Search results for: vector field convolution.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3149

Search results for: vector field convolution.

2699 Doubly Fed Induction Generator Based Variable Speed Wind Conversion System Control Enhancement by Applying Fractional Order Controller

Authors: Abdellatif Kasbi, Abderrafii Rahali

Abstract:

In an electric power grid connected wind generation system, dynamic control strategy is essential to use the wind energy efficiently as well as for an energy optimization. The present study has focused on decoupled power regulation of doubly fed induction generator, operating in wind turbine, in accordance with the vector control approach by applying fractional order proportional integral (FOPI) controller. The FOPI controller is designed based on a simple method; up such that the response of closed loop process is similar to the response of a specified fractional model whose transfer function is Bode’s ideal function. In this tuning operation, the parameters of the proposed fractional controller are established analytically using the impulse closed-loop response of the controlled process. To show the superior action of the developed FOPI controller in comparison with standard PI controller in different function conditions, the study is validated through simulation using the software MATLAB/Simulink.

Keywords: Wind generation system, DFIG, vector control approach, fractional order PI controller, Bode’s ideal transfer function, impulse response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 680
2698 Gas Detection via Machine Learning

Authors: Walaa Khalaf, Calogero Pace, Manlio Gaudioso

Abstract:

We present an Electronic Nose (ENose), which is aimed at identifying the presence of one out of two gases, possibly detecting the presence of a mixture of the two. Estimation of the concentrations of the components is also performed for a volatile organic compound (VOC) constituted by methanol and acetone, for the ranges 40-400 and 22-220 ppm (parts-per-million), respectively. Our system contains 8 sensors, 5 of them being gas sensors (of the class TGS from FIGARO USA, INC., whose sensing element is a tin dioxide (SnO2) semiconductor), the remaining being a temperature sensor (LM35 from National Semiconductor Corporation), a humidity sensor (HIH–3610 from Honeywell), and a pressure sensor (XFAM from Fujikura Ltd.). Our integrated hardware–software system uses some machine learning principles and least square regression principle to identify at first a new gas sample, or a mixture, and then to estimate the concentrations. In particular we adopt a training model using the Support Vector Machine (SVM) approach with linear kernel to teach the system how discriminate among different gases. Then we apply another training model using the least square regression, to predict the concentrations. The experimental results demonstrate that the proposed multiclassification and regression scheme is effective in the identification of the tested VOCs of methanol and acetone with 96.61% correctness. The concentration prediction is obtained with 0.979 and 0.964 correlation coefficient for the predicted versus real concentrations of methanol and acetone, respectively.

Keywords: Electronic nose, Least square regression, Mixture ofgases, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2539
2697 Newtonian Mechanics Descriptions for General Relativity Experimental Tests, Dark Matter and Dark Energy

Authors: Jing-Gang Xie

Abstract:

As the continuation to the previous studies of gravitational frequency shift, gravitational time dilation, gravitational light bending, gravitational waves, dark matter, and dark energy are explained in the context of Newtonian mechanics. The photon is treated as the particle with mass of hν/C2 under the gravitational field of much larger mass of M. Hence the quantum mechanics theory could be applied to gravitational field on cosmology scale. The obtained results are the same as those obtained by general relativity considering weak gravitational field approximation; however, the results are different when the gravitational field is substantially strong.

Keywords: Gravitational time dilation, gravitational light bending, gravitational waves, dark matter, dark energy, General Relativity, gravitational frequency shift.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1050
2696 Synthetic Aperture Radar Remote Sensing Classification Using the Bag of Visual Words Model to Land Cover Studies

Authors: Reza Mohammadi, Mahmod R. Sahebi, Mehrnoosh Omati, Milad Vahidi

Abstract:

Classification of high resolution polarimetric Synthetic Aperture Radar (PolSAR) images plays an important role in land cover and land use management. Recently, classification algorithms based on Bag of Visual Words (BOVW) model have attracted significant interest among scholars and researchers in and out of the field of remote sensing. In this paper, BOVW model with pixel based low-level features has been implemented to classify a subset of San Francisco bay PolSAR image, acquired by RADARSAR 2 in C-band. We have used segment-based decision-making strategy and compared the result with the result of traditional Support Vector Machine (SVM) classifier. 90.95% overall accuracy of the classification with the proposed algorithm has shown that the proposed algorithm is comparable with the state-of-the-art methods. In addition to increase in the classification accuracy, the proposed method has decreased undesirable speckle effect of SAR images.

Keywords: Bag of Visual Words, classification, feature extraction, land cover management, Polarimetric Synthetic Aperture Radar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 774
2695 Dispersion of a Solute in Peristaltic Motion of a Couple Stress Fluid in the Presence of Magnetic Field

Authors: Habtu Alemayehu, G. Radhakrishnamacharya

Abstract:

An analytical solution for dispersion of a solute in the peristaltic motion of a couple stress fluid in the presence of magnetic field with both homogeneous and heterogeneous chemical reactions is presented. The average effective dispersion coefficient has been found using Taylor-s limiting condition and long wavelength approximation. The effects of various relevant parameters on the average effective coefficient of dispersion have been studied. The average effective dispersion coefficient tends to decrease with magnetic field parameter, homogeneous chemical reaction rate parameter and amplitude ratio but tends to increase with heterogeneous chemical reaction rate parameter.

Keywords: Dispersion, Peristalsis, Couple stress fluid, Chemicalreaction, Magnetic field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
2694 Magnetohydrodynamic Mixed Convective Flow in a Cavity

Authors: R.YadollahiFarsani, B. Ghasemi

Abstract:

A magnetohydrodynamic mixed convective flow in a cavity was studied in this paper. The lower surface of cavity was heated from below whereas other walls of the cavity were thermally isolated. The governing two-dimensional flow equations have been solved by using finite volume code. The effects of magnetic field were studied on flow and temperature field and heat transfer performance at a wide range of parameters, Such as Hartmann (0≤Ha≤100) and Reynolds (1≤Re≤100) numbers. The results showed that as Hartman number increases the Nusselt number, representing heat transfer from the cavity decreases.

Keywords: Cavity, Magnetic Field, Mixed Convection, Magnetohydrodynamic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585
2693 Near Field Focusing Behaviour of Airborne Ultrasonic Phased Arrays Influenced by Airflows

Authors: D. Sun, T. F. Lu, A. Zander, M. Trinkle

Abstract:

This paper investigates the potential use of airborne ultrasonic phased arrays for imaging in outdoor environments as a means of overcoming the limitations experienced by kinect sensors, which may fail to work in the outdoor environments due to the oversaturation of the infrared photo diodes. Ultrasonic phased arrays have been well studied for static media, yet there appears to be no comparable examination in the literature of the impact of a flowing medium on the focusing behaviour of near field focused ultrasonic arrays. This paper presents a method for predicting the sound pressure fields produced by a single ultrasound element or an ultrasonic phased array influenced by airflows. The approach can be used to determine the actual focal point location of an array exposed in a known flow field. From the presented simulation results based upon this model, it can be concluded that uniform flows in the direction orthogonal to the acoustic propagation have a noticeable influence on the sound pressure field, which is reflected in the twisting of the steering angle of the array. Uniform flows in the same direction as the acoustic propagation have negligible influence on the array. For an array impacted by a turbulent flow, determining the location of the focused sound field becomes difficult due to the irregularity and continuously changing direction and the speed of the turbulent flow. In some circumstances, ultrasonic phased arrays impacted by turbulent flows may not be capable of producing a focused sound field.

Keywords: Airborne, airflow, focused sound field, ultrasonic phased array.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
2692 Study on Electrohydrodynamic Capillary Instability with Heat and Mass Transfer

Authors: D. K. Tiwari, Mukesh Kumar Awasthi, G. S. Agrawal

Abstract:

The effect of an axial electric field on the capillary instability of a cylindrical interface in the presence of heat and mass transfer has been investigated using viscous potential flow theory. In viscous potential flow, the viscous term in Navier-Stokes equation vanishes as vorticity is zero but viscosity is not zero. Viscosity enters through normal stress balance in the viscous potential flow theory and tangential stresses are not considered. A dispersion relation that accounts for the growth of axisymmetric waves is derived and stability is discussed theoretically as well as numerically. Stability criterion is given by critical value of applied electric field as well as critical wave number. Various graphs have been drawn to show the effect of various physical parameters such as electric field, heat transfer capillary number, conductivity ratio, permittivity ratio on the stability of the system. It has been observed that the axial electric field and heat and mass transfer both have stabilizing effect on the stability of the system.

Keywords: Capillary instability, Viscous potential flow, Heat and mass transfer, Axial electric field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1966
2691 Effect of Variable viscosity on Convective Heat Transfer along an Inclined Plate Embedded in Porous Medium with an Applied Magnetic Field

Authors: N.S. Tomer, Phool Singh, Manoj Kumar

Abstract:

The flow and heat transfer characteristics for natural convection along an inclined plate in a saturated porous medium with an applied magnetic field have been studied. The fluid viscosity has been assumed to be an inverse function of temperature. Assuming temperature vary as a power function of distance. The transformed ordinary differential equations have solved by numerical integration using Runge-Kutta method. The velocity and temperature profile components on the plate are computed and discussed in detail for various values of the variable viscosity parameter, inclination angle, magnetic field parameter, and real constant (λ). The results have also been interpreted with the aid of tables and graphs. The numerical values of Nusselt number have been calculated for the mentioned parameters.

Keywords: Heat Transfer, Magnetic Field, Porosity, Viscosity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749
2690 A Statistical Model for the Dynamics of Single Cathode Spot in Vacuum Cylindrical Cathode

Authors: Po-Wen Chen, Jin-Yu Wu, Md. Manirul Ali, Yang Peng, Chen-Te Chang, Der-Jun Jan

Abstract:

Dynamics of cathode spot has become a major part of vacuum arc discharge with its high academic interest and wide application potential. In this article, using a three-dimensional statistical model, we simulate the distribution of the ignition probability of a new cathode spot occurring in different magnetic pressure on old cathode spot surface and at different arcing time. This model for the ignition probability of a new cathode spot was proposed in two typical situations, one by the pure isotropic random walk in the absence of an external magnetic field, other by the retrograde motion in external magnetic field, in parallel with the cathode surface. We mainly focus on developed relationship between the ignition probability density distribution of a new cathode spot and the external magnetic field.

Keywords: Cathode spot, vacuum arc discharge, transverse magnetic field, random walk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1399
2689 Ambipolar Effect Free Double Gate PN Diode Based Tunnel FET

Authors: Hardik Vaghela, Mamta Khosla, Balwindar Raj

Abstract:

In this paper, we present and investigate a double gate PN diode based tunnel field effect transistor (DGPNTFET). The importance of proposed structure is that the formation of different drain doping is not required and ambipolar effect in OFF state is completely removed for this structure. Validation of this structure to behave like a Tunnel Field Effect Transistor (TFET) is carried out through energy band diagrams and transfer characteristics. Simulated result shows point subthreshold slope (SS) of 19.14 mV/decade and ON to OFF current ratio (ION / IOFF) of 2.66 × 1014 (ION at VGS=1.5V, VDS=1V and IOFF at VGS=0V, VDS=1V) for gate length of 20nm and HfO2 as gate oxide at room temperature. Which indicate that the DGPNTFET is a promising candidate for nano-scale, ambipolar free switch.

Keywords: Ambipolar effect, double gate PN diode based tunnel field effect transistor, high-κ dielectric material, subthreshold slope, tunnel field effect transistor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1004
2688 Absorption Spectra of Artificial Atoms in Presence of THz Fields

Authors: B. Dahiya, K.Batra, V.Prasad

Abstract:

Artificial atoms are growing fields of interest due to their physical and optoelectronicapplications. The absorption spectra of the proposed artificial atom inpresence of Tera-Hertz field is investigated theoretically. We use the non-perturbativeFloquet theory and finite difference method to study the electronic structure of ArtificialAtom. The effect of static electric field on the energy levels of artificial atom is studied.The effect of orientation of static electric field on energy levels and diploe matrix elementsis also highlighted.

Keywords: Absorption spectra, Artificial atom, Floquet Theory, THz fields

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699
2687 Viscous Potential Flow Analysis of Electrohydrodynamic Capillary Instability through Porous Media

Authors: Mukesh Kumar Awasth, Mohammad Tamsir

Abstract:

The effect of porous medium on the capillary instability of a cylindrical interface in the presence of axial electric field has been investigated using viscous potential flow theory. In viscous potential flow, the viscous term in Navier-Stokes equation vanishes as vorticity is zero but viscosity is not zero. Viscosity enters through normal stress balance in the viscous potential flow theory and tangential stresses are not considered. A dispersion relation that accounts for the growth of axisymmetric waves is derived and stability is discussed theoretically as well as numerically. Stability criterion is given by critical value of applied electric field as well as critical wave number. Various graphs have been drawn to show the effect of various physical parameters such as electric field, viscosity ratio, permittivity ratio on the stability of the system. It has been observed that the axial electric field and porous medium both have stabilizing effect on the stability of the system.

Keywords: Capillary instability, Viscous potential flow, Porous media, Axial electric field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2080
2686 Identification of Most Frequently Occurring Lexis in Body-enhancement Medicinal Unsolicited Bulk e-mails

Authors: Jatinderkumar R. Saini, Apurva A. Desai

Abstract:

e-mail has become an important means of electronic communication but the viability of its usage is marred by Unsolicited Bulk e-mail (UBE) messages. UBE consists of many types like pornographic, virus infected and 'cry-for-help' messages as well as fake and fraudulent offers for jobs, winnings and medicines. UBE poses technical and socio-economic challenges to usage of e-mails. To meet this challenge and combat this menace, we need to understand UBE. Towards this end, the current paper presents a content-based textual analysis of more than 2700 body enhancement medicinal UBE. Technically, this is an application of Text Parsing and Tokenization for an un-structured textual document and we approach it using Bag Of Words (BOW) and Vector Space Document Model techniques. We have attempted to identify the most frequently occurring lexis in the UBE documents that advertise various products for body enhancement. The analysis of such top 100 lexis is also presented. We exhibit the relationship between occurrence of a word from the identified lexis-set in the given UBE and the probability that the given UBE will be the one advertising for fake medicinal product. To the best of our knowledge and survey of related literature, this is the first formal attempt for identification of most frequently occurring lexis in such UBE by its textual analysis. Finally, this is a sincere attempt to bring about alertness against and mitigate the threat of such luring but fake UBE.

Keywords: Body Enhancement, Lexis, Medicinal, Unsolicited Bulk e-mail (UBE), Vector Space Document Model, Viagra

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3508
2685 Analysis of Electric Field and Potential Distributions along Surface of Silicone Rubber Insulators under Various Contamination Conditions Using Finite Element Method

Authors: B. Marungsri, W. Onchantuek, A. Oonsivilai, T. Kulworawanichpong

Abstract:

This paper presents the simulation results of electric field and potential distributions along surface of silicone rubber polymer insulators under clean and various contamination conditions with/without water droplets. Straight sheds insulator having leakage distance 290 mm was used in this study. Two type of contaminants, playwood dust and cement dust, have been studied the effect of contamination on the insulator surface. The objective of this work is to comparison the effect of contamination on potential and electric field distributions along the insulator surface when water droplets exist on the insulator surface. Finite element method (FEM) is adopted for this work. The simulation results show that contaminations have no effect on potential distribution along the insulator surface while electric field distributions are obviously depended on contamination conditions.

Keywords: electric field distribution, potential distribution, silicone rubber polymer insulator, finite element method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3292
2684 Magnetic Field Effects on Parabolic Graphene Quantum Dots with Topological Defects

Authors: Defne Akay, Bekir S. Kandemir

Abstract:

In this paper, we investigate the low-lying energy levels of the two-dimensional parabolic graphene quantum dots (GQDs) in the presence of topological defects with long range Coulomb impurity and subjected to an external uniform magnetic field. The low-lying energy levels of the system are obtained within the framework of the perturbation theory. We theoretically demonstrate that a valley splitting can be controlled by geometrical parameters of the graphene quantum dots and/or by tuning a uniform magnetic field, as well as topological defects. It is found that, for parabolic graphene dots, the valley splitting occurs due to the introduction of spatial confinement. The corresponding splitting is enhanced by the introduction of a uniform magnetic field and it increases by increasing the angle of the cone in subcritical regime.

Keywords: Coulomb impurity, graphene cones, graphene quantum dots, topological defects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2099
2683 Combined Feature Based Hyperspectral Image Classification Technique Using Support Vector Machines

Authors: Mrs.K.Kavitha, S.Arivazhagan

Abstract:

A spatial classification technique incorporating a State of Art Feature Extraction algorithm is proposed in this paper for classifying a heterogeneous classes present in hyper spectral images. The classification accuracy can be improved if and only if both the feature extraction and classifier selection are proper. As the classes in the hyper spectral images are assumed to have different textures, textural classification is entertained. Run Length feature extraction is entailed along with the Principal Components and Independent Components. A Hyperspectral Image of Indiana Site taken by AVIRIS is inducted for the experiment. Among the original 220 bands, a subset of 120 bands is selected. Gray Level Run Length Matrix (GLRLM) is calculated for the selected forty bands. From GLRLMs the Run Length features for individual pixels are calculated. The Principle Components are calculated for other forty bands. Independent Components are calculated for next forty bands. As Principal & Independent Components have the ability to represent the textural content of pixels, they are treated as features. The summation of Run Length features, Principal Components, and Independent Components forms the Combined Features which are used for classification. SVM with Binary Hierarchical Tree is used to classify the hyper spectral image. Results are validated with ground truth and accuracies are calculated.

Keywords: Multi-class, Run Length features, PCA, ICA, classification and Support Vector Machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
2682 Speaker Identification by Atomic Decomposition of Learned Features Using Computational Auditory Scene Analysis Principals in Noisy Environments

Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic

Abstract:

Speaker recognition is performed in high Additive White Gaussian Noise (AWGN) environments using principals of Computational Auditory Scene Analysis (CASA). CASA methods often classify sounds from images in the time-frequency (T-F) plane using spectrograms or cochleargrams as the image. In this paper atomic decomposition implemented by matching pursuit performs a transform from time series speech signals to the T-F plane. The atomic decomposition creates a sparsely populated T-F vector in “weight space” where each populated T-F position contains an amplitude weight. The weight space vector along with the atomic dictionary represents a denoised, compressed version of the original signal. The arraignment or of the atomic indices in the T-F vector are used for classification. Unsupervised feature learning implemented by a sparse autoencoder learns a single dictionary of basis features from a collection of envelope samples from all speakers. The approach is demonstrated using pairs of speakers from the TIMIT data set. Pairs of speakers are selected randomly from a single district. Each speak has 10 sentences. Two are used for training and 8 for testing. Atomic index probabilities are created for each training sentence and also for each test sentence. Classification is performed by finding the lowest Euclidean distance between then probabilities from the training sentences and the test sentences. Training is done at a 30dB Signal-to-Noise Ratio (SNR). Testing is performed at SNR’s of 0 dB, 5 dB, 10 dB and 30dB. The algorithm has a baseline classification accuracy of ~93% averaged over 10 pairs of speakers from the TIMIT data set. The baseline accuracy is attributable to short sequences of training and test data as well as the overall simplicity of the classification algorithm. The accuracy is not affected by AWGN and produces ~93% accuracy at 0dB SNR.

Keywords: Time-frequency plane, atomic decomposition, envelope sampling, Gabor atoms, matching pursuit, sparse dictionary learning, sparse autoencoder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
2681 Motion Prediction and Motion Vector Cost Reduction during Fast Block Motion Estimation in MCTF

Authors: Karunakar A K, Manohara Pai M M

Abstract:

In 3D-wavelet video coding framework temporal filtering is done along the trajectory of motion using Motion Compensated Temporal Filtering (MCTF). Hence computationally efficient motion estimation technique is the need of MCTF. In this paper a predictive technique is proposed in order to reduce the computational complexity of the MCTF framework, by exploiting the high correlation among the frames in a Group Of Picture (GOP). The proposed technique applies coarse and fine searches of any fast block based motion estimation, only to the first pair of frames in a GOP. The generated motion vectors are supplied to the next consecutive frames, even to subsequent temporal levels and only fine search is carried out around those predicted motion vectors. Hence coarse search is skipped for all the motion estimation in a GOP except for the first pair of frames. The technique has been tested for different fast block based motion estimation algorithms over different standard test sequences using MC-EZBC, a state-of-the-art scalable video coder. The simulation result reveals substantial reduction (i.e. 20.75% to 38.24%) in the number of search points during motion estimation, without compromising the quality of the reconstructed video compared to non-predictive techniques. Since the motion vectors of all the pair of frames in a GOP except the first pair will have value ±1 around the motion vectors of the previous pair of frames, the number of bits required for motion vectors is also reduced by 50%.

Keywords: Motion Compensated Temporal Filtering, predictivemotion estimation, lifted wavelet transform, motion vector

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
2680 Intelligent Swarm-Finding in Formation Control of Multi-Robots to Track a Moving Target

Authors: Anh Duc Dang, Joachim Horn

Abstract:

This paper presents a new approach to control robots, which can quickly find their swarm while tracking a moving target through the obstacles of the environment. In this approach, an artificial potential field is generated between each free-robot and the virtual attractive point of the swarm. This artificial potential field will lead free-robots to their swarm. The swarm-finding of these free-robots dose not influence the general motion of their swarm and nor other robots. When one singular robot approaches the swarm then its swarm-search will finish, and it will further participate with its swarm to reach the position of the target. The connections between member-robots with their neighbors are controlled by the artificial attractive/repulsive force field between them to avoid collisions and keep the constant distances between them in ordered formation. The effectiveness of the proposed approach has been verified in simulations.

Keywords: Formation control, potential field method, obstacle avoidance, swarm intelligence, multi-agent systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187
2679 Half-Circle Fuzzy Number Threshold Determination via Swarm Intelligence Method

Authors: P.-W. Tsai, J.-W. Chen, C.-W. Chen, C.-Y. Chen

Abstract:

In recent years, many researchers are involved in the field of fuzzy theory. However, there are still a lot of issues to be resolved. Especially on topics related to controller design such as the field of robot, artificial intelligence, and nonlinear systems etc. Besides fuzzy theory, algorithms in swarm intelligence are also a popular field for the researchers. In this paper, a concept of utilizing one of the swarm intelligence method, which is called Bacterial-GA Foraging, to find the stabilized common P matrix for the fuzzy controller system is proposed. An example is given in in the paper, as well.

Keywords: Half-circle fuzzy numbers, predictions, swarm intelligence, Lyapunov method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921
2678 Laboratory Scale Extraction of Sugar Cane using High Electric Field Pulses

Authors: M. N. Eshtiaghi, N. Yoswathana

Abstract:

The aim of this study was to extract sugar from sugarcane using high electric field pulse (HELP) as a non-thermal cell permeabilization method. The result of this study showed that it is possible to permeablize sugar cane cells using HELP at very short times (less than 10 sec.) and at room temperature. Increasing the field strength (from 0.5kV/cm to 2kV/cm) and pulse number (1 to 12) led to increasing the permeabilization of sugar cane cells. The energy consumption during HELP treatment of sugar cane (2.4 kJ/kg) was about 100 times less compared to thermal cell disintegration at 85 <=C (about 271.7 kJ/kg). In addition, it was possible to extract sugar cane at a moderate temperature (45 <=C) using HELP pretreatment. With combination of HELP pretreatment followed by thermal extraction at 75 <=C, extraction resulted in up to 3% more sugar (on the basis of total extractable sugar) compared to samples without HELP pretreatment.

Keywords: Cell permeabilization, High electric field pulses, Non-thermal processing, Sugar cane extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2748
2677 Numerical and Experimental Analysis of Temperature Distribution and Electric Field in a Natural Rubber Glove during Microwave Heating

Authors: U. Narumitbowonkul, P. Keangin, P. Rattanadecho

Abstract:

The characteristics of temperature distribution and electric field in a natural rubber glove (NRG) using microwave energy during microwave heating process are investigated numerically and experimentally. A three-dimensional model of NRG and microwave oven are considered in this work. The influences of position, heating time and rotation angle of NRG on temperature distribution and electric field are presented in details. The coupled equations of electromagnetic wave propagation and heat transfer are solved using the finite element method (FEM). The numerical model is validated with an experimental study at a frequency of 2.45 GHz. The results show that the numerical results closely match the experimental results. Furthermore, it is found that the temperature distribution and electric field increases with increasing heating time. The hot spot zone appears in NRG at the tip of middle finger while the maximum temperature occurs in case of rotation angle of NRG = 60 degree. This investigation provides the essential aspects for a fundamental understanding of heat transport of NRG using microwave energy in industry.

Keywords: Electric field, Finite element method, Microwave energy, Natural rubber glove.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191
2676 A Study on Evaluation of Strut Type Suspension Noise Caused by Rubber Degradation

Authors: Gugyong Kim, Sugnsu Kang, Yongjun Lee, Sooncheol Park, Wonwook Jung

Abstract:

When cars are released from the factory, strut noises are very small and therefore it is difficult to perceive them. As the use time and travel distance increase, however, strut noises get larger so as to cause users much uneasiness. The noises generated at the field include engine noises and flow noises and therefore it is difficult to clearly discern the noises generated from struts. This study developed a test method which can reproduce field strut noises in the lab. Using the newly developed noise evaluation test, this study analyzed the effects that insulator performance degradation and failure can have on car noises. The study also confirmed that the insulator durability test by the simple back-and-forth motion cannot completely reflect the state of the parts failure in the field. Based on this, the study also confirmed that field noises can be reproduced through a durability test that considers heat aging.

Keywords: Insulator, noise, performance degradation, strut

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
2675 Automatic Number Plate Recognition System Based on Deep Learning

Authors: T. Damak, O. Kriaa, A. Baccar, M. A. Ben Ayed, N. Masmoudi

Abstract:

In the last few years, Automatic Number Plate Recognition (ANPR) systems have become widely used in the safety, the security, and the commercial aspects. Forethought, several methods and techniques are computing to achieve the better levels in terms of accuracy and real time execution. This paper proposed a computer vision algorithm of Number Plate Localization (NPL) and Characters Segmentation (CS). In addition, it proposed an improved method in Optical Character Recognition (OCR) based on Deep Learning (DL) techniques. In order to identify the number of detected plate after NPL and CS steps, the Convolutional Neural Network (CNN) algorithm is proposed. A DL model is developed using four convolution layers, two layers of Maxpooling, and six layers of fully connected. The model was trained by number image database on the Jetson TX2 NVIDIA target. The accuracy result has achieved 95.84%.

Keywords: Automatic number plate recognition, character segmentation, convolutional neural network, CNN, deep learning, number plate localization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1286
2674 Mathematical Modeling on Capturing of Magnetic Nanoparticles in an Implant Assisted Channel for Magnetic Drug Targeting

Authors: Shashi Sharma, V. K. Katiyar, Uaday Singh

Abstract:

In IA-MDT, the magnetic implants are placed strategically at the target site to greatly and locally increase the magnetic force on MDCPs and help to attract and retain the MDCPs at the targeted region. In the present work, we develop a mathematical model to study the capturing of magnetic nanoparticles flowing within a fluid in an implant assisted cylindrical channel under magnetic field. A coil of ferromagnetic SS-430 has been implanted inside the cylindrical channel to enhance the capturing of magnetic nanoparticles under magnetic field. The dominant magnetic and drag forces, which significantly affect the capturing of nanoparticles, are incorporated in the model. It is observed through model results that capture efficiency increases as we increase the magnetic field from 0.1 to 0.5 T, respectively. The increase in capture efficiency by increase in magnetic field is because as the magnetic field increases, the magnetization force, which is attractive in nature and responsible to attract or capture the magnetic particles, increases and results the capturing of large number of magnetic particles due to high strength of attractive magnetic force.

Keywords: Capture efficiency, Implant assisted-Magnetic drug targeting (IA-MDT), Magnetic nanoparticles (MNPs).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
2673 Numerical Simulation of Flow Field in a Elliptic Bottom Stirred Tank with Bottom Baffles

Authors: Liu Xuedong , Liu Zhiyan

Abstract:

When the crisscross baffles and logarithmic spiral baffles are placed on the bottom of the stirred tank with elliptic bottom, using CFD software FLUENT simulates the velocity field of the stirred tank with elliptic bottom and bottom baffles. Compare the velocity field of stirred tank with bottom crisscross baffle to the velocity field of stirred tank without bottom baffle and analysis the flow pattern on the same axis-section and different cross-sections. The sizes of the axial and radial velocity are compared respectively when the stirred tank with bottom crisscross baffles, bottom logarithmic spiral baffles and without bottom baffle. At the same time, the numerical calculations of mixing power are compared when the stirred tank with bottom crisscross baffles and bottom logarithmic spiral baffles. Research shows that bottom crisscross baffles and logarithmic spiral baffles have a great impact on flow pattern within the reactor and improve the mixing effect better than without baffle. It also has shown that bottom logarithmic spiral baffles has lower power consumption than bottom crisscross baffles.

Keywords: Bottom baffle, Flow field, Numerical simulation, Stirred tank.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015
2672 A Highly Efficient Process Applying Sige Film to Generate Quasi-Beehive Si Nanostructure for the Growth of Platinum Nanopillars with High Emission Property for the Applications of X-Ray Tube

Authors: Pin-Hsu Kao, Wen-Shou Tseng, Hung-Ming Tai, Yuan-Ming Chang, Jenh-Yih Juang

Abstract:

We report a lithography-free approach to fabricate the biomimetics, quasi-beehive Si nanostructures (QBSNs), on Si-substrates. The self-assembled SiGe nanoislands via the strain induced surface roughening (Asaro-Tiller-Grinfeld instability) during in-situ annealing play a key role as patterned sacrifice regions for subsequent reactive ion etching (RIE) process performed for fabricating quasi-beehive nanostructures on Si-substrates. As the measurements of field emission, the bare QBSNs show poor field emission performance, resulted from the existence of the native oxide layer which forms an insurmountable barrier for electron emission. In order to dramatically improve the field emission characteristics, the platinum nanopillars (Pt-NPs) were deposited on QBSNs to form Pt-NPs/QBSNs heterostructures. The turn-on field of Pt-NPs/QBSNs is as low as 2.29 V/μm (corresponding current density of 1 μA/cm2), and the field enhancement factor (β-value) is significantly increased to 6067. More importantly, the uniform and continuous electrons excite light emission, due to the surrounding filed emitters from Pt-NPs/QBSNs, can be easily obtained. This approach does not require an expensive photolithographic process and possesses great potential for applications.

Keywords: Biomimetics, quasi-beehive Si, SiGe nanoislands, platinum nanopillars, field emission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799
2671 A Novel SVM-Based OOK Detector in Low SNR Infrared Channels

Authors: J. P. Dubois, O. M. Abdul-Latif

Abstract:

Support Vector Machine (SVM) is a recent class of statistical classification and regression techniques playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM is applied to an infrared (IR) binary communication system with different types of channel models including Ricean multipath fading and partially developed scattering channel with additive white Gaussian noise (AWGN) at the receiver. The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these channel stochastic models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to classical binary signal maximum likelihood detection using a matched filter driven by On-Off keying (OOK) modulation. We found that the performance of SVM is superior to that of the traditional optimal detection schemes used in statistical communication, especially for very low signal-to-noise ratio (SNR) ranges. For large SNR, the performance of the SVM is similar to that of the classical detectors. The implication of these results is that SVM can prove very beneficial to IR communication systems that notoriously suffer from low SNR at the cost of increased computational complexity.

Keywords: Least square-support vector machine, on-off keying, matched filter, maximum likelihood detector, wireless infrared communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953
2670 Numerical Simulation of the Flow Field around a 30° Inclined Flat Plate

Authors: M. Raciti Castelli, P. Cioppa, E. Benini

Abstract:

This paper presents a CFD analysis of the flow around a 30° inclined flat plate of infinite span. Numerical predictions have been compared to experimental measurements, in order to assess the potential of the finite volume code of determining the aerodynamic forces acting on a flat plate invested by a fluid stream of infinite extent. Several turbulence models and spatial node distributions have been tested and flow field characteristics in the neighborhood of the flat plate have been numerically investigated, allowing the development of a preliminary procedure to be used as guidance in selecting the appropriate grid configuration and the corresponding turbulence model for the prediction of the flow field over a twodimensional inclined plate.

Keywords: CFD, lift, drag, flat plate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3310