WASET
	%0 Journal Article
	%A Walaa Khalaf and  Calogero Pace and  Manlio Gaudioso
	%D 2008
	%J International Journal of Computer and Information Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 13, 2008
	%T Gas Detection via Machine Learning
	%U https://publications.waset.org/pdf/10785
	%V 13
	%X We present an Electronic Nose (ENose), which is
aimed at identifying the presence of one out of two gases, possibly
detecting the presence of a mixture of the two. Estimation of the
concentrations of the components is also performed for a volatile
organic compound (VOC) constituted by methanol and acetone, for
the ranges 40-400 and 22-220 ppm (parts-per-million), respectively.
Our system contains 8 sensors, 5 of them being gas sensors (of the
class TGS from FIGARO USA, INC., whose sensing element is a tin
dioxide (SnO2) semiconductor), the remaining being a temperature
sensor (LM35 from National Semiconductor Corporation), a
humidity sensor (HIH–3610 from Honeywell), and a pressure sensor
(XFAM from Fujikura Ltd.).
Our integrated hardware–software system uses some machine
learning principles and least square regression principle to identify at
first a new gas sample, or a mixture, and then to estimate the
concentrations. In particular we adopt a training model using the
Support Vector Machine (SVM) approach with linear kernel to teach
the system how discriminate among different gases. Then we apply
another training model using the least square regression, to predict
the concentrations.
The experimental results demonstrate that the proposed
multiclassification and regression scheme is effective in the
identification of the tested VOCs of methanol and acetone with
96.61% correctness. The concentration prediction is obtained with
0.979 and 0.964 correlation coefficient for the predicted versus real
concentrations of methanol and acetone, respectively.
	%P 61 - 65