Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30379
Liquid Crystal Based Reconfigurable Reflectarray Antenna Design

Authors: M. Y. Ismail, M. Inam

Abstract:

This paper presents the design and analysis of Liquid Crystal (LC) based tunable reflectarray antenna with slot embedded patch element configurations within X-band frequency range. The slots are shown to modify the surface current distribution on the patch element of reflectarray which causes the resonant patch element to provide different resonant frequencies depending on the slot dimensions. The simulated results are supported and verified by waveguide scattering parameter measurements of different reflectarray unit cells. Different rectangular slots on patch element have been fabricated and a change in resonant frequency from 10.46GHz to 8.78GHz has been demonstrated as the width of the rectangular slot is varied from 0.2W to 0.6W. The rectangular slot in the center of the patch element has also been utilized for the frequency tunable reflectarray antenna design based on K-15 Nematic LC. For the active reflectarray antenna design, a frequency tunability of 1.2% from 10GHz to 9.88GHz has been demonstrated with a dynamic phase range of 103° provided by the measured scattering parameter results. Time consumed by liquid crystals for reconfiguration, which is one of the drawback of LC based design, has also been disused in this paper.

Keywords: liquid crystal, frequency tunability, dynamic phase range, tunable reflectarray

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1338718

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1124

References:


[1] Berry, G. D. G., Malech, R. G. and Kennedy, W. A., “The reflect array antenna”, IEEE Trans. Antennas Propag., Vol. AP-11, pp. 645-651, 1963.
[2] Huang, J. and Encinar, J. A., Reflectarray Antennas, Wiley Interscience, 2007.
[3] D. M. Pozar, D. Targoski, and H. D. Syrigos, “Design of Millimeter Wave Microstrip Reflect Arrays,” IEEE Transactions on Antennas and Propagation, Vol. 45, No. 2, pp. 287–296, 1997.
[4] Bialkowski, M. E., Robinson A. W., and Song, H. J., “Design, Development and Testing of X-band Amplifying Reflectarrays”, IEEE Transactions on Antennas and Propagation, Vol. 50, No.8, pp. 1065-1076, 2002.
[5] M. Y. Ismail and M. Inam, “Resonant Elements for Tunable Reflectarray Antenna Design” International Journal of Antennas and Propagation, Vol. 2012, Article ID 9148686, pages 6, 2012.
[6] M. E. Biallowski and J. Encinar, “Reflectarray: Potential and Challenges” International Conference on Electromagnetics in Advanced Applications, pp. 1050-1053, (ICEAA) 2007.
[7] D. M. Pozar and S. D. Targonski, “A Shaped-Beam Microstrip Patch Reflectarray” IEEE Transactions on Antennas propogation, Vol. 47, No. 7, pp. 1167-1173, 1999.
[8] J. Huang and J. Encinar, Reflectarray Antennas: Broadband Techniques, Wiley, interscience, 2007.
[9] M. Y. Ismail and M. Inam, "Performance Improvement of Reflectarrays Based on Embedded Slots Configurations". Progress in Electromagnetics Research C, Vol. 14, pp. 67-78, 2010.
[10] K. Y. SZE and L. Shafal, “Analysis of Phase Variation Due to Varying Patch Length in a microstrip Reflectarray” IEEE Trans. Antennas and Propagation, Vol. 46, No. 7, pp. 1134-1137.
[11] S. V. Hum, M. Okoniewski and R. J. Davies, “Realizing an Electronically Tunable Reflectarray Using Varactor Diode-Tuned Elements”. IEEE Microwave and Wireless Components Letters, Vol. 15, pp. 422-424, 2005.
[12] M. Y. Ismail, W. Hu, R. Cahill, V. F. Fusco, H. S. Gamble, D. Linton, R. Dickie, S. P. Rea and N. Grant, “Phase Agile Reflectarray Cells Based On Liquid Crystals”. Proc. IET Microw. Antennas Propag., Vol. 1, No. 4, pp. 809-814, 2007.
[13] W. Hu, M. Y. Ismail, R. Cahill, H. S. Gamble, R. Dickie, V. F. Fusco, D. Linton, S. P. Rea and N. Grant, “Tunable Liquid Crystal Patch Element”. IET Electronic Letters, Vol 42, No 9, 2006.
[14] A. Mossinger. R. Marin, S. Mueller, J. Freese and R. Jakoby, “Electronically Reconfigurable Reflectarrays with Nematic Liquid Crystals”. IET Electronics Letters, Vol. 42, No. 16, 2006.
[15] H. Rajagopalan, Y. Rahmat and W. A. Imbriale, “RF MEMES Actuated Reconfigurable Reflectarray Patch-Slot Element”. IEEE Trans. Antennas Propag., Vol. 56, No. 12, pp. 369-3699, 2008.
[16] F. A. Tahir, H. Aubert and E. Girard, “Equivalent Electrical Circuit for Designing MEMS-Controlled Reflectarray Phase Shifters”. Progress in Electromagnetics Research, Vol. 100, pp. 1-12, 2010.
[17] L. Boccia, F. Venneri, G. Amendola and G. D. Massa, “Application of Varactor Diodes for Reflectarray Phase Control”. IEEE International Symposium of Antennas and Propagation Society, Vol 4, pp. 132-135, 2002.
[18] S. V. Hum, M. Okoniewski and R. Davies, “Modeling and Design of Electronically Tunable Reflectarrays”. IEEE Trans. Antennas Propag., Vol. 55, No. 8, pp. 2200-2210, 2007.
[19] M. Riel and J. J. Laurin, “Design of an Electronically Beam Scanning Reflectarray Using Aperture-Coupled Elements”. IEEE Transactions on Antennas and Propagation, Vol. 55, No. 5, pp. 1260- 1266, 2007.
[20] M. Inam and M. Y. Ismail, “Reflection Loss and Bandwidth Performance of X-Band Infinite Reflectarrays: Simulations and Measurements”. Microwave and Optical Technology letters, Vol. 53, No. 1, pp. 77-80, 2011.