

Abstract—Energy-aware scheduling in real-time systems aims to

minimize energy consumption, but issues related to resource
reservation and timing constraints remain challenges. This study
focuses on analyzing two scheduling algorithms, Fair-Share
Scheduling (FFS) and Priority-Driven Preemptive Scheduling (PDPS),
for solving these issues and energy-aware scheduling in real-time
systems. Based on research on both algorithms and the processes of
solving two problems, it can be found that FFS ensures fair allocation
of resources but needs to improve with an imbalanced system load.
And PDPS prioritizes tasks based on criticality to meet timing
constraints through preemption but relies heavily on task prioritization
and may not be energy efficient. Therefore, improvements to both
algorithms with energy-aware features will be proposed. Future work
should focus on developing hybrid scheduling techniques that
minimize energy consumption through intelligent task prioritization,
resource allocation, and meeting time constraints.

Keywords—Energy-aware scheduling, fair-share scheduling,
priority-driven preemptive scheduling, real-time systems,
optimization, resource reservation, timing constraints.

I. INTRODUCTION

NE critical aspect of operating system optimization is
scheduling, which involves determining the order and

allocation of system resources and time constraints to different
tasks or processes. Scheduling algorithms significantly impact
system performance, responsiveness, and resource utilization
[15]. In the context of real-time systems, scheduling algorithms
must consider tasks not only deadlines and resource allocation
but also energy efficiency to address the growing concerns of
resource constraints and environmental impact [8]. By
analyzing the energy awareness of these scheduling algorithms,
this research aims to solve key issues in scheduling in real-time
systems, determining their effectiveness in minimizing energy
consumption additionally while meeting real-time task
deadlines and completing the resource reservation.

FFS is designed to provide equitable resource allocation
among multiple tasks or processes, ensuring fairness and
preventing resource starvation [11]. On the other hand, PDPS
aims at prioritizing and scheduling tasks based on their
significance, making sure that high-priority tasks are assigned
precedence over lower-priority tasks [3].

Our research project focuses on the analysis of two
scheduling algorithms, namely FFS and PDPS, in the

Su Xiaohan, Jin Chicheng, Liu Yijing, and Dr. Burra Venkata Durga Kumar

are with the School of Computing & Data Science, Xiamen University
Malaysia, DULN009(B) Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang,

environment of real-time systems [8]. The goal is to investigate
issues solved in energy awareness by these algorithms. And we
will also conduct research on the solving process. Through
research, the article will provide insights into the strengths and
limitations of each algorithm and discuss the possible
improvements for each algorithm.

This study’s findings will contribute to optimizing operating
systems in real-time systems by providing a comprehensive
understanding of the benefits and challenges associated with
FFS and PDPS in terms of energy awareness [3]. Ultimately,
the research aims to enhance the design and implementation of
scheduling algorithms in operating systems to achieve
improved energy efficiency and performance in real-time
computing environments.

II. BACKGROUND

A. Introduction of Energy-Aware Scheduling

Energy-aware scheduling is a scheduling method that
optimizes job sequencing and resource allocation in order to
reduce a system's energy consumption. Scheduling that takes
into account energy sensing takes into account how energy-
intensive computer systems are.

Through judicious job scheduling and resource management,
energy sensing scheduling aims to optimize energy in the
following areas, such as mobile computing, renewable energy
integration, IoT. It makes an effort to prevent resource wastage
and cut back on excessive energy use.

B. Real-Time Systems

There are actually two main types of real-time systems:
 Hard real-time systems: In these kinds of systems, missing

a deadline can lead to catastrophic consequences, such as
failure of safety-critical systems or loss of life. There are
many real-world applications of hard real-time systems,
including aircraft control systems, medical devices, and
nuclear reactor control systems. In hard real-time systems,
meeting timing constraints is significantly crucial.

 Soft real-time systems: In these kinds of systems, missing
a deadline might cause degraded performance or temporary
disruptions, but it does not lead to catastrophic
consequences for its real-world application, including
video streaming, voice communication, and online gaming.

Selangor Darul Ehsan, Malaysia (e-mail: EEE1909245@xmu.edu.my,
CST2109157@xmu.edu.my, CST2009133@xmu.edu.my, venkata.burra@
xmu.edu.my).

Su Xiaohan, Jin Chicheng, Liu Yijing, Burra Venkata Durga Kumar

Energy-Aware Scheduling in Real-Time Systems: An
Analysis of Fair Share Scheduling and Priority-

Driven Preemptive Scheduling

O

World Academy of Science, Engineering and Technology
International Journal of Energy and Power Engineering

 Vol:18, No:5, 2024

106International Scholarly and Scientific Research & Innovation 18(5) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
ne

rg
y

an
d

Po
w

er
 E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
5,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
64

5.
pd

f

Although meeting the deadline of each task is still
important in soft real-time systems, occasional deadline
misses can be tolerated [9].

C. The Application of Energy-Aware Scheduling in Real-time
System

Real-time systems can use less energy, utilize energy more
effectively, and schedule tasks such that they are completed in
real time. It supports the dependability and sustainability of
real-time systems by meeting time requirements while
consuming the least amount of energy. As a result, it has been
used in many real-time system fields.

An IoT heterogeneous multiprocessor system on a chip
(MPSoC) job scheduling challenge was investigated by a team
from China in order to maximize security quality while meeting
energy, real-time, and task precedence requirements [22].
Besides, a new energy-efficient routing technique called
geographic routing time transfer (GRTT) is suggested in the
field of workforce monitoring in order to employ sensor node
topology information for target tracking and coverage
applications [17]. Last but not least, a team conducted a study
with a focus on cloud computing, which processes data from
fog computing that has been gathered by devices. By
introducing Dynamic Voltage and Frequency Scaling (DVFS)
technology, they develop a kind of energy-conscious strategy
that uses less energy [6].

III. ISSUE

A. Issues of Energy-Aware Scheduling in Real-Time Systems

Energy-aware scheduling in real-time systems brings
additional challenges. There are some key issues specific to
energy-aware scheduling in real-time systems, for example,
time constraints, resource reservation, DVFS, predictability,
overhead considerations, performance degradation and so on.
In real-time systems, energy-aware scheduling aims to optimize
the execution of tasks, which is about task prioritization. And
meeting time constraints and resource reservation are the two
main ways to prioritize the tasks based on our research.
Therefore, in this paper, we mainly focus on the issues of time
constraints and resource reservations of energy-aware
scheduling in real-time systems.

Fig. 1 Main Issues in Task Prioritization

B. Issue of Resource Reservations of Energy-Aware
Scheduling in Real-Time Systems

A real-time operating system is capable of handling jobs with
stringent deadlines. High response time requirements for jobs
thus become a problem, which can result in deteriorated system

performance or significant breakdowns. When it comes to
energy-aware scheduling, its application is intended to reduce
the system's energy usage. As a result, the order in which tasks
are scheduled and the reservation of resources become
problematic.

C. Issue of Time Constraints of Energy-Aware Scheduling in
Real-Time Systems

In real-time systems, timing constraints (the time of tasks
should meet) are one of the most critical requirements that
should be satisfied for it to make it function correctly; the
components of the systems can interact well, and they can
respond promptly to other external events. The issue of meeting
timing constraints in real-time systems revolves around
scheduling tasks and ensuring that tasks are executed within
corresponding deadlines while maintaining high performance
as well as efficiency. In this case, the process of task
prioritization can be conducted smoothly. In order to solve this
issue, there are various scheduling algorithms and techniques
being applied to the efficient management of task execution.
And the brief process can be shown in Fig. 2 [2].

IV. ALGORITHMS

A. Introduction of Fair-Share Scheduling Algorithm

FFS is a scheduling algorithm in the fields of operating
systems where the usage of CPU is distributed among different
system users or groups equally, which is opposed to the equal
distribution of resources in the processes [1]. It can dynamically
and equally distribute the time quanta to its objects [4].

One common way of applying FFS is implementing the
round-robin scheduling strategy at each level of abstraction
recursively (users, processes, groups, etc.). The time quantum
that round-robin requires is arbitrary, and the same results will
be produced as an equal division of time. Here is an example.
There are four users (A, B, C, D), and each of them is executing
a process at the same time; all the users can get the same share
of the CPU cycles with the help of the scheduler that splits the
CPU periods equally, which is (100%/4) 25%.

TABLE I

EXAMPLE OF DISTRIBUTION CPU TIME OF PROCESS BY USING FFS
Process 1

25%
Process 2

25%
Process 3

25%
Process 4

25%

TABLE II
EXAMPLE OF DISTRIBUTION CPU TIME OF SUB-PROCESSES BY USING FFS

Sub1 of Process 1
50% ∗ 50% 25%

Sub1 of Process 2
50% ∗ 25% 12.5%

Sub2 of Process 2
50% ∗ 25% 12.5%

Sub2 of Process 1
50% ∗ 50% 25%

Sub3 of Process 2
50% ∗ 25% 12.5%

Sub4 of Process 2
50% ∗ 25% 12.5%

Process 1 Process 2

The scheduler nevertheless logically separates any additional
sub-processes into another layer of partitioning if there are any.
For instance, if two processes are running simultaneously and
each of them has a different number of subprocesses to

World Academy of Science, Engineering and Technology
International Journal of Energy and Power Engineering

 Vol:18, No:5, 2024

107International Scholarly and Scientific Research & Innovation 18(5) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
ne

rg
y

an
d

Po
w

er
 E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
5,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
64

5.
pd

f

complete, the algorithm will divide the total time available for
those processes.

Besides, this algorithm gives users and queues fair access to

resources by dividing the processing power of the LSF cluster
so that monopolizing the resources of the cluster by user or
queue is impossible, and no queue will be starved.

Fig. 2 Process of Solving Issue of Time Constraints

The following details the algorithm's operation: Each user or
group is first allocated a certain number of shares. These shares
represent a small portion of the cluster's available resources.
The most important users or groups will receive the greatest
number of shares. The dynamic priority of a user may be
determined by the share assignment.

The dynamic priority of the person who submitted the job is
more significant than the sequence in which jobs are queued up.
When utilizing FFS, LSF will place the first job, which belongs
to the user with the highest dynamic priority, in the queen [7].

Fig. 3 illustrates the entire scheduling procedure. After
launching, this algorithm will allocate resources depending on
the stated task priority while also keeping an eye on resource
utilization. We continue the procedure and allot resources for
the task until it is finished if the scheduling is not finished. If
the schedule is finished, we go on to the conclusion.

B. Resolving Resource Reservations in Energy-Aware
Scheduling

Resource reservations are balanced through FFS. While FFS
can guarantee it, energy-aware scheduling tries to reduce
system energy consumption. The system may allocate the
resources needed for energy-sensitive tasks based on the fair
share of each user or job with the help of FFS. Inadequate
resources for other jobs are avoided as a result of preventing
particular users or tasks from abusing resources excessively. In
addition, the system can set limits on each user's or task's energy
usage to keep it within the allotted share. This allows the system
to optimize energy use and prevents energy usage from going

above or below expectations.

C. Introduction of Priority-Driven Preemptive Scheduling
Algorithm

PDPS Algorithm is an algorithm that can be used to help with
the management of task prioritization in real-time systems,
where tasks are assigned priorities based on their time
constraints or other standards. In PDPS, tasks with higher
priorities are executed first and right before tasks with lower
priorities. Besides, if there are tasks with higher priorities, the
execution process can even be preempted. Moreover, PDPS is
adaptable to different system requirements and constraints; for
example, it can be able to provide a framework for employing
other energy-aware scheduling strategies.

As we know, the key issue in addressing timing constraints
is to find the most suitable algorithm and technique that can
make sure all tasks are executed within the corresponding
deadline with high efficiency and good performance, which is
also a significant issue in energy-aware real-time systems.

According to Fig. 3, PDPS is included in the "Dynamic
Scheduling" category. Also, PDPS is an algorithm integrated
with some energy-saving techniques like Dynamic Voltage
Scaling (DVS) and Dynamic Power Management (DPM). With
the help of these two techniques, PDPS Algorithm would be a
great solution for dealing with timing constraints in real-time
systems.

World Academy of Science, Engineering and Technology
International Journal of Energy and Power Engineering

 Vol:18, No:5, 2024

108International Scholarly and Scientific Research & Innovation 18(5) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
ne

rg
y

an
d

Po
w

er
 E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
5,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
64

5.
pd

f

Fig. 3 Process of FFS

D. Resolving Time Constraints in Energy-Aware Scheduling
for Real-Time Systems

After incorporating PDPS into energy-aware scheduling, the
issue of timing constraints can be effectively addressed. This
scheduling method can also be adapted to address energy-aware
scheduling by considering the energy consumption associated
with each task. The following is a detailed explanation of how
PDPS solves timing constraints in energy-aware scheduling for
real-time systems.

1. Task Model

Before PDPS is conducted, each task in the system would be
defined by a tuple (𝐶_𝑖, 𝐷_𝑖, 𝑇_𝑖, 𝐸_𝑖, 𝑃_𝑖), where 𝐶_𝑖 is the
computation time, 𝐷_𝑖 is the relative deadline, 𝑇_𝑖 is the period,
E_i is the energy consumption, and 𝑃_𝑖 is the priority of the task
respectively. Besides, tasks are ordered by their priority levels,
with higher priority tasks having lower priority values (e.g.,
𝑃1 𝑃2) [10].

2. Task Prioritization

In this process, PDPS assigns priorities to tasks based on their

importance and criticality. The important task will be assigned
with higher priority and require faster response time or stricter
time constraints so that tasks are all scheduled and executed in
a timely manner.

a. Energy-Aware Priority Assignment

The priority assignment is executed by considering both
timing constraints and energy consumption. Generally, the
fixed-priority assignment will be used by PDPS so that tasks are
assigned fixed priorities that remain unchanging during
execution. Also, it simplifies scheduling decisions and analysis,
which allows for predictable behaviors and facilitates
schedulability analysis, enabling the determination of whether
all tasks can be successfully scheduled within their timing
constraints or not.

Based on research, one approach proposed by Guo et al. [5]
is to use the Rate Monotonic Algorithm (RMA) or the Deadline
Monotonic Algorithm (DMA) to assign priorities according to
their periods or deadlines, respectively. Then, the tasks with
similar priorities can be ordered based on their energy
consumption, with lower energy-consuming tasks having
higher priority.

b. Response Time Analysis

Particularly, PDPS enables response time analysis, which
estimates the worst-case execution time and response time of
each task. It helps determine if timing constraints are met,
making sure that all tasks complete their execution within their
deadlines. Also, PDPS can provide guarantees on task response
times, allowing for proper system design and validation after
considering the worst-case execution times [21].

3. Preemptive Scheduling

Preemption is crucial for meeting timing constraints since it
makes sure that high-priority tasks will not be delayed or
blocked by lower-priority tasks. Thus, the scheduler follows the
preemptive approach, meaning that a task with higher priority
can preempt a task with lower priority currently being executed,
or lower-priority tasks would be preempted or temporarily
suspended to allow the tasks with higher priority to execute.

When a task arrives, the scheduler will check whether the
task has a higher priority than the currently running task. If so,
the running task is preempted, and the task with higher priority
begins execution. Otherwise, the new task is placed in the queue
according to its priority, as others do. Putting it in another way,
when a task with higher priority becomes ready to be executed,
it preempts the currently running task with lower priority,
enabling the system to respond promptly to the more critical
events.

4. Task Suspension and Resumption

PDPS allows for task suspension and resumption, which
means a lower-priority task can be temporarily suspended to
give way to a higher-priority task, as mentioned above. Once
the higher-priority task completes or is preempted by an even
task with higher priority, the lower one is resumed. Task
suspension and resumption will facilitate efficient scheduling
and ensure that high-priority tasks obtain the necessary

World Academy of Science, Engineering and Technology
International Journal of Energy and Power Engineering

 Vol:18, No:5, 2024

109International Scholarly and Scientific Research & Innovation 18(5) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
ne

rg
y

an
d

Po
w

er
 E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
5,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
64

5.
pd

f

resources to meet their timing constraints. In this case, task
suspension and resumption are actually a small part of
preemptive scheduling.

5. Priority Inheritance

Priority inheritance protocols can be applied with PDPS to
mitigate priority inversion problems. Priority inversion happens
when a high-priority task is blocked or delayed by a lower one
holding a shared resource. Priority inheritance ensures that the
priority of the task accessing the shared resource is temporarily
elevated to the highest priority among the tasks waiting for that
shared resource. This approach can prevent priority inversion

and help maintain the timely execution of critical tasks
efficiently.

6. Energy-Awareness

Energy awareness can be achieved by employing DVFS
techniques. The scheduler can then adjust the operating
frequency and voltage of the processor to minimize energy
consumption while still meeting the time constraints of each
task. This can be done by considering the energy consumption
and remaining slack time (difference between the deadline and
the current time) of each task.

Fig. 4 Process of How PDPS Algorithm Solves the Issue of Time Constraints of Energy-Aware Scheduling in Real-Time Systems

By applying the technique like PDPS, energy-aware
scheduling in real-time systems can effectively solve the
problem of timing constraints.

Overall, the task model setting, prioritization of tasks,

energy-aware priority assignment, response time analysis,
support for preemption, task suspension and resumption,
priority inheritance, and energy awareness collectively ensure
that critical tasks receive the necessary resources and execute

World Academy of Science, Engineering and Technology
International Journal of Energy and Power Engineering

 Vol:18, No:5, 2024

110International Scholarly and Scientific Research & Innovation 18(5) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
ne

rg
y

an
d

Po
w

er
 E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
5,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
64

5.
pd

f

within their deadlines, ensuring timing correctness in the
system.

V. DISCUSSION

A. Advantages of Fair-Share Scheduling Algorithm

FFS enables various users or tasks with various priorities.
According to their fair share of resources, each user or job is
assigned a priority level. It is beneficial for prioritizing work
and ensuring that time-sensitive jobs are given the required
resources and completed on schedule. FFS is furthermore
flexible. In order to adapt to the current workload and user/task
needs, it can dynamically alter resource allocation based on
system conditions. In real-time systems, this algorithm aids in
maximizing resource usage and responsiveness.

B. Limitation of Fair-Share Scheduling Algorithm

The imbalanced system load is one of the FFS's drawbacks.
Even though FFS strives to allocate resources fairly, when the
system load is imbalanced, some jobs may face delays or
resource shortages.

Another restriction is the difficulty of task prioritizing.
Priorities must be established for various tasks in FFS to ensure
equitable resource distribution. Making the proper settings and
choosing the proper priorities, however, are difficult

undertakings. Inappropriate order, the performance of other
processes can be impacted when certain tasks use up too many
system resources due to settings.

When the system is overloaded, or there are not enough
resources, FFS might not be able to guarantee real-time
performance. Higher-level scheduling algorithms and strategies
are needed for projects with stringent real-time requirements in
order to guarantee their real-time performance.

C. Advantages of Priority-Driven Preemptive Scheduling
Algorithm

In PDPS, tasks with higher priorities are executed before
lower ones, and running tasks can be preempted by incoming
higher-priority tasks. In this way, the problem of time
constraints of energy-aware scheduling in real-time systems can
be easily solved.

Moreover, there are also some optimizations of PDPS for the
process of meeting time constraints in task prioritization; for
example, preemption and response time analysis, DVFS (which
optimizes energy consumption without violating timing
constraints), schedulability analysis, response time reduction,
predictability and determinism (which provides a predictable
and deterministic scheduling framework, then allows for
accurate analysis and prediction of task execution and resource
usage to enhance system reliability) and so on [16].

Fig. 5 Optimization Ways of PDPS

D. Limitation of Priority-Driven Preemptive Scheduling
Algorithm

Although PDPS helps to deal with several challenges, it is
important to note that energy-aware scheduling in real-time
systems is a complex problem, and PDPS may not be sufficient
enough to address all issues happened. Therefore, additional
considerations are needed, such as energy models, system-level
optimizations, and balancing energy efficiency with timing
requirements, which may still be required for effective energy-
aware scheduling in real-time systems.

VI. RECOMMENDATION

A. Improvement for Fair-share Scheduling Algorithm

1. Task Packing Algorithm to Maximize CPU Utilization

Task Packing algorithm can be used, which is based on the
Knapsack problem. It concentrates on the idle cycles of
unbalanced applications where one or more CPUs are set aside

from execution. To make it, a minimum number of CPUs are
chosen and work on useful jobs of the parallel application tasks
with undegraded performance, using oversubscription. Besides,
"in place" is one of the characteristics of the Task Packing
algorithm, which can make full use of idle cycles generated at
synchronization points of unbalanced applications [18].

2. Fair-share Management for Resource Reservation

To optimize the resource reservation, we improve it by the
following method: The user will submit a request to the system.
The system is informed by the provider of the resources that are
accessible. The system then determines each provider's fair
share. The provider in question will receive the entire resource
if the number of requests exceeds the fair share. Following this,
the system will update the details. When the system receives the
provider with the largest share (apart from those on the entire
list), it will provide them with the requested resource. Then, it
will stop if the provider calls the final request; else, carries on

World Academy of Science, Engineering and Technology
International Journal of Energy and Power Engineering

 Vol:18, No:5, 2024

111International Scholarly and Scientific Research & Innovation 18(5) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
ne

rg
y

an
d

Po
w

er
 E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
5,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
64

5.
pd

f

with the initial flow. The entire system is focused on equitable
resource distribution and fair share resource management [19].
And Fig. 6 is the flow chart to explain the whole procedure.

Fig. 6 Process of Fair-Share Resource Management Method [19]

B. Improvement for Priority-Driven Preemptive Scheduling
Algorithm

As mentioned above, two techniques, DVS and DPM, can be
applied with PDPS to improve its performance in solving time
constraints problems. In detail, these techniques help in
reducing energy consumption by adjusting the processor's
voltage and frequency, as well as by managing power states
[20]. Therefore, the PDPS algorithm can be extended to include
energy-aware features by considering the following factors:
ꞏ Task priority: Tasks are prioritized based on their

deadlines. Higher-priority tasks have tighter deadlines and
must be executed before lower-priority tasks.

ꞏ Task execution time: The time required to complete each
task should be considered. Longer tasks consume more
energy, so the scheduler aims to minimize the overall task
execution time.

ꞏ Processor states: The scheduler takes into account the
different power states that the processor can be in, such as
active, idle, and sleep modes. Each state correspondingly
has a different power consumption level.

And originally, the scheduling process of PDPS in dealing

with the time constraints of energy-aware scheduling should be
as the example shown in Table III.

TABLE III

EXAMPLE OF SCHEDULING PROCESS OF PDPS

Task Arrival Time Deadline Execution Time Priority

A 0 10 4 1

B 2 14 5 2

C 4 20 7 3

According to Table III, there are three tasks, namely A, B,
and C, with different arrival times, deadlines and execution
times. Then their priorities will be assigned by PDPS based on
deadlines so that A has the highest priority and then B and C.

Fig. 7 Example of Execution Process

In detail, as we can see from Fig. 7, Task A starts executing
immediately at time 0, followed by Task B at time 4, and
finally, Task C conducts at time 9. The scheduling process
ensures that all tasks meet their respective time constraints
while also minimizing energy consumption by reducing the
overall task execution time. More than that, after improvement
by applied techniques of DVS and DPM, PDPS will be more
efficient in minimizing energy consumption [14]. For example,
after expanding Table I with power states and energy
consumption, the effectiveness of these two techniques can be
explained.

TABLE IV

EXAMPLE OF SCHEDULING PROCESS OF PDPS WITH POWER STATES AND

ENERGY CONSUMPTION

Task
Arrival
Time

Deadline Execution Priority
Power
State

Energy
Consumption

A 0 10 4 1 Active 12 mJ

B 2 14 5 2 Active 15 mJ

C 4 20 7 3 Active 21 mJ

1. Dynamic Voltage Scaling

This technique can adjust the processor’s voltage and
frequency depending on the workload of the task to reduce
energy consumption. There are three frequency levels: high,
medium, and low [12].

TABLE V

EXAMPLE OF FREQUENCY LEVELS OF DIFFERENT TASKS

Task High Frequency Medium Frequency Low Frequency

A 12 mJ 9 mJ 7 mJ

B 15 mJ 11 mJ 9 mJ

C 21 mJ 16 mJ 13 mJ

Based on Table V, DVS will be applied by the scheduler to
select the most energy-efficient frequency level for each task
without violating their time constraints. For example, Task A
can be executed at low frequency (energy consumption then
from 12 mJ to 7 mJ) and still meet its deadline.

World Academy of Science, Engineering and Technology
International Journal of Energy and Power Engineering

 Vol:18, No:5, 2024

112International Scholarly and Scientific Research & Innovation 18(5) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
ne

rg
y

an
d

Po
w

er
 E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
5,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
64

5.
pd

f

2. Dynamic Power Management

DPM can switch the processor between different power
states to save energy. When there is no task running, the
processor can enter an idle or sleep state, consuming less energy
than in the active state. The energy consumption for different
power states is shown in Table VI [13].

TABLE VI

EXAMPLE OF ENERGY CONSUMPTION FOR DIFFERENT POWER STATES

Power State Energy Consumption

Active 5 mJ/s

Idle 2 mJ/s

Sleep 0.5 mJ/s

The scheduler can apply the DPM technique to minimize
energy consumption during idle periods. For example, after
Task A finishes execution at time four and before Task B starts
at time 4, the processor can enter the idle state for a short period,
reducing energy consumption.

By applying both DVS and DPM techniques, PDPS can
effectively minimize energy consumption while ensuring that
all tasks meet their timing constraints, which means that PDPS
can be improved. This approach allows for a balance between
performance and energy efficiency in real-time systems.

In conclusion, the fusion of Blockchain and AI technologies
holds significant potential for transforming supply chain
finance and enhancing the scalability of distributed systems.
This amalgamation presents an innovative solution to the
prevailing scalability issues by improving transaction speed,
security, and data handling capacities. Blockchain's
decentralized nature eliminates intermediaries, boosts
transparency, and enhances security. However, it also
introduces the Blockchain Trilemma, encompassing problems
around security, scalability, and decentralization, es.

VII. CONCLUSION

Through the article, we have analyzed two scheduling
algorithms, FFS and PDPS, in the environment of energy-aware
scheduling in real-time systems. Both algorithms have
advantages in solving certain issues in energy-aware
scheduling, such as resource reservation and timing constraints.
However, they also have limitations that can be addressed
through improvements.

FFS ensures fair allocation of resources among tasks but may
struggle when the system load is imbalanced. Implementing a
task-packing algorithm and improving fair-share management
can optimize resource utilization and reservation.

PDPS prioritizes tasks based on their criticality and meets
timing constraints through preemption. However, it relies
heavily on task prioritization and may not be inherently energy
efficient. Applying techniques like DVS and DPM can improve
its energy efficiency while still maintaining timeliness.

In summary, combining the strengths of both algorithms,
along with implementing improvements with energy-aware
features, can optimize scheduling in real-time systems to
achieve both timeliness and energy efficiency. Future work
should focus on developing hybrid scheduling techniques that

incorporate the advantages of FFS for fairness and priority-
driven scheduling for time constraints while minimizing energy
consumption through intelligent task prioritization, resource
allocation, and processor management.

ACKNOWLEDGMENT

We would like to express our sincere gratitude to Dr. Burra
Venkata Durga Kumar for his invaluable guidance and
mentorship throughout the process of writing this paper. His
expertise in the field of energy-aware scheduling and real-time
systems has been instrumental in expanding our knowledge and
enhancing our understanding of this complex subject matter.
His continuous support and encouragement have been pivotal
in completing this research. Furthermore, we extend our
heartfelt appreciation to all the authors whose works have been
cited in this paper. Their significant contributions to the field of
distributed systems have formed the foundation upon which our
research is built. Their relentless efforts and dedication to
advancing knowledge in this domain have inspired us and
enriched our understanding of the subject.

REFERENCES
[1] Adibhatla, B. et al. (2021) “Top Interview Questions for a Data Engineer

Job Profile,” Analytics India Magazine (Preprint). Available at:
https://analyticsindiamag.com/top-interview-questions-for-a-data-
engineer-job-profile/.

[2] Burns, A. and Davis, R.H. (2017) “A Survey of Research into Mixed
Criticality Systems,” ACM Computing Surveys, 50(6), pp. 1–37.
Available at: https://doi.org/10.1145/3131347.

[3] Chen, Y., Li, Y., & Chen, J. (2018). Research on Real-Time Scheduling
Algorithm Based on Energy Efficiency. Journal of Physics: Conference
Series, 1053(1), 012131. Available at: https://doi.org/10.1088/1742-
6596/1053/1/012131

[4] GeeksforGeeks (2021) “Fair share CPU scheduling,” GeeksforGeeks
(Preprint). Available at: https://www.geeksforgeeks.org/fair-share-cpu-
scheduling.

[5] Guo, Y., Wang, K., & Yang, J. (2018). Energy-aware real-time task
scheduling for single-processor systems: A survey. Journal of Systems
Architecture, 84, 1-14. Available at:
https://www.ibm.com/docs/en/spectrum-lsf/10.1.0?topic=scheduling-
understand-fair-share.

[6] Hosseinioun, P. et al. (2020) “A new energy-aware tasks scheduling
approach in fog computing using a hybrid meta-heuristic algorithm,”
Journal of Parallel and Distributed Computing, 143, pp. 88–96. Available
at: https://doi.org/10.1016/j.jpdc.2020.04.008.

[7] IBM Documentation (no date). Available at:
https://www.ibm.com/docs/en/spectrum-lsf/10.1.0?topic=scheduling-
understand-fair-share.

[8] Kumar, S., & Singh, K. (2019). Energy-aware scheduling algorithms for
real-time systems: A review. Journal of Ambient Intelligence and
Humanized Computing, 10(5), 1787–1800. Available at:
https://doi.org/10.1007/s12652-018-0798-3

[9] Liu, C. L., & Layland, J. W. (2019). Scheduling algorithms for
multiprogramming in a hard real-time environment. Journal of the ACM,
20(1), 46–61. Available at: https://doi.org/10.1145/321738.321743

[10] Maghsoudlou, H., Afshar-Nadjafi, B. and Niaki, S.T.A. (2021) “A
framework for a preemptive multi-skilled project scheduling problem
with time-of-use energy tariffs,” Energy Systems, 12(2), pp. 431–458.
Available at: https://doi.org/10.1007/s12667-019-00374-8.

[11] Pagani, S., Cardellini, V., Grassi, V., & Lo Presti, F. (2021). Fair share
scheduling for cloud computing: A survey. Journal of Network and
Computer Applications, 183, 102976. Available at:
https://doi.org/10.1016/j.jnca.2021.102976

[12] Piao, X. and Park, M. (2015) “On-Line Dynamic Voltage Scaling for
EDZL Scheduling on Symmetric Multiprocessor Real-Time Systems,”
International Journal of Multimedia and Ubiquitous Engineering
(Preprint). Available at: https://doi.org/10.14257/ijmue.2015.10.7.18.

World Academy of Science, Engineering and Technology
International Journal of Energy and Power Engineering

 Vol:18, No:5, 2024

113International Scholarly and Scientific Research & Innovation 18(5) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
ne

rg
y

an
d

Po
w

er
 E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
5,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
64

5.
pd

f

[13] Praveenchandar, J. and Tamilarasi, A. (2022) “Retraction Note to
Dynamic resource allocation with optimized task scheduling and
improved power management in cloud computing,” Journal of Ambient
Intelligence and Humanized Computing, 14(S1), p. 115. Available at:
https://doi.org/10.1007/s12652-022-03970-2.

[14] Qin, Y. et al. (2022) “Dynamic voltage scaling based energy-minimized
partial task offloading in fog networks,” Wireless Networks, 28(8), pp.
3337–3347. Available at: https://doi.org/10.1007/s11276-022-03052-3.

[15] Rahman, M. M., Islam, M. R., & Islam, M. M. (2020). A Survey of Real-
Time Scheduling Algorithms for Multiprocessor Systems. In Proceedings
of the International Conference on Computer, Communication, Chemical,
Material and Electronic Engineering (pp. 124–131). Available at:
https://doi.org/10.1145/3388231.3388245

[16] Rubaiee, S. and Yildirim, M. (2019) “An energy-aware multiobjective ant
colony algorithm to minimize total completion time and energy cost on a
single-machine preemptive scheduling,” Elsevier, 127, pp. 240–252.
Available at: https://doi.org/10.1016/j.cie.2018.12.020.

[17] Sangaiah, A.K. et al. (2021) “Energy-Aware Geographic Routing for
Real-Time Workforce Monitoring in Industrial Informatics,” IEEE
Internet of Things Journal, 8(12), pp. 9753–9762. Available at:
https://doi.org/10.1109/jiot.2021.3056419.

[18] Utrera, G., Farreras, M. and Fornes, J. (2019) “Task Packing: Efficient
task scheduling in unbalanced parallel programs to maximize CPU
utilization,” Journal of Parallel and Distributed Computing, 134, pp. 37–
49. Available at: https://doi.org/10.1016/j.jpdc.2019.08.003.

[19] Vaghela, F.N. and Serasiya, S. (2022) “Fair Share Management for
Resource Allocation in Multi Cloud Environment,” International Journal
of Progressive Research in Engineering Management and Science, 02(05),
pp. 32–35.

[20] Zhang, Y. et al. (2020) “Interval optimization based coordination
scheduling of gas–electricity coupled system considering wind power
uncertainty, dynamic process of natural gas flow and demand response
management,” Energy Reports, 6, pp. 216–227. Available at:
https://doi.org/10.1016/j.egyr.2019.12.013.

[21] Zhang, Y. (2023) “Energy efficient non-preemptive scheduling of
imprecise mixed-criticality real-time tasks,” Sustainable Computing:
Informatics and Systems, 37, p. 100840. Available at:
https://doi.org/10.1016/j.suscom.2022.100840.

[22] Zhou, J. et al. (2020) “Security-Critical Energy-Aware Task Scheduling
for Heterogeneous Real-Time MPSoCs in IoT,” IEEE Transactions on
Services Computing, 13(4), pp. 745–758. Available at:
https://doi.org/10.1109/tsc.2019.2963301.

World Academy of Science, Engineering and Technology
International Journal of Energy and Power Engineering

 Vol:18, No:5, 2024

114International Scholarly and Scientific Research & Innovation 18(5) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
ne

rg
y

an
d

Po
w

er
 E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
5,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
64

5.
pd

f

