Search results for: piezoelectric composite waveguide.
401 A Functional Thermochemical Energy Storage System for Mobile Applications: Design and Performance Analysis
Authors: Jure Galović, Peter Hofmann
Abstract:
Thermochemical energy storage (TCES), as a long-term and lossless energy storage principle, provides a contribution for the reduction of greenhouse emissions of mobile applications, such as passenger vehicles with an internal combustion engine. A prototype of a TCES system, based on reversible sorption reactions of LiBr composite and methanol has been designed at Vienna University of Technology. In this paper, the selection of reactive and inert carrier materials as well as the design of heat exchangers (reactor vessel and evapo-condenser) was reviewed and the cycle stability under real operating conditions was investigated. The performance of the developed system strongly depends on the environmental temperatures, to which the reactor vessel and evapo-condenser are exposed during the phases of thermal conversion. For an integration of the system into mobile applications, the functionality of the designed prototype was proved in numerous conducted cycles whereby no adverse reactions were observed.
Keywords: Mobile applications, LiBr composite, methanol, performance of TCES system, sorption process, thermochemical energy storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 978400 Modeling and Analysis of Process Parameters on Surface Roughness in EDM of AISI D2 Tool Steel by RSM Approach
Authors: M. K. Pradhan, C. K. Biswas
Abstract:
In this research, Response Surface Methodology (RSM) is used to investigate the effect of four controllable input variables namely: discharge current, pulse duration, pulse off time and applied voltage Surface Roughness (SR) of on Electrical Discharge Machined surface. To study the proposed second-order polynomial model for SR, a Central Composite Design (CCD) is used to estimation the model coefficients of the four input factors, which are alleged to influence the SR in Electrical Discharge Machining (EDM) process. Experiments were conducted on AISI D2 tool steel with copper electrode. The response is modeled using RSM on experimental data. The significant coefficients are obtained by performing Analysis of Variance (ANOVA) at 5% level of significance. It is found that discharge current, pulse duration, and pulse off time and few of their interactions have significant effect on the SR. The model sufficiency is very satisfactory as the Coefficient of Determination (R2) is found to be 91.7% and adjusted R2-statistic (R2 adj ) 89.6%.
Keywords: Electrical discharge machining, surface roughness, response surface methodology, ANOVA, central composite design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2358399 Analysis of Failure Pressures of Composite Cylinders with a Polymer Liner of Type IV CNG Vessels
Authors: A. Hocine, A. Ghouaoula, F. Kara Achira, S.M. Medjdoub
Abstract:
The present study deals with the analysis of the cylindrical part of a CNG storage vessel, combining a plastic liner and an over wrapped filament wound composite. Three kind of polymer are used in the present analysis: High density Polyethylene HDPE, Light low density Polyethylene LLDPE and finally blend of LLDPE/HDPE. The effect of the mechanical properties on the behavior of type IV vessel may be then investigated. In the present paper, the effect of the order of the circumferential winding on the stacking sequence may be then investigated. Based on mechanical considerations, the present model provides an exact solution for stresses and deformations on the cylindrical section of the vessel under thermo-mechanical static loading. The result show a good behavior of HDPE liner compared to the other plastic materials. The presence of circumferential winding angle in the stacking improves the rigidity of vessel by improving the burst pressure.
Keywords: CNG, Cylindrical vessel, Filament winding, Liner, Polymer, LLDPE, HDPE, Burst pressure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3788398 Active Control Improvement of Smart Cantilever Beam by Piezoelectric Materials and On-Line Differential Artificial Neural Networks
Authors: P. Karimi, A. H. Khedmati Bazkiaei
Abstract:
The main goal of this study is to test differential neural network as a controller of smart structure and is to enumerate its advantages and disadvantages in comparison with other controllers. In this study, the smart structure has been considered as a Euler Bernoulli cantilever beam and it has been tried that it be under control with the use of vibration neural network resulting from movement. Also, a linear observer has been considered as a reference controller and has been compared its results. The considered vibration charts and the controlled state have been recounted in the final part of this text. The obtained result show that neural observer has better performance in comparison to the implemented linear observer.Keywords: Smart material, on-line differential artificial neural network, active control, finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 816397 Microstructural and In-Vitro Characterization of Glass-Reinforced Hydroxyapatite Composites
Authors: Uma Batra, Seema Kapoor
Abstract:
Commercial hydroxyapatite (HA) was reinforced by adding 2, 5, and 10 wt % of 28.5%CaO-28.5%P2O5-38%Na2 O- 5%CaF2 based glass and then sintered. Although HA shows good biocompatibility with the human body, its applications are limited to non load-bearing areas and coatings due to its poor mechanical properties. These mechanical properties can be improved substantially with addition of glass ceramics by sintering. In this study, the effects of sintering hydroxyapatite with above specified phosphate glass additions are quantified. Each composition was sintered over a range of temperatures. Scanning electron microscopy and x-ray diffraction were used to characterize the microstructure and phases of the composites. The density, microhardness, and compressive strength were measured using Archimedes Principle, Vickers Microhardness Tester (at 0.98 N), and Instron Universal Testing Machine (cross speed of 0.5 mm/min) respectively. These results were used to indicate which composition provided suitable material for use in hard tissue replacement. Composites containing 10 wt % glass additions formed dense HA/TCP (tricalcium phosphate) composite materials possessing good compressive strength and hardness than HA. In-vitro bioactivity was assessed by evaluating changes in pH and Ca2+ ion concentration of SBF-simulated body fluid on immersion of these composites in it for two weeks.Keywords: Bioglass, Composite, Hydroxyapatite, Sintering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833396 The Effect of Addition of Dioctyl Terephthalate and Calcite on the Tensile Properties of Organoclay/Linear Low Density Polyethylene Nanocomposites
Authors: A. Gürses, Z. Eroğlu, E. Şahin, K. Güneş, Ç. Doğar
Abstract:
In recent years, polymer/clay nanocomposites have generated great interest in the polymer industry as a new type of composite material because of their superior properties, which includes high heat deflection temperature, gas barrier performance, dimensional stability, enhanced mechanical properties, optical clarity and flame retardancy when compared with the pure polymer or conventional composites. The investigation of change of the tensile properties of organoclay/linear low density polyethylene (LLDPE) nanocomposites with the use of Dioctyl terephthalate (DOTP) (as plasticizer) and calcite (as filler) has been aimed. The composites and organoclay synthesized were characterized using the techniques such as XRD, HRTEM and FTIR techniques. The spectroscopic results indicate that platelets of organoclay were well dispersed within the polymeric matrix. The tensile properties of the composites were compared considering the stress-strain curve drawn for each composite and pure polymer. It was observed that the composites prepared by adding the plasticizer at different ratios and a certain amount of calcite exhibited different tensile behaviors compared to pure polymer.
Keywords: Linear low density polyethylene, nanocomposite, organoclay, plasticizer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446395 Design of Liquid Crystal Based Tunable Reflectarray Antenna Using Slot Embedded Patch Element Configurations
Authors: M. Y. Ismail, M. Inam
Abstract:
This paper presents the design and analysis of Liquid Crystal (LC) based tunable reflectarray antenna with different design configurations within X-band frequency range. The effect of LC volume used for unit cell element on frequency tunability and reflection loss performance has been investigated. Moreover different slot embedded patch element configurations have been proposed for LC based tunable reflectarray antenna design with enhanced performance. The detailed fabrication and measurement procedure for different LC based unit cells has been presented. The waveguide scattering parameter measured results demonstrated that by using the circular slot embedded patch elements, the frequency tunability and dynamic phase range can be increased from 180MHz to 200MHz and 120° to 124° respectively. Furthermore the circular slot embedded patch element can be designed at 10GHz resonant frequency with a patch volume of 2.71mm3 as compared to 3.47mm3 required for rectangular patch without slot.
Keywords: Liquid crystal, Tunable reflectarray, Frequency tunability, Dynamic phase range.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2431394 Design of Liquid Crystal Based Tunable Reflectarray Antenna Using Slot Embedded Patch Element Configurations
Authors: M. Y. Ismail, M. Inam
Abstract:
This paper presents the design and analysis of Liquid Crystal (LC) based tunable reflectarray antenna with different design configurations within X-band frequency range. The effect of LC volume used for unit cell element on frequency tunability and reflection loss performance has been investigated. Moreover different slot embedded patch element configurations have been proposed for LC based tunable reflectarray antenna design with enhanced performance. The detailed fabrication and measurement procedure for different LC based unit cells has been presented. The waveguide scattering parameter measured results demonstrated that by using the circular slot embedded patch elements, the frequency tunability and dynamic phase range can be increased from 180MHz to 200MHz and 120° to 124° respectively. Furthermore the circular slot embedded patch element can be designed at 10GHz resonant frequency with a patch volume of 2.71mm3 as compared to 3.47mm3 required for rectangular patch without slot.
Keywords: Liquid crystal, Tunable reflectarray, Frequency tunability, Dynamic phase range.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1219393 Analysis and Design of Dual-Polarization Antennas for Wireless Communication Systems
Authors: Vladimir Veremey
Abstract:
The paper describes the design and simulation of dual-polarization antennas that use the resonance and radiating properties of the H00 mode of metal open waveguides. The proposed antennas are formed by two orthogonal slots in a finite conducting ground plane. The slots are backed by metal screens connected to the ground plane forming open waveguides. It has been shown that the antenna designs can be efficiently used in mm-wave bands. The antenna single mode operational bandwidth is higher than 10%. The antenna designs are very simple and low-cost. They allow flush installation and can be efficiently used in various communication and remote sensing devices on fast moving carriers. Mutual coupling between antennas of the proposed design is very low. Thus, multiple antenna structures with proposed antennas can be efficiently employed in multi-band and in multiple-input-multiple-output (MIMO) systems.
Keywords: Antenna, antenna arrays, multiple-input-multiple-output, MIMO, millimeter wave bands, slot antenna, flush installation, directivity, open waveguide, conformal antennas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 776392 Design and Performance Evaluation of Hybrid Corrugated-GFRP Infill Panels
Authors: WooYoung Jung, HoYoung Son
Abstract:
This study presented to reduce earthquake damage and emergency rehabilitation of critical structures such as schools, hightech factories, and hospitals due to strong ground motions associated with climate changes. Regarding recent trend, a strong earthquake causes serious damage to critical structures and then the critical structure might be influenced by sequence aftershocks (or tsunami) due to fault plane adjustments. Therefore, in order to improve seismic performance of critical structures, retrofitted or strengthening study of the structures under aftershocks sequence after emergency rehabilitation of the structures subjected to strong earthquakes is widely carried out. Consequently, this study used composite material for emergency rehabilitation of the structure rather than concrete and steel materials because of high strength and stiffness, lightweight, rapid manufacturing, and dynamic performance. Also, this study was to develop or improve the seismic performance or seismic retrofit of critical structures subjected to strong ground motions and earthquake aftershocks, by utilizing GFRP-Corrugated Infill Panels (GCIP).Keywords: Composite material, GFRP, Infill Panel, Aftershock, Seismic Retrofitting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2289391 Research Trends on Magnetic Graphene for Water Treatment: A Bibliometric Analysis
Authors: J. C. M. Santos, J. C. A. Sousa, A. J. Rubio, L. S. Soletti, F. Gasparotto, N. U. Yamaguchi
Abstract:
Magnetic graphene has received widespread attention for their capability of water and wastewater treatment, which has been attracted many researchers in this field. A bibliometric analysis based on the Web of Science database was employed to analyze the global scientific outputs of magnetic graphene for water treatment until the present time (2012 to 2017), to improve the understanding of the research trends. The publication year, place of publication, institutes, funding agencies, journals, most cited articles, distribution outputs in thematic categories and applications were analyzed. Three major aspects analyzed including type of pollutant, treatment process and composite composition have further contributed to revealing the research trends. The most relevant research aspects of the main technologies using magnetic graphene for water treatment were summarized in this paper. The results showed that research on magnetic graphene for water treatment goes through a period of decline that might be related to a saturated field and a lack of bibliometric studies. Thus, the result of the present work will lead researchers to establish future directions in further studies using magnetic graphene for water treatment.
Keywords: Composite, graphene oxide, nanomaterials, scientometrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1196390 Treatment of Inorganic Filler Surface by Silane-Coupling Agent: Investigation of Treatment Condition and Analysis of Bonding State of Reacted Agent
Authors: Hiroshi Hirano, Joji Kadota, Toshiyuki Yamashita, Yasuyuki Agari
Abstract:
It is well known that enhancing interfacial adhesion between inorganic filler and matrix resin in a composite lead to favorable properties such as excellent mechanical properties, high thermal resistance, prominent electric insulation, low expansion coefficient, and so on. But it should be avoided that much excess of coupling agent is reacted due to a negative impact of their final composite-s properties. There is no report to achieve classification of the bonding state excepting investigation of coating layer thickness. Therefore, the analysis of the bonding state of the coupling agent reacted with the filler surface such as BN particles with less functional group and silica particles having much functional group was performed by thermal gravimetric analysis and pyrolysis GC/MS. The reacted number of functional groups on the silane-coupling agent was classified as a result of the analysis. Thus, we succeeded in classifying the reacted number of the functional groups as a result of this study.Keywords: Inorganic filler, boron nitride, surface treatment, coupling agent, analysis of bonding state
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5043389 Development of Electric Performance Testing System for Ceramic Chips using PZT Actuator
Authors: Jin-Ho Bae, Yong-Tae Kim, S K Deb Nath, Seo-Ik Kang, Sung-Gaun Kim
Abstract:
Reno-pin contact test is a method that is controlled by DC motor used to characterize electronic chips. This method is used in electronic and telecommunication devices. A new electric performance testing system is developed in which the testing method is controlled by using Piezoelectric Transducer (PZT) instead of DC motor which reduces vibration and noise. The vertical displacement of the Reno-pin is very short in the Reno-pin contact testing system. Now using a flexible guide in the new Reno-pin contact system, the vertical movement of the Reno-pin is increased many times of the existing Reno-pin contact testing method using DC motor. Using the present electric performance testing system with a flexible hinge and PZT instead of DC motor, manufacturing of electronic chips are able to characterize chips with low cost and high speed.Keywords: PZT Actuator, Chip test, Mechanical amplifier
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993388 Effect of Heat Treatment on Mechanical Properties and Wear Behavior of Al7075 Alloy Reinforced with Beryl and Graphene Hybrid Metal Matrix Composites
Authors: Shanawaz Patil, Mohamed Haneef, K. S. Narayanaswamy
Abstract:
In the recent years, aluminum metal matrix composites were most widely used, which are finding wide applications in various field such as automobile, aerospace defense etc., due to their outstanding mechanical properties like low density, light weight, exceptional high levels of strength, stiffness, wear resistance, high temperature resistance, low coefficient of thermal expansion and good formability. In the present work, an effort is made to study the effect of heat treatment on mechanical properties of aluminum 7075 alloy reinforced with constant weight percentage of naturally occurring mineral beryl and varying weight percentage of graphene. The hybrid composites are developed with 0.5 wt. %, 1wt.%, 1.5 wt.% and 2 wt.% of graphene and 6 wt.% of beryl by stir casting liquid metallurgy route. The cast specimens of unreinforced aluminum alloy and hybrid composite samples were prepared for heat treatment process and subjected to solutionizing treatment (T6) at a temperature of 490±5 oC for 8 hours in a muffle furnace followed by quenching in boiling water. The microstructure analysis of as cast and heat treated hybrid composite specimens are examined by scanning electron microscope (SEM). The tensile test and hardness test of unreinforced aluminum alloy and hybrid composites are examined. The wear behavior is examined by pin-on disc apparatus. The results of as cast specimens and heat treated specimens were compared. The heat treated Al7075-Beryl-Graphene hybrid composite had better properties and significantly improved the ultimate tensile strength, hardness and reduced wear loss when compared to aluminum alloy and as cast hybrid composites.
Keywords: Beryl, graphene, heat treatment, mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1055387 Influence of Fiber Packing on Transverse Plastic Properties of Metal Matrix Composites
Authors: Mohammad Tahaye Abadi
Abstract:
The present paper concerns with the influence of fiber packing on the transverse plastic properties of metal matrix composites. A micromechanical modeling procedure is used to predict the effective mechanical properties of composite materials at large tensile and compressive deformations. Microstructure is represented by a repeating unit cell (RUC). Two fiber arrays are considered including ideal square fiber packing and random fiber packing defined by random sequential algorithm. The micromechanical modeling procedure is implemented for graphite/aluminum metal matrix composite in which the reinforcement behaves as elastic, isotropic solids and the matrix is modeled as an isotropic elastic-plastic solid following the von Mises criterion with isotropic hardening and the Ramberg-Osgood relationship between equivalent true stress and logarithmic strain. The deformation is increased to a considerable value to evaluate both elastic and plastic behaviors of metal matrix composites. The yields strength and true elastic-plastic stress are determined for graphite/aluminum composites.Keywords: Fiber packing, metal matrix composites, micromechanics, plastic deformation, random
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646386 Thermal Property of Multi-Walled-Carbon-Nanotube Reinforced Epoxy Composites
Authors: Min Ye Koo, Gyo Woo Lee
Abstract:
In this study, epoxy composite specimens reinforced with multi-walled carbon nanotube filler were fabricated using shear mixer and ultra-sonication processor. The mechanical and thermal properties of the fabricated specimens were measured and evaluated. From the electron microscope images and the results from the measurements of tensile strengths, the specimens having 0.6 wt% nanotube content show better dispersion and higher strength than those of the other specimens. The Young’s moduli of the specimens increased as the contents of the nanotube filler in the matrix were increased. The specimen having a 0.6 wt% nanotube filler content showed higher thermal conductivity than that of the other specimens. While, in the measurement of thermal expansion, specimens having 0.4 and 0.6 wt% filler contents showed a lower value of thermal expansion than that of the other specimens. On the basis of the measured and evaluated properties of the composites, we believe that the simple and time-saving fabrication process used in this study was sufficient to obtain improved properties of the specimens.
Keywords: Carbon Nanotube Filler, Epoxy Composite, Ultra-Sonication, Shear Mixer, Mechanical Property, Thermal Property.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2667385 An Investigation on Hybrid Composite Drive Shaft for Automotive Industry
Authors: Gizem Arslan Özgen, Kutay Yücetürk, Metin Tanoğlu, Engin Aktaş
Abstract:
Power transmitted from the engine to the final drive where useful work is applied through a system consisting of a gearbox, clutch, drive shaft and a differential in the rear-wheel-drive automobiles. It is well-known that the steel drive shaft is usually manufactured in two pieces to increase the fundamental bending natural frequency to ensure safe operation conditions. In this work, hybrid one-piece propeller shafts composed of carbon/epoxy and glass/epoxy composites have been designed for a rear wheel drive automobile satisfying three design specifications, such as static torque transmission capability, torsional buckling and the fundamental natural bending frequency. Hybridization of carbon and glass fibers is being studied to optimize the cost/performance requirements. Composites shaft materials with various fiber orientation angles and stacking sequences are being fabricated and analyzed using finite element analysis (FEA).
Keywords: Composite propeller shaft, hybridization, epoxy matrix, static torque transmission capability, torsional buckling strength, fundamental natural bending frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 947384 Spatial Data Science for Data Driven Urban Planning: The Youth Economic Discomfort Index for Rome
Authors: Iacopo Testi, Diego Pajarito, Nicoletta Roberto, Carmen Greco
Abstract:
Today, a consistent segment of the world’s population lives in urban areas, and this proportion will vastly increase in the next decades. Therefore, understanding the key trends in urbanization, likely to unfold over the coming years, is crucial to the implementation of sustainable urban strategies. In parallel, the daily amount of digital data produced will be expanding at an exponential rate during the following years. The analysis of various types of data sets and its derived applications have incredible potential across different crucial sectors such as healthcare, housing, transportation, energy, and education. Nevertheless, in city development, architects and urban planners appear to rely mostly on traditional and analogical techniques of data collection. This paper investigates the prospective of the data science field, appearing to be a formidable resource to assist city managers in identifying strategies to enhance the social, economic, and environmental sustainability of our urban areas. The collection of different new layers of information would definitely enhance planners' capabilities to comprehend more in-depth urban phenomena such as gentrification, land use definition, mobility, or critical infrastructural issues. Specifically, the research results correlate economic, commercial, demographic, and housing data with the purpose of defining the youth economic discomfort index. The statistical composite index provides insights regarding the economic disadvantage of citizens aged between 18 years and 29 years, and results clearly display that central urban zones and more disadvantaged than peripheral ones. The experimental set up selected the city of Rome as the testing ground of the whole investigation. The methodology aims at applying statistical and spatial analysis to construct a composite index supporting informed data-driven decisions for urban planning.
Keywords: Data science, spatial analysis, composite index, Rome, urban planning, youth economic discomfort index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 903383 Development of Highly Sensitive System for Measurement and Monitoring of Small Impacts
Authors: Priyanka Guin, Dibyendu Chatterjee, Arijit Roy
Abstract:
Developing electronic system for detecting low energy impacts using open source hardware such as Arduino is challenging. A highly efficient loadcell is designed and fabricated. A commercial polyvinylidene fluoride (PVDF) piezoelectric film is used as primary sensor for sensing small impacts. Without modifying hardware, the Arduino board is configured by programming to capture the signal from the film sensor with a resolution better than 1.1 mV. By our system, impact energy as low as 1.8 µJ (corresponds to impact force of 39.9 mN) is reliably and monitored. In the linear zone, sensitivity of the system found to be as high as 20.7 kV/J or 3.3 V/N with a measurement frequency of 500 Hz. The various characteristics such as linearity, hysteresis, repeatability and spectrum analysis are discussed. After calibration, measurements of unknown impact energy and impact force are investigated and results are found to agree well.
Keywords: Arduino, impact energy, impact force, measurement system, PVDF film sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 990382 Application of Central Composite Design Based Response Surface Methodology in Parameter Optimization and on Cellulase Production Using Agricultural Waste
Authors: R.Muthuvelayudham, T.Viruthagiri
Abstract:
Response Surface Methodology (RSM) is a powerful and efficient mathematical approach widely applied in the optimization of cultivation process. Cellulase enzyme production by Trichoderma reesei RutC30 using agricultural waste rice straw and banana fiber as carbon source were investigated. In this work, sequential optimization strategy based statistical design was employed to enhance the production of cellulase enzyme through submerged cultivation. A fractional factorial design (26-2) was applied to elucidate the process parameters that significantly affect cellulase production. Temperature, Substrate concentration, Inducer concentration, pH, inoculum age and agitation speed were identified as important process parameters effecting cellulase enzyme synthesis. The concentration of lignocelluloses and lactose (inducer) in the cultivation medium were found to be most significant factors. The steepest ascent method was used to locate the optimal domain and a Central Composite Design (CCD) was used to estimate the quadratic response surface from which the factor levels for maximum production of cellulase were determined.Keywords: Banana fiber, Cellulase, Optimization, Rice straw
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2402381 Preliminary Study on Analysis of Pinching Motion Actuated by Electro-Active Polymers
Authors: Doo W. Lee, Soo J. Lee, Bye R. Yoon, Jae Y. Jho, Kyehan Rhee
Abstract:
Hand exoskeletons have been developed in order to assist daily activities for disabled and elder people. A figure exoskeleton was developed using ionic polymer metal composite (IPMC) actuators, and the performance of it was evaluated in this study. In order to study dynamic performance of a finger dummy performing pinching motion, force generating characteristics of an IPMC actuator and pinching motion of a thumb and index finger dummy actuated by IMPC actuators were analyzed. The blocking force of 1.54 N was achieved under 4 V of DC. A thumb and index finger dummy, which has one degree of freedom at the proximal joint of each figure, was manufactured by a three dimensional rapid prototyping. Each figure was actuated by an IPMC actuator, and the maximum fingertip force was 1.18 N. Pinching motion of a dummy was analyzed by two video cameras in vertical top and horizontal left end view planes. A figure dummy powered by IPMC actuators could perform flexion and extension motion of an index figure and a thumb.
Keywords: Finger exoskeleton, ionic polymer metal composite, flexion and extension, motion analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878380 Deformation Mechanisms at Elevated Temperatures: Influence of Momenta and Energy in the Single Impact Test
Authors: Harald Rojacz, Markus Varga, Horst Winkelmann
Abstract:
Within this work High Temperature Single Impact Studies were performed to evaluate deformation mechanisms at different energy and momentum levels. To show the influence of different microstructures and hardness levels and their response to single impacts four different materials were tested at various temperatures up to 700°C. One carbide reinforced NiCrBSi based Metal Matrix Composite and three different steels were tested. The aim of this work is to determine critical energies for fracture appearance and the materials response at different energy and momenta levels. Critical impact loadings were examined at elevated temperatures to limit operating conditions in impact dominated regimes at elevated temperatures. The investigations on the mechanisms were performed using different means of microscopy at the surface and in metallographic cross sections. Results indicate temperature dependence of the occurrence of cracks in hardphase rich materials, such as Metal Matrix Composites High Speed Steels and the influence of different impact momenta at constant energies on the deformation of different steels.Keywords: Deformation, High Temperature, Metal Matrix Composite, Single Impact Test, Steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004379 TiO2/Clay Minerals (Palygorskite/Halloysite) Nanocomposite Coatings for Water Disinfection
Authors: Dionisios Panagiotaras, Dimitrios Papoulis, Elias Stathatos
Abstract:
Microfibrous palygorskite and tubular halloysite clay mineral combined with nanocrystalline TiO2 are incorporating in the preparation of nanocomposite films on glass substrates via sol-gel route at 450oC. The synthesis is employing nonionic surfactant molecule as pore directing agent along with acetic acid-based sol-gel route without addition of water molecules. Drying and thermal treatment of composite films ensure elimination of organic material lead to the formation of TiO2 nanoparticles homogeneously distributed on the palygorskite or halloysite surfaces. Nanocomposite films without cracks of active anatase crystal phase on palygorskite and halloysite surfaces are characterized by microscopy techniques, UV-Vis spectroscopy, and porosimetry methods in order to examine their structural properties.
The composite palygorskite-TiO2 and halloysite-TiO2 films with variable quantities of palygorskite and halloysite were tested as photocatalysts in the photo-oxidation of Basic Blue 41 azo dye in water. These nanocomposite films proved to be most promising photocatalysts and highly effective to dye’s decoloration in spite of small amount of palygorskite-TiO2 or halloysite-TiO2 catalyst immobilized onto glass substrates mainly due to the high surface area and uniform distribution of TiO2 on clay minerals avoiding aggregation.
Keywords: Halloysite, Palygorskite, Photocatalysis, Titanium Dioxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3600378 A Study on the Comparison of Mechanical and Thermal Properties According to Laminated Orientation of CFRP through Bending Test
Authors: Hee Jae Shin, Lee Ku Kwac, In Pyo Cha, Min Sang Lee, Hyun Kyung Yoon, Hong Gun Kim
Abstract:
In rapid industrial development, the demand for high-strength and lightweight materials have been increased. Thus, various CFRP (Carbon Fiber Reinforced Plastics) with composite materials are being used. The design variables of CFRP are its lamination direction, order and thickness. Thus, the hardness and strength of CFRP depends much on their design variables. In this paper, the lamination direction of CFRP was used to produce a symmetrical ply [0°/0°, -15°/+15°, -30°/+30°, -45°/+45°, -60°/+60°, -75°/+75° and 90°/90°] and an asymmetrical ply [0°/15°, 0°/30°, 0°/45°, 0°/60° 0°/75° and 0°/90°]. The bending flexure stress of the CFRP specimen was evaluated through a bending test. Its thermal property was measured using an infrared camera. The symmetrical specimen and the asymmetrical specimen were analyzed. The results showed that the asymmetrical specimen increased the bending loads according to the increase in the orientation angle; and from 0°, the symmetrical specimen showed a tendency opposite the asymmetrical tendency because the tensile force of fiber differs at the vertical direction of its load. Also, the infrared camera showed that the thermal property had a trend similar to that of the mechanical properties.
Keywords: Carbon Fiber Reinforced Plastic (CFRP), Bending Test, Infrared Camera, Composite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2030377 Automotive 3-Microphone Noise Canceller in a Frequently Moving Noise Source Environment
Authors: Z. Qi, T. J. Moir
Abstract:
A combined three-microphone voice activity detector (VAD) and noise-canceling system is studied to enhance speech recognition in an automobile environment. A previous experiment clearly shows the ability of the composite system to cancel a single noise source outside of a defined zone. This paper investigates the performance of the composite system when there are frequently moving noise sources (noise sources are coming from different locations but are not always presented at the same time) e.g. there is other passenger speech or speech from a radio when a desired speech is presented. To work in a frequently moving noise sources environment, whilst a three-microphone voice activity detector (VAD) detects voice from a “VAD valid zone", the 3-microphone noise canceller uses a “noise canceller valid zone" defined in freespace around the users head. Therefore, a desired voice should be in the intersection of the noise canceller valid zone and VAD valid zone. Thus all noise is suppressed outside this intersection of area. Experiments are shown for a real environment e.g. all results were recorded in a car by omni-directional electret condenser microphones.
Keywords: Signal processing, voice activity detection, noise canceller, microphone array beam forming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613376 A Study of Efficiency and Prioritize of Eurasian Logistics Network
Authors: Ji-Young Song, Moon-Shuk Song, Hee-Seung Na
Abstract:
Recently, Northeast Asia has become one of the three largest trade areas, covering approximately 30% of the total trade volume of the world. However, the distribution facilities are saturated due to the increase in the transportation volume within the area and with the European countries. In order to accommodate the increase of the transportation volume, the transportation networking with the major countries in Northeast Asia and Europe is absolutely necessary. The Eurasian Logistics Network will develop into an international passenger transportation network covering the Northeast Asian region and an international freight transportation network connecting across Eurasia Continent. This paper surveys the changes and trend of the distribution network in the Eurasian Region according to the political, economic and environmental changes of the region, analyses the distribution network according to the changes in the transportation policies of the related countries, and provides the direction of the development of composite transportation on the basis of the present conditions of transportation means. The transportation means optimal for the efficiency of transportation system are suggested to be train ferries, sea & rail or sea & rail & sea. It is suggested to develop diversified composite transportation means and routes within the boundary of international cooperation system.Keywords: Eurasian Logistics, Integrated Distribution Transport, Northeast Asia, Transportation Networking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672375 A New Perturbation Technique in Numerical Study on Buckling of Composite Shells under Axial Compression
Authors: Zia R. Tahir, P. Mandal
Abstract:
A numerical study is presented on buckling and post buckling behaviour of laminated carbon fiber reinforced plastic (CFRP) thin-walled cylindrical shells under axial compression using asymmetric meshing technique (AMT). Asymmetric meshing technique is a perturbation technique to introduce disturbance without changing geometry, boundary conditions or loading conditions. Asymmetric meshing affects predicted buckling load, buckling mode shape and post-buckling behaviour. Linear (eigenvalue) and nonlinear (Riks) analyses have been performed to study the effect of asymmetric meshing in the form of a patch on buckling behaviour. The reduction in the buckling load using Asymmetric meshing technique was observed to be about 15%. An isolated dimple formed near the bifurcation point and the size of which increased to reach a stable state in the post-buckling region. The load-displacement curve behaviour applying asymmetric meshing is quite similar to the curve obtained using initial geometric imperfection in the shell model.Keywords: CFRP Composite Cylindrical Shell, Finite Element Analysis, Perturbation Technique, Asymmetric Meshing Technique, Linear Eigenvalue analysis, Non-linear Riks Analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2379374 Liquid Crystal Based Reconfigurable Reflectarray Antenna Design
Authors: M. Y. Ismail, M. Inam
Abstract:
This paper presents the design and analysis of Liquid Crystal (LC) based tunable reflectarray antenna with slot embedded patch element configurations within X-band frequency range. The slots are shown to modify the surface current distribution on the patch element of reflectarray which causes the resonant patch element to provide different resonant frequencies depending on the slot dimensions. The simulated results are supported and verified by waveguide scattering parameter measurements of different reflectarray unit cells. Different rectangular slots on patch element have been fabricated and a change in resonant frequency from 10.46GHz to 8.78GHz has been demonstrated as the width of the rectangular slot is varied from 0.2W to 0.6W. The rectangular slot in the center of the patch element has also been utilized for the frequency tunable reflectarray antenna design based on K-15 Nematic LC. For the active reflectarray antenna design, a frequency tunability of 1.2% from 10GHz to 9.88GHz has been demonstrated with a dynamic phase range of 103° provided by the measured scattering parameter results. Time consumed by liquid crystals for reconfiguration, which is one of the drawback of LC based design, has also been disused in this paper.Keywords: Liquid crystal, tunable reflectarray, frequency tunability, dynamic phase range.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629373 Influence of Recycled Concrete Aggregate Content on the Rebar/Concrete Bond Properties through Pull-Out Tests and Acoustic Emission Measurements
Authors: L. Chiriatti, H. Hafid, H. R. Mercado-Mendoza, K. L. Apedo, C. Fond, F. Feugeas
Abstract:
Substituting natural aggregate with recycled aggregate coming from concrete demolition represents a promising alternative to face the issues of both the depletion of natural resources and the congestion of waste storage facilities. However, the crushing process of concrete demolition waste, currently in use to produce recycled concrete aggregate, does not allow the complete separation of natural aggregate from a variable amount of adhered mortar. Given the physicochemical characteristics of the latter, the introduction of recycled concrete aggregate into a concrete mix modifies, to a certain extent, both fresh and hardened concrete properties. As a consequence, the behavior of recycled reinforced concrete members could likely be influenced by the specificities of recycled concrete aggregates. Beyond the mechanical properties of concrete, and as a result of the composite character of reinforced concrete, the bond characteristics at the rebar/concrete interface have to be taken into account in an attempt to describe accurately the mechanical response of recycled reinforced concrete members. Hence, a comparative experimental campaign, including 16 pull-out tests, was carried out. Four concrete mixes with different recycled concrete aggregate content were tested. The main mechanical properties (compressive strength, tensile strength, Young’s modulus) of each concrete mix were measured through standard procedures. A single 14-mm-diameter ribbed rebar, representative of the diameters commonly used in the domain of civil engineering, was embedded into a 200-mm-side concrete cube. The resulting concrete cover is intended to ensure a pull-out type failure (i.e. exceedance of the rebar/concrete interface shear strength). A pull-out test carried out on the 100% recycled concrete specimen was enriched with exploratory acoustic emission measurements. Acoustic event location was performed by means of eight piezoelectric transducers distributed over the whole surface of the specimen. The resulting map was compared to existing data related to natural aggregate concrete. Damage distribution around the reinforcement and main features of the characteristic bond stress/free-end slip curve appeared to be similar to previous results obtained through comparable studies carried out on natural aggregate concrete. This seems to show that the usual bond mechanism sequence (‘chemical adhesion’, mechanical interlocking and friction) remains unchanged despite the addition of recycled concrete aggregate. However, the results also suggest that bond efficiency seems somewhat improved through the use of recycled concrete aggregate. This observation appears to be counter-intuitive with regard to the diminution of the main concrete mechanical properties with the recycled concrete aggregate content. As a consequence, the impact of recycled concrete aggregate content on bond characteristics seemingly represents an important factor which should be taken into account and likely to be further explored in order to determine flexural parameters such as deflection or crack distribution.
Keywords: Acoustic emission monitoring, high-bond steel rebar, pull-out test, recycled aggregate concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 991372 Machining Parameters Optimization of Developed Yttria Stabilized Zirconia Toughened Alumina Ceramic Inserts While Machining AISI 4340 Steel
Authors: Nilrudra Mandal, B Doloi, B Mondal
Abstract:
An attempt has been made to investigate the machinability of zirconia toughened alumina (ZTA) inserts while turning AISI 4340 steel. The insert was prepared by powder metallurgy process route and the machining experiments were performed based on Response Surface Methodology (RSM) design called Central Composite Design (CCD). The mathematical model of flank wear, cutting force and surface roughness have been developed using second order regression analysis. The adequacy of model has been carried out based on Analysis of variance (ANOVA) techniques. It can be concluded that cutting speed and feed rate are the two most influential factor for flank wear and cutting force prediction. For surface roughness determination, the cutting speed & depth of cut both have significant contribution. Key parameters effect on each response has also been presented in graphical contours for choosing the operating parameter preciously. 83% desirability level has been achieved using this optimized condition.Keywords: Analysis of variance (ANOVA), Central Composite Design (CCD), Response Surface Methodology (RSM), Zirconia Toughened Alumina (ZTA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2784