TiO2/Clay Minerals (Palygorskite/Halloysite) Nanocomposite Coatings for Water Disinfection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
TiO2/Clay Minerals (Palygorskite/Halloysite) Nanocomposite Coatings for Water Disinfection

Authors: Dionisios Panagiotaras, Dimitrios Papoulis, Elias Stathatos

Abstract:

Microfibrous palygorskite and tubular halloysite clay mineral combined with nanocrystalline TiO2 are incorporating in the preparation of nanocomposite films on glass substrates via sol-gel route at 450oC. The synthesis is employing nonionic surfactant molecule as pore directing agent along with acetic acid-based sol-gel route without addition of water molecules. Drying and thermal treatment of composite films ensure elimination of organic material lead to the formation of TiO2 nanoparticles homogeneously distributed on the palygorskite or halloysite surfaces. Nanocomposite films without cracks of active anatase crystal phase on palygorskite and halloysite surfaces are characterized by microscopy techniques, UV-Vis spectroscopy, and porosimetry methods in order to examine their structural properties.

The composite palygorskite-TiO2 and halloysite-TiO2 films with variable quantities of palygorskite and halloysite were tested as photocatalysts in the photo-oxidation of Basic Blue 41 azo dye in water. These nanocomposite films proved to be most promising photocatalysts and highly effective to dye’s decoloration in spite of small amount of palygorskite-TiO2 or halloysite-TiO2 catalyst immobilized onto glass substrates mainly due to the high surface area and uniform distribution of TiO2 on clay minerals avoiding aggregation.

Keywords: Halloysite, Palygorskite, Photocatalysis, Titanium Dioxide.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1091518

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3602

References:


[1] G. A. Umbuzeiro, H.S. Freeman, S. H. Warren, D. P. Oliveira, Y. Terao, T. Watanabe and D. D. Claxton, "The contribution of azo dyes to the mutagenic activity of the Cristais River,” Chemosp., vol. 60, pp. 55-64, June 2005.
[2] Y.E. Benkli, M.F. Can, M. Turan and M.S. Çelik, "Modification of organo-zeolite surface for the removal of reactive azo dyes in fixed-bed reactors,” Water Res., vol. 39, pp. 487-493, January–February 2005.
[3] E. Forgacs, T. Cserháti and G. Oros, "Removal of synthetic dyes from wastewaters: a review,” Environ. Int., vol. 30, pp. 953-971, September 2004.
[4] V. K. Gupta, J. Rajeev, N. Arunima, A. Shilpi and M. Shrivastava, "Removal of the hazardous dye—Tartrazine by photodegradation on titanium dioxide surface,” Mat. Sci. Engineer. C, vol. 31, pp. 1062-1067, 2011.
[5] S. L. Orozco, E. R. Bandala, C. A. Arancibia, B. Serrano, R. Suárez-Parra and I. Hernández-Perez, "Effect of iron salt on the color removal of water containing the azo-dye reactive blue 69 using photo-assisted Fe(II)/H2O2 and Fe(III)/H2O systems,” J. Photochem. Photobiol. A: Chem. Vol. 198, pp. 144–149, August 2008.
[6] T. Robinson, G. McMullan, R. Marchant and P. Nigam, "Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, Bioresour. Techn., vol. 77, pp. 247-255, May 2001.
[7] C. I. Pearce, J. R. Lloyd and J. T. Guthrie, "The removal of colour from textile wastewater using whole bacterial cells: a review,” Dyes and Pigm., vol. 58, pp. 179-196, September 2003.
[8] M. N. Chong, B. Jin, C.W.K. Chow and C. Saint, "Recent developments in photocatalytic water treatment technology: A review,” Water Res., vol. 44, pp. 2997-3027, May 2010.
[9] H. Choi, S. Al-Abed, D.D. Dionysiou, E.Stathatos and P.Lianos, "TiO2-Based Advanced Oxidation Nanotechnologies for water Purification and Reuse,” in Sustainability Science and engineering: Sustainable Water Recycling Versus Desalination Contribution, Sustainability Science and Engineering, vol. 2, Elsevier, 2010, pp 229-254.
[10] S. Ahmed, M. G. Rasul, W. N. Martens, R. Brown and M. A. Hashib, "Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments,” Desalin., vol. 261, pp. 3-18, October 2010.
[11] M. I. Litter, "Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems,” Appl. Catal. B: Environ., vol. 23, pp. 89-114, November 1999.
[12] X. M. Song, J. M. Wu, and M. Yan, "Photocatalytic degradation of selected dyes by titania thin films with various nanostructures,” Thin Sol. Film., vol. 517, pp. 4341-4347, June 2009.
[13] H. Choi, E. Stathatos and D. D. Dionysiou, "Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems,” Desalin., vol. 202, pp. 199-206, January 2007.
[14] M. Bizarro, M.A. Tapia-Rodríguez, M.L. Ojeda, J.C. Alonso and A. Ortiz, "Photocatalytic activity enhancement of TiO2 films by micro and nano-structured surface modification,” Appl. Surf. Scien., vol. 255, pp. 6274-6278, April 2009.
[15] V. A. Sakkas, Md. A. Islam, C. Stalikas and T. A. Albanis, "Photocatalytic degradation using design of experiments: A review and example of the Congo red degradation,” J. Haz. Mat., vol. 175, 33-44, March 2010.
[16] F. Li, S. Sun, Y. Jiang, M. Xia, M. Sun and B. Xue, "Photodegradation of an azo dye using immobilized nanoparticles of TiO2 supported by natural porous mineral,” J. Haz. Mat., vol. 152, pp. 1037-1044, April 2008.
[17] X. Wang, Y. Liu, Z. Hu, Y. Chen, W. Liu, and G. Zhao, "Degradation of methyl orange by composite photocatalysts nano-TiO2 immobilized on activated carbons of different porosities,” J. Haz. Mat., vol. 169, pp. 1061–1067, September 2009.
[18] G. Rose, M. Echavia, F. Matzusawa and N. Negishi, "Photocatalytic degradation of organophosphate and phosphonoglycine pesticides using TiO2 immobilized on silica gel,” Chemosp., vol. 76, pp. 595-600, July 2009.
[19] C.-C. Wang, C-K Lee, M-D Lyu and L-C Juang, "Photocatalytic degradation of C.I. Basic Violet 10 using TiO2 catalysts supported by Y zeolite: An investigation of the effects of operational parameters,” Dyes and Pigm., vol. 76, pp. 817-824, 2008.
[20] L. Bouna, B. Rhouta, M. Amjoud, F. Maury, M.-C. Lafont, A. Jada, F. Senocq and L. Daoudi, "Synthesis, characterization and photocatalytic activity of TiO2 supported natural palygorskite microfibers,” Appl. Clay Sci., vol. 52, pp. 301-311, May 2011.
[21] T. An, J. Chen, G. Li, X. Ding, G. Sheng, J. Fu, B. Mai and K. E. O'Shea, "Characterization and the photocatalytic activity of TiO2 immobilized hydrophobic montmorillonite photocatalysts: Degradation of decabromodiphenyl ether (BDE 209),” Catal. Today, vol. 139, pp. 69-76, December 2008.
[22] D. Papoulis, S. Komarneni, A. Nikolopoulou, P. Tsolis-Katagas, D. Panagiotaras, H.G. Kacandes, P. Zhang, S. Yin, T. Sato and H. Katsuki, "Palygorskite- and Halloysite-TiO2 nanocomposites: Synthesis and photocatalytic activity,” Appl. Clay Sci., vol. 50, pp. 118-124, September 2010.
[23] D. Papoulis, S. Komarneni, D. Panagiotaras, E. Stathatos, K. C. Christoforidis, M. Fernández-García, H. Li, Y. Shu, T. Sato and H. Katsuki, "Three-phase nanocomposites of two nanoclays and TiO2: Synthesis, characterization and photacatalytic activities,” Appl. Catal. B: Environ., vol. 147, pp. 526-533, April 2014.
[24] D. Papoulis, S. Komarneni, D. Panagiotaras, A. Nikolopoulou, H. Li, S. Yind, Sato Tsugio and H. Katsuki, "Palygorskite–TiO2 nanocomposites: Part 1. Synthesis and Characterization,” Appl. Clay Sci., vol. 83-84, pp. 191-197, October 2013.
[25] D. Papoulis, S. Komarneni, D. Panagiotaras, A. Nikolopoulou, K.C. Christoforidisd, M. Fernández-Garcia, H. Li, Y. Shu and T. Sato, "Palygorskite–TiO2 nanocomposites: Part 2. Photocatalytic activities in decomposing air and organic pollutants,” Appl. Clay Sci., vol. 83-84, pp. 198-202, October 2013.
[26] E. Stathatos, P. Lianos and C. Tsakiroglou, "Highly efficient nanocrystalline titania films made from organic/inorganic nanocomposite gels,” Micropor. and Mesopor. Mat., vol. 75, pp. 255-260, November 2004.
[27] H. Choi, E. Stathatos and D. D. Dionysiou, "Synthesis of nanocrystalline photocatalytic TiO2 thin films and particles using sol–gel method modified with nonionic surfactants,” T. Sol. Films, vol. 510, pp. 107-114, July 2006.
[28] E. Stathatos, D. Papoulis, C.A. Aggelopoulos, D. Panagiotaras and A. Nikolopoulou, "TiO2/palygorskite composite nanocrystalline films prepared by surfactant templating route: Synergistic effect to the photocatalytic degradation of an azo-dye in water,” J. Haz. Mat., vol. 211–212, pp. 68-76, April 2012.
[29] E. Stathatos and P. Lianos, F. Del Monte and D. Levy and D. Tsiourvas, "Formation of TiO2 nanoparticles in reverse micelles and their deposition as thin films on glass substrates,” Langm., vol. 13, pp. 4295-4300, August 1997.
[30] J.–C. Liu, "Mx-Oy-Siz Bonding Models for Silica-Supported Ziegler-Natta Catalysts,” Appl. Organometal. Chem., vol. 13, pp. 295–302, April 1999.
[31] A.O. Ibhadon, G.M. Greenway, Y. Yue, P. Falaras and D. Tsoukleris, "The photocatalytic activity and kinetics of the degradation of an anionic azo-dye in a UV irradiated porous titania foam,” Appl. Catal. B: Environ., vol. 84, pp. 351-355, December 2008.