemption, task suspension and resumption, 
priority inheritance, and energy awareness collectively ensure 
that critical tasks receive the necessary resources and execute 
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within their deadlines, ensuring timing correctness in the 
system. 

V. DISCUSSION  

A. Advantages of Fair-Share Scheduling Algorithm 

FFS enables various users or tasks with various priorities. 
According to their fair share of resources, each user or job is 
assigned a priority level. It is beneficial for prioritizing work 
and ensuring that time-sensitive jobs are given the required 
resources and completed on schedule. FFS is furthermore 
flexible. In order to adapt to the current workload and user/task 
needs, it can dynamically alter resource allocation based on 
system conditions. In real-time systems, this algorithm aids in 
maximizing resource usage and responsiveness. 

B. Limitation of Fair-Share Scheduling Algorithm 

The imbalanced system load is one of the FFS's drawbacks. 
Even though FFS strives to allocate resources fairly, when the 
system load is imbalanced, some jobs may face delays or 
resource shortages. 

Another restriction is the difficulty of task prioritizing. 
Priorities must be established for various tasks in FFS to ensure 
equitable resource distribution. Making the proper settings and 
choosing the proper priorities, however, are difficult 

undertakings. Inappropriate order, the performance of other 
processes can be impacted when certain tasks use up too many 
system resources due to settings. 

When the system is overloaded, or there are not enough 
resources, FFS might not be able to guarantee real-time 
performance. Higher-level scheduling algorithms and strategies 
are needed for projects with stringent real-time requirements in 
order to guarantee their real-time performance. 

C. Advantages of Priority-Driven Preemptive Scheduling 
Algorithm 

In PDPS, tasks with higher priorities are executed before 
lower ones, and running tasks can be preempted by incoming 
higher-priority tasks. In this way, the problem of time 
constraints of energy-aware scheduling in real-time systems can 
be easily solved. 

Moreover, there are also some optimizations of PDPS for the 
process of meeting time constraints in task prioritization; for 
example, preemption and response time analysis, DVFS (which 
optimizes energy consumption without violating timing 
constraints), schedulability analysis, response time reduction, 
predictability and determinism (which provides a predictable 
and deterministic scheduling framework, then allows for 
accurate analysis and prediction of task execution and resource 
usage to enhance system reliability) and so on [16]. 

 

 

Fig. 5 Optimization Ways of PDPS 
 

D. Limitation of Priority-Driven Preemptive Scheduling 
Algorithm 

Although PDPS helps to deal with several challenges, it is 
important to note that energy-aware scheduling in real-time 
systems is a complex problem, and PDPS may not be sufficient 
enough to address all issues happened. Therefore, additional 
considerations are needed, such as energy models, system-level 
optimizations, and balancing energy efficiency with timing 
requirements, which may still be required for effective energy-
aware scheduling in real-time systems. 

VI. RECOMMENDATION  

A. Improvement for Fair-share Scheduling Algorithm 

1. Task Packing Algorithm to Maximize CPU Utilization 

Task Packing algorithm can be used, which is based on the 
Knapsack problem. It concentrates on the idle cycles of 
unbalanced applications where one or more CPUs are set aside 

from execution. To make it, a minimum number of CPUs are 
chosen and work on useful jobs of the parallel application tasks 
with undegraded performance, using oversubscription. Besides, 
"in place" is one of the characteristics of the Task Packing 
algorithm, which can make full use of idle cycles generated at 
synchronization points of unbalanced applications [18]. 

2. Fair-share Management for Resource Reservation 

To optimize the resource reservation, we improve it by the 
following method: The user will submit a request to the system. 
The system is informed by the provider of the resources that are 
accessible. The system then determines each provider's fair 
share. The provider in question will receive the entire resource 
if the number of requests exceeds the fair share. Following this, 
the system will update the details. When the system receives the 
provider with the largest share (apart from those on the entire 
list), it will provide them with the requested resource. Then, it 
will stop if the provider calls the final request; else, carries on 
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with the initial flow. The entire system is focused on equitable 
resource distribution and fair share resource management [19]. 
And Fig. 6 is the flow chart to explain the whole procedure. 

 

 

Fig. 6 Process of Fair-Share Resource Management Method [19] 

B. Improvement for Priority-Driven Preemptive Scheduling 
Algorithm 

As mentioned above, two techniques, DVS and DPM, can be 
applied with PDPS to improve its performance in solving time 
constraints problems. In detail, these techniques help in 
reducing energy consumption by adjusting the processor's 
voltage and frequency, as well as by managing power states 
[20]. Therefore, the PDPS algorithm can be extended to include 
energy-aware features by considering the following factors: 
ꞏ Task priority: Tasks are prioritized based on their 

deadlines. Higher-priority tasks have tighter deadlines and 
must be executed before lower-priority tasks. 

ꞏ Task execution time: The time required to complete each 
task should be considered. Longer tasks consume more 
energy, so the scheduler aims to minimize the overall task 
execution time. 

ꞏ Processor states: The scheduler takes into account the 
different power states that the processor can be in, such as 
active, idle, and sleep modes. Each state correspondingly 
has a different power consumption level. 

And originally, the scheduling process of PDPS in dealing 

with the time constraints of energy-aware scheduling should be 
as the example shown in Table III. 

 
TABLE III 

EXAMPLE OF SCHEDULING PROCESS OF PDPS 

Task Arrival Time Deadline Execution Time Priority

A 0 10 4 1 

B 2 14 5 2 

C 4 20 7 3 

 

According to Table III, there are three tasks, namely A, B, 
and C, with different arrival times, deadlines and execution 
times. Then their priorities will be assigned by PDPS based on 
deadlines so that A has the highest priority and then B and C. 

 

 

Fig. 7 Example of Execution Process 
 

In detail, as we can see from Fig. 7, Task A starts executing 
immediately at time 0, followed by Task B at time 4, and 
finally, Task C conducts at time 9. The scheduling process 
ensures that all tasks meet their respective time constraints 
while also minimizing energy consumption by reducing the 
overall task execution time. More than that, after improvement 
by applied techniques of DVS and DPM, PDPS will be more 
efficient in minimizing energy consumption [14]. For example, 
after expanding Table I with power states and energy 
consumption, the effectiveness of these two techniques can be 
explained. 

 
TABLE IV 

EXAMPLE OF SCHEDULING PROCESS OF PDPS WITH POWER STATES AND 

ENERGY CONSUMPTION 

Task
Arrival 
Time

Deadline Execution Priority 
Power 
State 

Energy 
Consumption

A 0 10 4 1 Active 12 mJ 

B 2 14 5 2 Active 15 mJ 

C 4 20 7 3 Active 21 mJ 

1. Dynamic Voltage Scaling 

This technique can adjust the processor’s voltage and 
frequency depending on the workload of the task to reduce 
energy consumption. There are three frequency levels: high, 
medium, and low [12]. 

 
TABLE V 

EXAMPLE OF FREQUENCY LEVELS OF DIFFERENT TASKS 

Task High Frequency Medium Frequency Low Frequency

A 12 mJ 9 mJ 7 mJ 

B 15 mJ 11 mJ 9 mJ 

C 21 mJ 16 mJ 13 mJ 

 

Based on Table V, DVS will be applied by the scheduler to 
select the most energy-efficient frequency level for each task 
without violating their time constraints. For example, Task A 
can be executed at low frequency (energy consumption then 
from 12 mJ to 7 mJ) and still meet its deadline. 
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2. Dynamic Power Management 

DPM can switch the processor between different power 
states to save energy. When there is no task running, the 
processor can enter an idle or sleep state, consuming less energy 
than in the active state. The energy consumption for different 
power states is shown in Table VI [13]. 

 
TABLE VI 

EXAMPLE OF ENERGY CONSUMPTION FOR DIFFERENT POWER STATES 

Power State Energy Consumption 

Active 5 mJ/s 

Idle 2 mJ/s 

Sleep 0.5 mJ/s 

 

The scheduler can apply the DPM technique to minimize 
energy consumption during idle periods. For example, after 
Task A finishes execution at time four and before Task B starts 
at time 4, the processor can enter the idle state for a short period, 
reducing energy consumption. 

By applying both DVS and DPM techniques, PDPS can 
effectively minimize energy consumption while ensuring that 
all tasks meet their timing constraints, which means that PDPS 
can be improved. This approach allows for a balance between 
performance and energy efficiency in real-time systems. 

In conclusion, the fusion of Blockchain and AI technologies 
holds significant potential for transforming supply chain 
finance and enhancing the scalability of distributed systems. 
This amalgamation presents an innovative solution to the 
prevailing scalability issues by improving transaction speed, 
security, and data handling capacities. Blockchain's 
decentralized nature eliminates intermediaries, boosts 
transparency, and enhances security. However, it also 
introduces the Blockchain Trilemma, encompassing problems 
around security, scalability, and decentralization, es. 

VII. CONCLUSION  

Through the article, we have analyzed two scheduling 
algorithms, FFS and PDPS, in the environment of energy-aware 
scheduling in real-time systems. Both algorithms have 
advantages in solving certain issues in energy-aware 
scheduling, such as resource reservation and timing constraints. 
However, they also have limitations that can be addressed 
through improvements. 

FFS ensures fair allocation of resources among tasks but may 
struggle when the system load is imbalanced. Implementing a 
task-packing algorithm and improving fair-share management 
can optimize resource utilization and reservation. 

PDPS prioritizes tasks based on their criticality and meets 
timing constraints through preemption. However, it relies 
heavily on task prioritization and may not be inherently energy 
efficient. Applying techniques like DVS and DPM can improve 
its energy efficiency while still maintaining timeliness. 

In summary, combining the strengths of both algorithms, 
along with implementing improvements with energy-aware 
features, can optimize scheduling in real-time systems to 
achieve both timeliness and energy efficiency. Future work 
should focus on developing hybrid scheduling techniques that 

incorporate the advantages of FFS for fairness and priority-
driven scheduling for time constraints while minimizing energy 
consumption through intelligent task prioritization, resource 
allocation, and processor management. 
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