Search results for: antioxidant properties.
2497 High Efficiency Electrolyte Lithium Battery and RF Characterization
Authors: Wei Quan, Liu Chao, Mohammed N. Afsar
Abstract:
The dielectric properties and ionic conductivity of novel "ceramic state" polymer electrolytes for high capacity lithium battery are characterized by Radio frequency and Microwave methods in two broad frequency ranges from 50 Hz to 20 KHz and 4 GHz to 40 GHz. This innovative solid polymer electrolyte which is highly ionic conductive (10-3 S/cm at room temperature) from -40oC to +150oC can be used in any battery application. Such polymer exhibits properties more like a ceramic rather than polymer. The various applied measurement methods produced accurate dielectric results for comprehensive analysis of electrochemical properties and ion transportation mechanism of this newly invented polymer electrolyte. Two techniques and instruments employing air gap measurement by Capacitance Bridge and in-waveguide measurement by vector network analyzer are applied to measure the complex dielectric spectra. The complex dielectric spectra are used to determine the complex alternating current electrical conductivity and thus the ionic conductivity.
Keywords: Polymer electrolyte, dielectric permittivity, lithium battery, ionic relaxation, microwave measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24242496 Composition Dependent Formation of Sputtered Co-Cu Film on Cr Under-Layer
Authors: Watcharee Rattanasakulthong, Pichai Sirisangsawang, Supree Pinitsoontorn
Abstract:
Sputtered CoxCu100-x films with the different compositions of x = 57.7, 45.8, 25.5, 13.8, 8.8, 7.5 and 1.8 were deposited on Cr under-layer by RF-sputtering. SEM result reveals that the averaged thickness of Co-Cu film and Cr under-layer are 92 nm and 22nm, respectively. All Co-Cu films are composed of Co (FCC) and Cu (FCC) phases in (111) directions on BCC-Cr (110) under-layers. Magnetic properties, surface roughness and morphology of Co-Cu films are dependent on the film composition. The maximum and minimum surface roughness of 3.24 and 1.16nm are observed on the Co7.5Cu92.5 and Co45.8Cu54.2films, respectively. It can be described that the variance of surface roughness of the film because of the difference of the agglomeration rate of Co and Cu atoms on Cr under-layer. The Co57.5Cu42.3, Co45.8Cu54.2 and Co25.5Cu74.5 films shows the ferromagnetic phase whereas the rest of the film exhibits the paramagnetic phase at room temperature. The saturation magnetization, remnant magnetization and coercive field of Co-Cu films on Cr under-layer are slightly increased with increasing the Co composition. It can be concluded that the required magnetic properties and surface roughness of the Co-Cu film can be adapted by the adjustment of the film composition.
Keywords: Co-Cu films, Under-layers, Sputtering, Surface roughness, Magnetic properties, Atomic force microscopy (AFM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19442495 Numerical Analysis of Dynamic Responses of the Plate Subjected to Impulsive Loads
Authors: Behzad Mohammadzadeh, Huyk Chun Noh
Abstract:
Plate is one of the popular structural elements used in a wide range of industries and structures. They may be subjected to blast loads during explosion events, missile attacks or aircraft attacks. This study is to investigate dynamic responses of the rectangular plate subjected to explosive loads. The effects of material properties and plate thickness on responses of the plate are to be investigated. The compressive pressure is applied to the surface of the plate. Different amounts of thickness in the range from 1mm to 30mm are considered for the plate to evaluate the changes in responses of the plate with respect to plate thickness. Two different properties are considered for the steel. First, the analysis is performed by considering only the elastic-plastic properties for the steel plate. Later on damping is considered to investigate its effects on the responses of the plate. To do analysis, numerical method using a finite element based package ABAQUS is applied. Finally, dynamic responses and graphs showing the relation between maximum displacement of the plate and aim parameters are provided.
Keywords: Impulsive loaded plates, dynamic analysis, abaqus, material nonlinearity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18212494 Seismic Fragility Curves for Shallow Circular Tunnels under Different Soil Conditions
Authors: Siti Khadijah Che Osmi, Syed Mohd Ahmad
Abstract:
This paper presents a methodology to develop fragility curves for shallow tunnels so as to describe a relationship between seismic hazard and tunnel vulnerability. Emphasis is given to the influence of surrounding soil material properties because the dynamic behaviour of the tunnel mostly depends on it. Four ground properties of soils ranging from stiff to soft soils are selected. A 3D nonlinear time history analysis is used to evaluate the seismic response of the tunnel when subjected to five real earthquake ground intensities. The derived curves show the future probabilistic performance of the tunnels based on the predicted level of damage states corresponding to the peak ground acceleration. A comparison of the obtained results with the previous literature is provided to validate the reliability of the proposed fragility curves. Results show the significant role of soil properties and input motions in evaluating the seismic performance and response of shallow tunnels.
Keywords: Fragility analysis, seismic performance, tunnel lining, vulnerability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13902493 Effect of Bamboo Chips in Cemented Sand Soil on Permeability and Mechanical Properties in Triaxial Compression
Authors: Sito Ismanti, Noriyuki Yasufuku
Abstract:
Cement utilization to improve the properties of soil is a well-known method applied in field. However, its addition in large quantity must be controlled. This study presents utilization of natural and environmental-friendly material mixed with small amount of cement content in soil improvement, i.e. bamboo chips. Absorbability, elongation, and flatness ratio of bamboo chips were examined to investigate and understand the influence of its characteristics in the mixture. Improvement of dilation behavior as a problem of loose and poorly graded sand soil is discussed. Bamboo chips are able to improve the permeability value that affects the dilation behavior of cemented sand soil. It is proved by the stress path as the result of triaxial compression test in the undrained condition. The effect of size and content variation of bamboo chips, as well as the curing time variation are presented and discussed.Keywords: Bamboo chips, permeability, mechanical properties, triaxial compression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16432492 Some Mechanical Properties of Cement Stabilized Malaysian Soft Clay
Authors: Meei-Hoan Ho, Chee-Ming Chan
Abstract:
Soft clays are defined as cohesive soil whose water content is higher than its liquid limits. Thus, soil-cement mixing is adopted to improve the ground conditions by enhancing the strength and deformation characteristics of the soft clays. For the above mentioned reasons, a series of laboratory tests were carried out to study some fundamental mechanical properties of cement stabilized soft clay. The test specimens were prepared by varying the portion of ordinary Portland cement to the soft clay sample retrieved from the test site of RECESS (Research Centre for Soft Soil). Comparisons were made for both homogeneous and columnar system specimens by relating the effects of cement stabilized clay of for 0, 5 and 10 % cement and curing for 3, 28 and 56 days. The mechanical properties examined included one-dimensional compressibility and undrained shear strength. For the mechanical properties, both homogeneous and columnar system specimens were prepared to examine the effect of different cement contents and curing periods on the stabilized soil. The one-dimensional compressibility test was conducted using an oedometer, while a direct shear box was used for measuring the undrained shear strength. The higher the value of cement content, the greater is the enhancement of the yield stress and the decrease of compression index. The value of cement content in a specimen is a more active parameter than the curing period.Keywords: Soft soil, Oedometer, Direct shear box, Cementstabilisedcolumn.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32472491 Property of Polyurethane: from Soy-derived Phosphate Ester
Authors: Flora Elvistia Firdaus
Abstract:
Polyurethane foams (PUF) were formed by a chemical reaction of polyol and isocyanate. The polyol was manufactured by ring-opening hydrolysis of epoxidized soybean oil in the presence of phosphoric acid under varying experimental conditions. Other factors in the foam formulation such as water content and surfactant were kept constant. The effect of the amount of solvents, phosphoric acid, and their derivates in the foam formulation on the properties of polyurethane foams were studied. The properties of the material were measured via a number of parameters, which are water content of prepared polyol, polymer density and cellular structures.Keywords: soy, polyurethane, phosporic acid
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17962490 Effect of Curing Temperature on Mechanical Properties of Jute Fiber Reinforced Polylactic Acid Based Green Composite
Authors: Sehijpal Singh Khangura, Jai Inder Preet Singh, Vikas Dhawan
Abstract:
Global warming, growing awareness of the environment, waste management issues, dwindling fossil resources, and rising oil prices resulted to increase the research in the materials that are friendly to our health and environment. Due to these reasons, green products are increasingly being promoted for sustainable development. In this work, fully biodegradable green composites have been developed using jute fibers as reinforcement and poly lactic acid as matrix material by film stacking technique. The effect of curing temperature during development of composites ranging from 160 °C, 170 °C, 180 °C and 190 °C was investigated for various mechanical properties. Results obtained from various tests indicate that impact strength decreases with an increase in curing temperature, but tensile and flexural strength increases till 180 °C, thereafter both the properties decrease. This study gives an optimum curing temperature for the development of jute/PLA composites.Keywords: Natural fibers, polymer matrix composites, jute, compression molding, biodegradation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10572489 The Layered Transition Metal Dichalcogenides as Materials for Storage Clean Energy: Ab initio Investigations
Authors: S. Meziane, H. I. Faraoun, C. Esling
Abstract:
Transition metal dichalcogenides have potential applications in power generation devices that convert waste heat into electric current by the so-called Seebeck and Hall effects thus providing an alternative energy technology to reduce the dependence on traditional fossil fuels. In this study, the thermoelectric properties of 1T and 2HTaX2 (X= S or Se) dichalcogenide superconductors have been computed using the semi-classical Boltzmann theory. Technologically, the task is to fabricate suitable materials with high efficiency. It is found that 2HTaS2 possesses the largest value of figure of merit ZT= 1.27 at 175 K. From a scientific point of view, we aim to model the underlying materials properties and in particular the transport phenomena as mediated by electrons and lattice vibrations responsible for superconductivity, Charge Density Waves (CDW) and metal/insulator transitions as function of temperature. The goal of the present work is to develop an understanding of the superconductivity of these selected materials using the transport properties at the fundamental level.Keywords: Ab initio, high efficiency, power generation devices, transition metal dichalcogenides.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17852488 Gorenstein Projective, Injective and Flat Modules Relative to Semidualizing Modules
Authors: Jianmin Xing, Rufeng Xing
Abstract:
In this paper we study some properties of GC-projective, injective and flat modules, where C is a semidualizing module and we discuss some connections between GC-projective, injective and flat modules , and we consider these properties under change of rings such that completions of rings, Morita equivalences and the localizations.
Keywords: Semidualizing module, C-projective(injective, flat), GC-projective (injective, flat), Commutative ring; Localizations .
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17512487 Simulating Laboratory Short Term Aging to Suit Malaysian Field Conditions
Authors: Meor O. Hamzah, Seyed R. Omranian, Ali Jamshidi, Mohd R M. Hasan
Abstract:
This paper characterizes the effects of artificial short term aging in the laboratory on the rheological properties of virgin 80/100 penetration grade asphalt binder. After several years in service, asphalt mixture started to deteriorate due to aging. Aging is a complex physico-chemical phenomenon that influences asphalt binder rheological properties causing a deterioration in asphalt mixture performance. To ascertain asphalt binder aging effects, the virgin, artificially aged and extracted asphalt binder were tested via the Rolling Thin film Oven (RTFO), Dynamic Shear Rheometer (DSR) and Rotational Viscometer (RV). A comparative study between laboratory and field aging conditions were also carried out. The results showed that the specimens conditioned for 85 minutes inside the RTFO was insufficient to simulate the actual short term aging caused that took place in the field under Malaysian field conditionsKeywords: Asphalt binder, Short term aging, Rheological properties, Viscosity, Temperature susceptibility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25272486 Chemical, Pasting and Sensory Properties of Whole Fermented Maize (Ogi) Fortified with Pigeon Pea Flour
Authors: S. B. Fasoyiro, K. A. Arowora
Abstract:
Pigeon pea (Cajanus cajan) blanched for 20min was dehulled and milled into flour. The flour was incorporated into dried whole fermented maize (Ogi) at five levels. The resultant products were analyzed for chemical and pasting properties. The fortified Ogi samples were also assessed for sensory attributes: appearance, color, flavor, mouth feel and overall acceptability. The protein content in the whole Ogi fortified samples was in the range of 11.2-16.6% and crude fibre 3.22-3.46%. Fortified whole Ogi with pigeon pea at 30%, 40% and 50% of inclusion with pigeon pea flour has higher protein, crude fibre and ash content. Varying range of pasting quality was recorded for the blends, pasting temperature for fortified Obi was in the range of 45.3-49.50C and peak time 5.05-5.210C. The sensory acceptability of the whole Ogi fortified blends prepared into gruel has higher acceptability for various qualities in comparison with the traditional Ogi gruel.
Keywords: Maize Ogi, pigeon pea, chemical, pasting, sensory properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24632485 Enhancement of Mechanical and Dissolution Properties of a Cast Magnesium Alloy via Equal Angular Channel Processing
Authors: Tim Dunne, Jiaxiang Ren, Lei Zhao, Peng Cheng, Yi Song, Yu Liu, Wenhan Yue, Xiongwen Yang
Abstract:
Two decades of the Shale Revolution has transforming transformed the global energy market, in part by the adaption of multi-stage dissolvable frac plugs. Magnesium has been favored for the bulk of plugs, requiring development of materials to suit specific field requirements. Herein, the mechanical and dissolution results from equal channel angular pressing (ECAP) of two cast dissolvable magnesium alloy are described. ECAP was selected as a route to increase the mechanical properties of two formulations of dissolvable magnesium, as solutionizing failed. In this study, 1” square cross section samples cast Mg alloys formulations containing rare earth were processed at temperatures ranging from 200 to 350 °C, at a rate of 0.005”/s, with a backpressure from 0 to 70 MPa, in a brass, or brass + graphite sheet. Generally, the yield and ultimate tensile strength (UTS) doubled for all. For formulation DM-2, the yield increased from 100 MPa to 250 MPa; UTS from 175 MPa to 325 MPa, but the strain fell from 2 to 1%. Formulation DM-3 yield increased from 75 MPa to 200 MPa, UTS from 150 MPa to 275 MPa, with strain increasing from 1 to 3%. Meanwhile, ECAP has also been found to reduce the dissolution rate significantly. A microstructural analysis showed grain refinement of the alloy and the movement of secondary phases away from the grain boundary. It is believed that reconfiguration of the grain boundary phases increased the mechanical properties and decreased the dissolution rate. ECAP processing of dissolvable high rare earth content magnesium is possible despite the brittleness of the material. ECAP is a possible processing route to increase mechanical properties for dissolvable aluminum alloys that do not extrude.Keywords: Equal channel angular processing, dissolvable magnesium, frac plug, mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4262484 Analysis of the Internal Mechanical Conditions in the Lower Limb Due to External Loads
Authors: Kent Salomonsson, Xuefang Zhao, Sara Kallin
Abstract:
Human soft tissue is loaded and deformed by any activity, an effect known as a stress-strain relationship, and is often described by a load and tissue elongation curve. Several advances have been made in the fields of biology and mechanics of soft human tissue. However, there is limited information available on in vivo tissue mechanical characteristics and behavior. Confident mechanical properties of human soft tissue cannot be extrapolated from e.g. animal testing. Thus, there is need for non invasive methods to analyze mechanical characteristics of soft human tissue. In the present study, the internal mechanical conditions of the lower limb, which is subject to an external load, is studied by use of the finite element method. A detailed finite element model of the lower limb is made possible by use of MRI scans. Skin, fat, bones, fascia and muscles are represented separately and the material properties for them are obtained from literature. Previous studies have been shown to address macroscopic deformation features, e.g. indentation depth, to a large extent. However, the detail in which the internal anatomical features have been modeled does not reveal the critical internal strains that may induce hypoxia and/or eventual tissue damage. The results of the present study reveals that lumped material models, i.e. averaging of the material properties for the different constituents, does not capture regions of critical strains in contrast to more detailed models.Keywords: FEM, human soft tissue, indentation, properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12862483 The Effects of Aggregate Sizes and Fiber Volume Fraction on Bending Toughness and Direct Tension of Steel Fiber Reinforced Concrete
Authors: Hyun-Woo Cho, Jae-Heum Moon, Jang-Hwa Lee
Abstract:
In order to supplement the brittle property of concrete, fibers are added into concrete mixtures. Compared to general concrete, various characteristics such as tensile strength, bending strength, bending toughness, and resistance to crack are superior, and even when cracks occur, improvements on toughness as well as resistance to shock are excellent due to the growth of fracture energy. Increased function of steel fiber reinforced concrete can be differentiated depending on the fiber dispersion, and sand percentage can be an important influence on the fiber dispersion. Therefore, in this research, experiments were planned on sand percentage in order to apprehend the influence of sand percentage on the bending properties and direct tension of SFRC and basic experiments were conducted on bending and direct tension in order to recognize the properties of bending properties and direct tension following the size of the aggregates and sand percentage.Keywords: Steel Fiber Reinforced Concrete, Bending Toughness, Direct tension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16582482 Effect of Packaging Methods and Storage Time on Oxidative Stability of Traditional Fermented Sausage
Authors: Vladimir M. Tomović, Branislav V. Šojić, Predrag M. Ikonić, Ljiljana S. Petrović, Anamarija I. Mandić, Natalija R. Džinić, Snežana B. Škaljac, Tatjana A. Tasić, Marija R. Jokanović
Abstract:
In this paper influence of packaging method (vacuum and modified atmosphere packaging) on lipid oxidative stability and sensory properties of odor and taste of the traditional sausage Petrovská klobása were examined. These parameters were examined during storage period (7 months). In the end of storage period, vacuum packed sausage showed better oxidative stability. Propanal content was significantly lower (P<0.05) in vacuum packed sausage compared to these values in unpacked and modified atmosphere packaging sausage. Hexanal content in vacuum packed sausage was 1.85 μg/g, in MAP sausage 2.98 μg/g and in unpacked sausage 4.94 μg/g. After 2 and 7 months of storage, sausages packed in vacuum had the highest grades for sensory properties of odor and taste.
Keywords: Lipid oxidation, MAP, sensory properties, traditional sausage, vacuum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22952481 Sintering of Composite Ceramic based on Corundum with Additive in the Al2O3-TiO2-MnO System
Authors: Aung Kyaw Moe, Lukin Evgeny Stepanovich, Popova Nelya Alexandrovna
Abstract:
In this paper, the effect of the additive content in the Al2O3-TiO2-MnO system on the sintering of composite ceramics based on corundum was studied. The samples were pressed by uniaxial semi-dry pressing under 100 MPa and sintered at 1500 °С and 1550 °С. The properties of composite ceramics for porosity and flexural strength were studied. When the amount of additives increases, the properties of composite ceramic samples are better than samples without additives.Keywords: Ceramic, composite material, sintering, corundum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8712480 Impact of Carbonation on Lime-Treated High Plasticity Index Clayey Soils
Authors: Saurav Bhattacharjee, Syam Nair
Abstract:
Lime stabilization is a sustainable and economically viable option to address strength deficiencies of subgrade soils. However, exposure of stabilized layers to environmental elements can lead to a reduction in post-stabilization strength gain expected in these layers. The current study investigates the impact of carbonation on the strength properties of lime-treated soils. Manufactured soils prepared using varying proportions of bentonite silica mixtures were used in the study. Lime-treated mixtures were exposed to different atmospheric conditions created by varying the concentrations of CO₂ in the testing chamber. The impact of CO₂ diffusion was identified based on changes in carbonate content and unconfined compressive strength (UCS) properties. Changes in soil morphology were also investigated as part of the study. The rate of carbonation was observed to vary polynomially (2nd order) with exposure time. The strength properties of the mixes were observed to decrease with exposure time.
Keywords: Manufactured soil, carbonation, morphology, unconfined compressive strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1372479 Effects of Kenaf and Rice Husk on Water Absorption and Flexural Properties of Kenaf/CaCO3/HDPE and Rice Husk/CaCO3/HDPE Hybrid Composites
Authors: Noor Zuhaira Abd Aziz, Rahmah Mohamed, Mohd Muizz Fahimi M.
Abstract:
Rice husk and kenaf filled with calcium carbonate (CaCO3) and high density polyethylene (HDPE) composite were prepared separately using twin-screw extruder at 50rpm. Different filler loading up to 30 parts of rice husk particulate and kenaf fiber were mixed with the fixed 30% amount of CaCO3 mineral filler to produce rice husk/CaCO3/HDPE and kenaf/CaCO3/HDPE hybrid composites. In this study, the effects of natural fiber for both rice husk and kenaf in CaCO3/HDPE composite on physical, mechanical and morphology properties were investigated. Field Emission Scanning Microscope (FeSEM) was used to investigate the impact fracture surfaces of the hybrid composite. The property analyses showed that water absorption increased with the presence of kenaf and rice husk fillers. Natural fibers in composite significantly influence water absorption properties due to natural characters of fibers which contain cellulose, hemicellulose and lignin structures. The result showed that 10% of additional natural fibers into hybrid composite had caused decreased flexural strength, however additional of high natural fiber (>10%) filler loading has proved to increase its flexural strength.
Keywords: Hybrid composites, Water absorption, Mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26282478 Effects of Material Properties of Warhead Casing on Natural Fragmentation Performance of High Explosive (HE) Warhead
Authors: G. Tanapornraweekit, W. Kulsirikasem
Abstract:
This research paper presents numerical studies of the characteristics of warhead fragmentation in terms of initial velocities, spray angles of fragments and fragment mass distribution of high explosive (HE) warhead. The behavior of warhead fragmentation depends on shape and size of warhead, thickness of casing, type of explosive, number and position of detonator, and etc. This paper focuses on the effects of material properties of warhead casing, i.e. failure strain, initial yield and ultimate strength on the characteristics of warhead fragmentation. It was found that initial yield and ultimate strength of casing has minimal effects on the initial velocities and spray angles of fragments. Moreover, a brittle warhead casing with low failure strain tends to produce higher number of fragments with less average fragment mass.Keywords: Detonation, Material Properties, Natural Fragment, Warhead
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37492477 Microstructure and Mechanical Properties of Mg-Zn Alloys
Authors: Young Sik Kim, Tae Kwon Ha
Abstract:
Effect of Zn addition on the microstructure and mechanical properties of Mg-Zn alloys with Zn contents from 6 to 10 weight percent was investigated in this study. Through calculation of phase equilibria of Mg-Zn alloys, carried out by using FactSage® and FTLite database, solution treatment temperature was decided as temperatures from 300 to 400oC, where supersaturated solid solution can be obtained. Solid solution treatment of Mg-Zn alloys was successfully conducted at 380oC and supersaturated microstructure with all beta phase resolved into matrix was obtained. After solution treatment, hot rolling was successfully conducted by reduction of 60%. Compression and tension tests were carried out at room temperature on the samples as-cast, solution treated, hot-rolled and recrystallized after rolling. After solid solution treatment, each alloy was annealed at temperatures of 180 and 200oC for time intervals from 1 min to 48 hrs and hardness of each condition was measured by micro-Vickers method. Peak aging conditions were deduced as at the temperature of 200oC for 10 hrs. By addition of Zn by 10 weight percent, hardness and strength were enhanced.Keywords: Mg-Zn alloy, Heat treatment, Microstructure, Mechanical properties, Hardness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23672476 Mercerization Treatment Parameter Effect on Natural Fiber Reinforced Polymer Matrix Composite: A Brief Review
Authors: Mohd Yussni Hashim, Mohd Nazrul Roslan, Azriszul Mohd Amin, Ahmad Mujahid Ahmad Zaidi, Saparudin Ariffin
Abstract:
Environmental awareness and depletion of the petroleum resources are among vital factors that motivate a number of researchers to explore the potential of reusing natural fiber as an alternative composite material in industries such as packaging, automotive and building constructions. Natural fibers are available in abundance, low cost, lightweight polymer composite and most importance its biodegradability features, which often called “ecofriendly" materials. However, their applications are still limited due to several factors like moisture absorption, poor wettability and large scattering in mechanical properties. Among the main challenges on natural fibers reinforced matrices composite is their inclination to entangle and form fibers agglomerates during processing due to fiber-fiber interaction. This tends to prevent better dispersion of the fibers into the matrix, resulting in poor interfacial adhesion between the hydrophobic matrix and the hydrophilic reinforced natural fiber. Therefore, to overcome this challenge, fiber treatment process is one common alternative that can be use to modify the fiber surface topology by chemically, physically or mechanically technique. Nevertheless, this paper attempt to focus on the effect of mercerization treatment on mechanical properties enhancement of natural fiber reinforced composite or so-called bio composite. It specifically discussed on mercerization parameters, and natural fiber reinforced composite mechanical properties enhancement.Keywords: Mercerization treatment, mechanical properties, natural fiber and bio composite
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47532475 Physical Properties and Stability of Emulsions as Affected by Native and Modified Yam Starches
Authors: Nor Hayati Ibrahim, Shamini Nair Achudan
Abstract:
This study was conducted in order to determine the physical properties and stability of mayonnaise-like emulsions as affected by modified yam starches. Native yam starch was modified via pre-gelatinization and cross-linking phosphorylation procedures. The emulsions (50% oil dispersed phase) were prepared with 0.3% native potato, native yam, pre-gelatinized yam and cross-linking phosphorylation yam starches. The droplet size of surface weighted mean diameter was found to be significantly (p < 0.05) lower in the sample with cross-linking phosphorylation yam starch as compared to other samples. Moreover, the viscosity of the sample with pregelatinized yam starch was observed to be higher than that of other samples. The phase separation stability was low in the freshly prepared and stored (45 days, 5°C) emulsions containing native yam starch. This study thus generally suggested that modified yam starches were more suitable (i.e. better physical properties and stability) to be used as stabilizers in a similar system i.e. light mayonnaises, rather than a native yam starch.
Keywords: Oil-in-water emulsions, low-fat mayonnaises, modified yam starches, droplet size distribution, viscosity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34542474 Experimental Study of Adsorption Properties of Acid and Thermal Treated Bentonite from Tehran (Iran)
Authors: H. R. Moghadamzadeh, M. Naimi, H. Rahimzadeh, M. Ardjmand, V. M. Nansa, A. M. Ghanadi
Abstract:
The Iranian bentonite was first characterized by Scanning Electron Microscopy (SEM), Inductively Coupled Plasma mass spectrometry (ICP-MS), X-ray fluorescence (XRF), X-ray Diffraction (XRD) and BET. The bentonite was then treated thermally between 150°C-250°C at 15min, 45min and 90min and also was activated chemically with different concentration of sulphuric acid (3N, 5N and 10N). Although the results of thermal activated-bentonite didn-t show any considerable changes in specific surface area and Cation Exchange Capacity (CEC), but the results of chemical treated bentonite demonstrated that such properties have been improved by acid activation process.Keywords: Acid activation, Bentonite, CEC, Thermal activation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28452473 Thermal Insulating Silicate Materials Suitable for Thermal Insulation and Rehabilitation Structures
Authors: J. Hroudova, M. Sedlmajer, J. Zach
Abstract:
Problems insulation of building structures is often closely connected with the problem of moisture remediation. In the case of historic buildings or if only part of the redevelopment of envelope of structures, it is not possible to apply the classical external thermal insulation composite systems. This application is mostly effective thermal insulation plasters with high porosity and controlled capillary properties which assures improvement of thermal properties construction, its diffusion openness towards the external environment and suitable treatment capillary properties of preventing the penetration of liquid moisture and salts thereof toward the outer surface of the structure. With respect to the current trend of reducing the energy consumption of building structures and reduce the production of CO2 is necessary to develop capillary-active materials characterized by their low density, low thermal conductivity while maintaining good mechanical properties. The aim of researchers at the Faculty of Civil Engineering, Brno University of Technology is the development and study of hygrothermal behaviour of optimal materials for thermal insulation and rehabilitation of building structures with the possible use of alternative, less energy demanding binders in comparison with conventional, frequently used binder, which represents cement. The paper describes the evaluation of research activities aimed at the development of thermal insulation and repair materials using lightweight aggregate and alternative binders such as metakaolin and finely ground fly ash.
Keywords: Thermal insulating plasters, rehabilitation materials, thermal conductivity, lightweight aggregate, alternative binders.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21812472 Durability Properties of Foamed Concrete with Fiber Inclusion
Authors: Hanizam Awang, Muhammad Hafiz Ahmad
Abstract:
An experimental study was conducted on foamed concrete with synthetic and natural fibres consisting of AR-glas, polypropylene, steel, kenaf and oil palm fibre. The foamed concrete mixtures produced had a target density of 1000kg/m3 and a mix ratio of (1:1.5:0.45). The fibres were used as additives. The inclusion of fibre was maintained at a volumetric fraction of 0.25 and 0.4%. The water absorption, thermal and shrinkage were determined to study the effect of the fibre on the durability properties of foamed concrete. The results showed that AR-glass fibre has the lowest percentage value of drying shrinkage compared to others.
Keywords: Foamed concrete, Fibres, Durability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47382471 Effects of Aggressive Ammonium Nitrate on Durability Properties of Concrete Using Sandstone and Granite Aggregates
Authors: L. Wong, H. Asrah, M.E. Rahman, M.A. Mannan
Abstract:
The storage of chemical fertilizers in concrete building often leads to durability problems due to chemical attack. The damage of concrete is mostly caused by certain ammonium salts. The main purpose of the research is to investigate the durability properties of concrete being exposed to ammonium nitrate solution. In this investigation, experiments are conducted on concrete type G50 and G60. The leaching process is achieved by the use of 20% concentration solution of ammonium nitrate. The durability properties investigated are water absorption, volume of permeable voids, and sorptivity. Compressive strength, pH value, and degradation depth are measured after a certain period of leaching. A decrease in compressive strength and an increase in porosity are found through the conducted experiments. Apart from that, the experimental data shows that pH value decreases with increased leaching time while the degradation depth of concrete increases with leaching time. By comparing concrete type G50 and G60, concrete type G60 is more resistant to ammonium nitrate attack.
Keywords: Normal weight concrete durability, Aggressive Ammonium Nitrate Solution, G50 & G60 concretes, Chemical attack.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 66812470 Structural and Optical Properties of Pr3+ Doped ZnO and PVA:Zn98Pr2O Nanocomposite Free Standing Film
Authors: Pandiyarajan Thangaraj, Mangalaraja Ramalinga Viswanathan, Karthikeyan Balasubramanian, Héctor D. Mansilla, José Ruiz, David Contreras
Abstract:
In this work, we report, a systematic study on the structural and optical properties of Pr-doped ZnO nanostructures and PVA:Zn98Pr2O polymer matrix nanocomposites free standing films. These particles are synthesized through simple wet chemical route and solution casting technique at room temperature, respectively. Structural studies carried out by X-ray diffraction method confirm that the prepared pure ZnO and Pr doped ZnO nanostructures are in hexagonal wurtzite structure and the microstrain is increased upon doping. TEM analysis reveals that the prepared materials are in sheet like nature. Absorption spectra show free excitonic absorption band at 370 nm and red shift for the Pr doped ZnO nanostructures. The PVA:Zn98Pr2O composite film exhibits both free excitonic and PVA absorption bands at 282 nm. Fourier transform infrared spectral studies confirm the presence of A1 (TO) and E1 (TO) modes of Zn-O bond vibration and the formation of polymer composite materials.
Keywords: Pr doped ZnO, polymer nanocomposites, optical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22302469 The Influence of Physical-Mechanical and Thermal Properties of Hemp Filling Materials by the Addition of Energy Byproducts
Authors: Sarka Keprdova, Jiri Bydzovsky
Abstract:
This article describes to what extent the addition of energy by-products into the structures of the technical hemp filling materials influence their properties. The article focuses on the changes in physical-mechanical and thermal technical properties of materials after the addition of ash or FBC ash or slag in the binding component of material. Technical hemp filling materials are made of technical hemp shives bonded by the mixture of cement and dry hydrate lime. They are applicable as fillers of vertical or horizontal structures or roofs. The research used eight types of energy by-products of power or heating plants in the Czech Republic. Secondary energy products were dispensed in three different percentage ratios as a replacement of cement in the binding component. Density, compressive strength and determination of the coefficient of thermal conductivity after 28, 60 and 90 days of curing in a laboratory environment were determined and subsequently evaluated on the specimens produced.
Keywords: Ash, binder, cement, energy by-product, FBC ash (fluidized bed combustion ash), filling materials, shives, slag, technical hemp.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18962468 Experimental Investigation and Sensitivity Analysis for the Effects of Fracture Parameters to the Conductance Properties of Laterite
Authors: Bai Wei, Kong Ling-Wei, Guo Ai-Guo
Abstract:
This experiment discusses the effects of fracture parameters such as depth, length, width, angle and the number of the fracture to the conductance properties of laterite using the DUK-2B digital electrical measurement system combined with the method of simulating the fractures. The results of experiment show that the changes of fracture parameters produce effects to the conductance properties of laterite. There is a clear degressive period of the conductivity of laterite during increasing the depth, length, width, or the angle and the quantity of fracture gradually. When the depth of fracture exceeds the half thickness of the soil body, the conductivity of laterite shows evidently non-linear diminishing pattern and the amplitude of decrease tends to increase. The length of fracture has fewer effects than the depth to the conductivity. When the width of fracture reaches some fixed values, the change of the conductivity is less sensitive to the change of the width, and at this time, the conductivity of laterite maintains at a stable level. When the angle of fracture is less than 45°, the decrease of the conductivity is more clearly as the angle increases. But when angle is more than 45°, change of the conductivity is relatively gentle as the angle increases. The increasing quantity of the fracture causes the other fracture parameters having great impact on the change of conductivity. When moisture content and temperature were unchanged, depth and angle of fractures are the major factors affecting the conductivity of laterite soil; quantity, length, and width are minor influencing factors. The sensitivity of fracture parameters affect conductivity of laterite soil is: depth >angles >quantity >length >width.Keywords: laterite, fracture parameters, conductance properties, conductivity, uniform design, sensitivity analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430