Magnetic Field Effects on Parabolic Graphene Quantum Dots with Topological Defects
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Magnetic Field Effects on Parabolic Graphene Quantum Dots with Topological Defects

Authors: Defne Akay, Bekir S. Kandemir

Abstract:

In this paper, we investigate the low-lying energy levels of the two-dimensional parabolic graphene quantum dots (GQDs) in the presence of topological defects with long range Coulomb impurity and subjected to an external uniform magnetic field. The low-lying energy levels of the system are obtained within the framework of the perturbation theory. We theoretically demonstrate that a valley splitting can be controlled by geometrical parameters of the graphene quantum dots and/or by tuning a uniform magnetic field, as well as topological defects. It is found that, for parabolic graphene dots, the valley splitting occurs due to the introduction of spatial confinement. The corresponding splitting is enhanced by the introduction of a uniform magnetic field and it increases by increasing the angle of the cone in subcritical regime.

Keywords: Coulomb impurity, graphene cones, graphene quantum dots, topological defects.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1338678

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104

References:


[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. GrigorievaA. A. Firsov, “Electric field effect in atomically thin carbon films”, Science, vol.306, pp.666-669, 2004.
[2] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals”, Proc. Natl Acad. Sci. USA vol. 102, pp. 10 451–10 453, 2005.
[3] K. Geim and K. S. Novoselov, “The rise of graphene”, Nat. Mater. vol. 6, pp. 183–191, 2007.
[4] M. I. Katsnelson, “Graphene: carbon in two dimensions”, Mater. Today, vol. 10, no. 1-2, pp. 20–27, 2007.
[5] P. R. Wallace, “The band theory of graphite”, Phys. Rev. vol. 71, pp. 622, 1946.
[6] G. W. Semenof, “Condensed-Matter Simulation of a Three-Dimensional Anomaly”, Phys. Rev. Lett. vol. 53, pp. 2449, 1984.
[7] P. Recher and B. Trauzettel “Quantum dots and spin qubits in graphene”, Nanotechnology vol. 21, pp. 302001, 2010.
[8] F. Molitor, J. Güttinger, C. Stampfer, S. Dröscher, A. Jacobsen, T. Ihn, K. Ensslin, “Electronic properties of graphene nanostructures”, J. Phys.: Condens. Matter vol. 23, pp. 243201, 2011.
[9] V. Rozhkova, G. Giavaras, Y. P. Bliokh, V. Freilikher, F. Nori, “Electronic properties of mesoscopic graphene structures: Charge confinement and control of spin and charge transport ”, Phys. Rep. vol. 503, pp. 77, 2011.
[10] J. Güttinger, F. Molitor, C. Stampfer, S. Schnez, A. Jacobsen, S. Dröscher, T. Ihn, K. Ensslin, “Transport through graphene quantum dots”, Rep. Prog. Phys. vol. 75, pp. 126502, 2012.
[11] P. G. Silvestrov and K. B. Efetov, “Quantum dots in graphene”, Phys. Rev. Lett. vol. 98, pp. 016802, 2007.
[12] M. I. Kastnelson and K. S. Novoselov, A. K. Geim, “Chiral tunnelling and the Klein paradox in graphene”, vol. 2, pp. 620, 2006.
[13] J. Milton Pereira Jr., P. Vasilopoulos, and F. M. Peeters, “Tunable quantum dots in bilayer graphene”, Appl. Phys. Lett. vol. 90, pp. 132122, 2007.
[14] H. Chen, V. Apalkov, and T. Chakraborty, “Fock-Darwin States of Dirac Electrons in Graphene-Based Artificial Atoms”, Phys. Rev. Lett. vol. 98, pp. 186803, 2007.
[15] A. Rycerz, j. Twozydlo, C. W. J. Beenakker, “Valley filter and valley valve in graphene”, Nat. Phys. vol. 3, pp. 172-175, 2007.
[16] A. De Martino, L. Dell’ Anna, and R. Egger, “Magnetic Confinement of Massless Dirac Fermions in Graphene”, Phys. Rev. Lett. vol. 98, pp. 066802, 2007.
[17] A. De Martino, L. Dell’ Anna, and R. Egger, “Magnetic barriers and confinement of Dirac-Weyl quasiparticles in graphene”, Solid State Comm. vol. 144, pp. 547-550, 2007.
[18] B. Wunsch, T. Stauber, and F. Guinea, “Electron-electron interactions and charging effects in graphene quantum dots”, Phys. Rev. B vol. 77, pp. 035316, 2008.
[19] A. Matulis and F. M. Peeters, “Quasibound states of quantum dots in single and bilayer graphene”, Phys. Rev. B, vol. 77, pp. 115423, 2008.
[20] Z. Z. Zhang, K. Chang, and F. M. Peeters, “Tuning of energy levels and optical properties of graphene quantum dots”, Phys. Rev. B. vol. 77, pp. 235411, 2008.
[21] P. Hewageegana and V. Apalkov, “Electron localization in graphene quantum dots”, Phys. Rev. B vol. 77, pp. 245426, 2008.
[22] M. I. Kastnelson and F. Guinea, “Transport through evanescent waves in ballistic graphene quantum dots”, Phys. Rev. B vol. 78, pp. 075417, 2008.
[23] S. Schnez, K. Ensslin, M. Sigrist, and T. Ihn “Analytic model of the energy spectrum of a graphene quantum dot in a perpendicular magnetic field”, Phys. Rev. B vol. 78, pp. 195427, 2008.
[24] J. H. Bardarson, M. Titov, and P. W. Brouwer, “ Electrostatic Confinement of Electrons in an Integrable Graphene Quantum Dot”, Phys. Rev. Lett. vol.102, pp. 226803, 2009.
[25] M. R. Masir, A. Matulis, and F. M. Peeters, “Quasi states of Schrödinger and Dirac electrons in a magnetic quantum dot”, Phys. Rev. B. vol. 79, pp. 155451, 2009.
[26] G. Giavaras, P. A. Maksym, and M. Roy, “Magnetic field induced confinement-deconfinement transition in graphene quantum dots”, J. Phys.: Condens. Matter vol. 21, pp. 102201, 2009.
[27] P. Recher, , J. Nilsson, G. Burkard, and B. Trauzettel, “Bound states and magnetic field induced valley splitting in gate-tunable graphene quantum dots”, Phys. Rev. B. vol.79, pp.085407, 2009.
[28] I. Romanovsky, C. Yannouleas, and U. Landman, “Edge states in graphene quantum dots: Fractional quantum Hall effect analogies and difference at zero magnetic field”, Phys. Rev. B vol. 79, pp. 075311, 2009.
[29] G. Giavaras and F. Nori, “Graphene quantum dots formed by a spatial modulation of the Dirac gap”, Appl. Phys. Lett. vol. 97, pp. 243106, 2010.
[30] S. C. Kim, P. S. Park, and S.-R. Eric Yang, “States near Dirac points of a rectangular graphene dot in a magnetic field”, Phys. Rev. B vol. 81, pp. 085432, 2010.
[31] S. Maiti and A. V. Chubukov, “Transition to Landau levels in grahene quantum dots”, Phys. Rev. B vol. 81, pp. 245411, 2010.
[32] M. Wimmer, A. R. Akhmerov, and F. Guinea, “Robustness of edge states in graphene quantum dots”, Phys. Rev. B vol. 82, pp. 045409, 2010.
[33] G. Giavaras and F. Nori, “Dirac gap-induced graphene quantum dot in an electronic potential”, Phys. Rev. B vol. 83, pp. 165427, 2011.
[34] M. Zarenia, A. Chaves, G. A. Farias, and F. M. Peeters, “Energy levels of triangular and hexagonal graphene quantum dots: A comparative study between the tight-binding and Dirac Equation approach”, Phys. Rev. B. vol. 84, pp. 245403, 2011.
[35] Jia- Lin Zhu and Songyang Sun, “Dirac donor states controlled by magnetic field in gapless and gapped graphene”, Phys. Rev. B. vol. 85, pp. 035429, 2012.
[36] B. S. Kandemir and G. Ömer, “Variational calculations on the energy levels of graphene quantum antidotes”, Eur. Phys. J. B vol. 86, pp. 299, 2013.
[37] C. Furtado, F. Moraes, A. M. de Carvalho, “Geometric phases in graphitic cones”, Phys. Lett. A, vol. 372, pp. 5368, 2008.
[38] J. K. Pachos, “Manifestations of topological defects in graphene”, Contemp. Phys. vol. 50, pp. 375-389, 2009.
[39] B. S. Kandemir and D. Akay “Tuning the pseudo-Zeeman splitting in graphene cones by magnetic field”, Journal of Magnetism and Magnetic Materials , vol. 384, pp. 101-105, 2015.
[40] F. de Juan, A. Cortijo, and M. A. H. Vozmedia, “Dislocations and torsion in graphene and related systems”, Nucl. Phys. B, vol. 828(PM), pp. 625-637, 2010.
[41] E. A. Kochetov, V. A. Osipov, and R. Pincak, “Electronic properties of disclinated flexible membrane beyond the inextensional limit: application to graphene”, J. Phys.: Condens. Matter, vol. 22(PM), pp. 395502, 2010.
[42] K. Bakke and C. Furtado “On the interaction of the Dirac oscillator with the Aharonov-Casher system in the topological defect background”, Annals of Phys., vol. 336, pp. 489-504, 2013.