Search results for: Functionally Graded Material
1557 Reaction to the Fire of a Composite Material the Base of Scrapes of Tires End Latex for Thermal Isolation
Authors: E. T. L. Cöuras Ford, V. A. C. Vale, J. U. L. Mendes, R. M. Nascimento
Abstract:
The great majority of the applications of thermal isolation in the strip of drops and averages temperatures (up to 200ºC), it is made of materials aggressive nature, such an as glass wool, rock wool, polystyrene, EPS among others. Such materials, in spite of the effectiveness in the retention of the flow of heat, possess considerable cost and when discarded they are long years to be to decompose. In that context, trying to adapt the world politics the about of the preservation of the environment, a study began with intention of developing a material composite, with properties of thermal, originating from insulating industrial residues. In this research, the behavior of the composite was analyzed, as submitted the fire. For this, the reaction rehearsals were accomplished to the fire for the composites 2:1; 1:1; 1:2 and for the Latex, based in the "con" experiment in agreement with the norm ASTM - E 1334 - 90. As consequence, in function of the answers of the system was possible to be observed to the acting of each mixture proportion.Keywords: Composite, Latex, Reaction to the fire.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10421556 Towards Finite Element Modeling of the Accoustics of Human Head
Authors: Maciej Paszynski, Leszek Demkowicz, Jason Kurtz
Abstract:
In this paper, a new formulation for acoustics coupled with linear elasticity is presented. The primary objective of the work is to develop a three dimensional hp adaptive finite element method code destinated for modeling of acoustics of human head. The code will have numerous applications e.g. in designing hearing protection devices for individuals working in high noise environments. The presented work is in the preliminary stage. The variational formulation has been implemented and tested on a sequence of meshes with concentric multi-layer spheres, with material data representing the tissue (the brain), skull and the air. Thus, an efficient solver for coupled elasticity/acoustics problems has been developed, and tested on high contrast material data representing the human head.
Keywords: finite element method, acoustics, coupled problems, biomechanics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19841555 Methods for Material and Process Monitoring by Characterization of (Second and Third Order) Elastic Properties with Lamb Waves
Abstract:
In accordance with the industry 4.0 concept, manufacturing process steps as well as the materials themselves are going to be more and more digitalized within the next years. The “digital twin” representing the simulated and measured dataset of the (semi-finished) product can be used to control and optimize the individual processing steps and help to reduce costs and expenditure of time in product development, manufacturing, and recycling. In the present work, two material characterization methods based on Lamb waves were evaluated and compared. For demonstration purpose, both methods were shown at a standard industrial product - copper ribbons, often used in photovoltaic modules as well as in high-current microelectronic devices. By numerical approximation of the Rayleigh-Lamb dispersion model on measured phase velocities second order elastic constants (Young’s modulus, Poisson’s ratio) were determined. Furthermore, the effective third order elastic constants were evaluated by applying elastic, “non-destructive”, mechanical stress on the samples. In this way, small microstructural variations due to mechanical preconditioning could be detected for the first time. Both methods were compared with respect to precision and inline application capabilities. Microstructure of the samples was systematically varied by mechanical loading and annealing. Changes in the elastic ultrasound transport properties were correlated with results from microstructural analysis and mechanical testing. In summary, monitoring the elastic material properties of plate-like structures using Lamb waves is valuable for inline and non-destructive material characterization and manufacturing process control. Second order elastic constants analysis is robust over wide environmental and sample conditions, whereas the effective third order elastic constants highly increase the sensitivity with respect to small microstructural changes. Both Lamb wave based characterization methods are fitting perfectly into the industry 4.0 concept.
Keywords: Lamb waves, industry 4.0, process control, elasticity, acoustoelasticity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11031554 Structural Rehabilitation, Retrofitting and Strengthening of Reinforced Concrete Structures
Authors: Manish Kumar
Abstract:
Reinforced cement concrete is getting extensively used for construction of different type of structures for the last one century. During this period, we have constructed many structures like buildings, bridges, industrial structures, pavement, water tanks etc. using this construction material. These structures have been created with huge investment of resources. It is essential to maintain those structures in functional condition. Since deterioration in RCC Structures is a common and natural phenomenon it is required to have a detailed plan, methodology for structural repair and rehabilitation shall be in place for dealing such issues. It is important to know exact reason of distress, type of distress and correct method of repair concrete structures. The different methods of repair are described in paper according to distress category which can be refereed for repair. Major finding of the study is that to protect our structure we need to have maintenance frequency and correct material to be chosen for repair. Also workmanship during repair needs to be taken utmost care for quality repair.Keywords: Deterioration, functional condition, reinforced cement concrete, resources.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47031553 Material Concepts and Processing Methods for Electrical Insulation
Authors: R. Sekula
Abstract:
Epoxy composites are broadly used as an electrical insulation for the high voltage applications since only such materials can fulfill particular mechanical, thermal, and dielectric requirements. However, properties of the final product are strongly dependent on proper manufacturing process with minimized material failures, as too large shrinkage, voids and cracks. Therefore, application of proper materials (epoxy, hardener, and filler) and process parameters (mold temperature, filling time, filling velocity, initial temperature of internal parts, gelation time), as well as design and geometric parameters are essential features for final quality of the produced components. In this paper, an approach for three-dimensional modeling of all molding stages, namely filling, curing and post-curing is presented. The reactive molding simulation tool is based on a commercial CFD package, and include dedicated models describing viscosity and reaction kinetics that have been successfully implemented to simulate the reactive nature of the system with exothermic effect. Also a dedicated simulation procedure for stress and shrinkage calculations, as well as simulation results are presented in the paper. Second part of the paper is dedicated to recent developments on formulations of functional composites for electrical insulation applications, focusing on thermally conductive materials. Concepts based on filler modifications for epoxy electrical composites have been presented, including the results of the obtained properties. Finally, having in mind tough environmental regulations, in addition to current process and design aspects, an approach for product re-design has been presented focusing on replacement of epoxy material with the thermoplastic one. Such “design-for-recycling” method is one of new directions associated with development of new material and processing concepts of electrical products and brings a lot of additional research challenges. For that, one of the successful products has been presented to illustrate the presented methodology.
Keywords: Curing, epoxy insulation, numerical simulations, recycling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16411552 Numerical Calculation of Coils Filled With Bianisotropic Media
Authors: Nebojsa B. Raicevic, Teodoros S. Prokic, Vladan Golubovic
Abstract:
Recently, bianisotropic media again received increasing importance in electromagnetic theory because of advances in material science which enable the manufacturing of complex bianisotropic materials. By using Maxwell's equations and corresponding boundary conditions, the electromagnetic field distribution in bianisotropic solenoid coils is determined and the influence of the bianisotropic behaviour of coil to the impedance and Q-factor is considered. Bianisotropic media are the largest class of linear media which is able to describe the macroscopic material properties of artificial dielectrics, artificial magnetics, artificial chiral materials, left-handed materials, metamaterials, and other composite materials. Several special cases of coils, filled with complex substance, have been analyzed. Results obtained by using the analytical approach are compared with values calculated by numerical methods, especially by our new hybrid EEM/BEM method and FEM.Keywords: Bianisotropic media, impedance and Q-factor, Maxwell`s equations, hybrid EEM/BEM method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18381551 Wear Mechanisms in High Speed Steel Gear Cutting Tools
Authors: M. Jalali Azizpour, H. Mohammadi majd
Abstract:
In this paper, the wear of high speed steel hobs during hobbing has been studied. The wear mechanisms are strongly influenced by the choice of cutting speed. At moderate and high cutting speeds three major wear mechanisms were identified: abrasion, mild adhesive and severe adhesive. The microstructure and wear behavior of two high speed steel grades (M2 and ASP30) has been compared. In contrast, a variation in chemical composition or microstructure of HSS tool material generally did not change the dominant wear mechanism. However, the tool material properties determine the resistance against the operating wear mechanism and consequently the tool life. The metallographic analysis and wear measurement at the tip of hob teeth included scanning electron microscopy and stereoscope microscopy. Roughness profilometery is used for measuring the gear surface roughness.Keywords: abrasion, adhesion, cutting speed, hobbing, wear mechanism
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33051550 Investigation of Tool Temperature and Surface Quality in Hot Machining of Hard-to-Cut Materials
Authors: M.Davami, M.Zadshakoyan
Abstract:
Production of hard-to-cut materials with uncoated carbide cutting tools in turning, not only cause tool life reduction but also, impairs the product surface roughness. In this paper, influence of hot machining method were studied and presented in two cases. Case1-Workpiece surface roughness quality with constant cutting parameter and 300 ºC initial workpiece surface temperature. Case 2- Tool temperature variation when cutting with two speeds 78.5 (m/min) and 51 (m/min). The workpiece material and tool used in this study were AISI 1060 steel (45HRC) and uncoated carbide TNNM 120408-SP10(SANDVIK Coromant) respectively. A gas flam heating source was used to preheating of the workpiece surface up to 300 ºC, causing reduction of yield stress about 15%. Results obtained experimentally, show that the method used can considerably improved surface quality of the workpiece.
Keywords: Hard-to-cut material, Hot machining, Surfaceroughness, Tool Temperature
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22101549 Crashworthiness Optimization of an Automotive Front Bumper in Composite Material
Authors: S. Boria
Abstract:
In the last years, the crashworthiness of an automotive body structure can be improved, since the beginning of the design stage, thanks to the development of specific optimization tools. It is well known how the finite element codes can help the designer to investigate the crashing performance of structures under dynamic impact. Therefore, by coupling nonlinear mathematical programming procedure and statistical techniques with FE simulations, it is possible to optimize the design with reduced number of analytical evaluations. In engineering applications, many optimization methods which are based on statistical techniques and utilize estimated models, called meta-models, are quickly spreading. A meta-model is an approximation of a detailed simulation model based on a dataset of input, identified by the design of experiments (DOE); the number of simulations needed to build it depends on the number of variables. Among the various types of meta-modeling techniques, Kriging method seems to be excellent in accuracy, robustness and efficiency compared to other ones when applied to crashworthiness optimization. Therefore the application of such meta-model was used in this work, in order to improve the structural optimization of a bumper for a racing car in composite material subjected to frontal impact. The specific energy absorption represents the objective function to maximize and the geometrical parameters subjected to some design constraints are the design variables. LS-DYNA codes were interfaced with LS-OPT tool in order to find the optimized solution, through the use of a domain reduction strategy. With the use of the Kriging meta-model the crashworthiness characteristic of the composite bumper was improved.
Keywords: Composite material, crashworthiness, finite element analysis, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11371548 Hardness Variations as Affected by Bar Diameter of AISI 4140 Steel
Authors: Hamad K. Al-Khalid, Ayman M. Alaskari, Samy E. Oraby
Abstract:
Hardness of the widely used structural steel is of vital importance since it may help in the determination of many mechanical properties of a material under loading situations. In order to obtain reliable information for design, properties homogeneity should be validated. In the current study the hardness variation over the different diameters of the same AISI 4140 bar is investigated. Measurements were taken on the two faces of the stock at equally spaced eight sectors and fifteen layers. Statistical and graphical analysis are performed to asses the distribution of hardness measurements over the specified area. Hardness measurements showed some degree of dispersion with about ± 10% of its nominal value provided by manufacturer. Hardness value is found to have a slight decrease trend as the diameter is reduced. However, an opposite behavior is noticed regarding the sequence of the sector indicating a nonuniform distribution over the same area either on the same face or considering the corresponding sector on the other face (cross section) of the same material bar.Keywords: Hardness; Hardness variation; AISI 4140 steel; Bardiameter; Statistical Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29351547 Parametric Transition as a Spiral Curve and Its Application in Spur Gear Tooth with FEA
Authors: S. H. Yahaya, J. M. Ali, T.A. Abdullah
Abstract:
The exploration of this paper will focus on the Cshaped transition curve. This curve is designed by using the concept of circle to circle where one circle lies inside other. The degree of smoothness employed is curvature continuity. The function used in designing the C-curve is Bézier-like cubic function. This function has a low degree, flexible for the interactive design of curves and surfaces and has a shape parameter. The shape parameter is used to control the C-shape curve. Once the C-shaped curve design is completed, this curve will be applied to design spur gear tooth. After the tooth design procedure is finished, the design will be analyzed by using Finite Element Analysis (FEA). This analysis is used to find out the applicability of the tooth design and the gear material that chosen. In this research, Cast Iron 4.5 % Carbon, ASTM A-48 is selected as a gear material.Keywords: Bézier-like cubic function, Curvature continuity, Cshapedtransition curve, Spur gear tooth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23451546 Experimental and Numerical Analysis of a Historical Bell Tower
Authors: Milorad Pavlovic, Sebastiano Trevisani, Antonella Cecchi
Abstract:
In this paper, a procedure for the evaluation of seismic behavior of slender masonry structures (towers, bell towers, chimneys, minarets, etc.) is presented. The presented procedure is based on a full three-dimensional modal analyses and frequency measurements. As well-known, masonry is a composite material formed by bricks, or stone blocks, and mortar arranged more or less regularly and adopted for many centuries as structural material. Dynamic actions may represent the major risk of collapse of brickworks, and despite the progress achieved so far in science and mechanics; the assessment of their seismic performance remains a challenging task. Then, reliable physical and numerical models are worthy of recommendation. In this paper, attention is paid to the historical bell tower of the Basilica of Santa Maria Gloriosa dei Frari - usually called Frari - one of the greatest churches in Venice, Italy.Keywords: Bell tower, FEM, masonry, modal analysis, non-destructive testing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13481545 Influence of Deep Cold Rolling and Low Plasticity Burnishing on Surface Hardness and Surface Roughness of AISI 4140 Steel
Authors: P. R. Prabhu, S. M. Kulkarni, S. S. Sharma
Abstract:
Deep cold rolling (DCR) and low plasticity burnishing (LPB) process are cold working processes, which easily produce a smooth and work-hardened surface by plastic deformation of surface irregularities. The present study focuses on the surface roughness and surface hardness aspects of AISI 4140 work material, using fractional factorial design of experiments. The assessment of the surface integrity aspects on work material was done, in order to identify the predominant factors amongst the selected parameters. They were then categorized in order of significance followed by setting the levels of the factors for minimizing surface roughness and/or maximizing surface hardness. In the present work, the influence of main process parameters (force, feed rate, number of tool passes/overruns, initial roughness of the work piece, ball material, ball diameter and lubricant used) on the surface roughness and the hardness of AISI 4140 steel were studied for both LPB and DCR process and the results are compared. It was observed that by using LPB process surface hardness has been improved by 167% and in DCR process surface hardness has been improved by 442%. It was also found that the force, ball diameter, number of tool passes and initial roughness of the workpiece are the most pronounced parameters, which has a significant effect on the work piece-s surface during deep cold rolling and low plasticity burnishing process.
Keywords: Deep cold rolling, burnishing, surface roughness, surface hardness, design of experiments, AISI4140 steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38051544 Hydro-Mechanical Behavior of a Tuff and Calcareous Sand Mixture for Use in Pavement in Arid Region
Authors: I. Goual, M. S. Goual, M. K. Gueddouda, Taïbi Saïd, Abou-Bekr Nabil, A. Ferhat
Abstract:
The aim of the paper is to study the hydro-mechanical behavior of a tuff and calcareous sand mixture. A first experimental phase was carried out in order to find the optimal mixture. This showed that the material composed of 80% tuff and 20% calcareous sand provides the maximum mechanical strength. The second experimental phase concerns the study of the drying-wetting behavior of the optimal mixture was carried out on slurry samples and compacted samples at the MPO. Experimental results let to deduce the parameters necessary for the prediction of the hydro-mechanical behavior of pavement formulated from tuff and calcareous sand mixtures, related to moisture. This optimal mixture satisfies the regulation rules and hence constitutes a good local eco-material, abundantly available, for the conception of pavements.Keywords: Tuff, sandy calcareous, road engineering, hydro mechanical behaviour, suction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15391543 Optical and Dielectric Properties of Self-Assembled 0D Hybrid Organic-Inorganic Insulator
Authors: S. Kassou, R. El Mrabet, A. Belaaraj, P. Guionneau, N. Hadi, T. Lamcharfi
Abstract:
The organic–inorganic hybrid perovskite-like [C6H5C2H4NH3]2ZnCl4 (PEA-ZnCl4) was synthesized by saturated solutions method. X-ray powder diffraction, Raman spectroscopy, UV-visible transmittance, and capacitance meter measurements have been used to characterize the structure, the functional groups, the optical parameters, and the dielectric constants of the material. The material has a layered structure. The optical transmittance (T %) was recorded and applied to deduce the absorption coefficient (α) and optical band gap (Eg). The hybrid shows an insulator character with a direct band gap about 4.46 eV, and presents high dielectric constants up to a frequency of about 105 Hz, which suggests a ferroelectric behavior. The reported optical and dielectric properties can help to understand the fundamental properties of perovskite materials and also to be used for optimizing or designing new devices.
Keywords: Dielectric constants, optical band gap (Eg), optical parameters, Raman spectroscopy, self-assembly organic inorganic hybrid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18861542 Inductions of CaC2 on Sperm Morphology and Viability of the Albino Mice (Mus musculus)
Authors: Dike H. Ogbuagu, Etsede J. Oritsematosan
Abstract:
This work investigated possible inductions of CaC2, often misused by fruit vendors to stimulate artificial ripening, on mammalian sperm morphology and viability. Thirty isogenic strains of male albino mice, Mus musculus (age≈ 8weeks; weight= 32.52.0g) were acclimatized (ambient temperature 28.0±1.0°C) for 2 weeks and fed standard growers mash and water ad libutum. They were later exposed to graded toxicant concentrations (w/w) of 2.5000, 1.2500, 0.6250, and 0.3125% in 4 cages. A control cage was also established. After 5 weeks, 3 animals from each cage were sacrificed by cervical dislocation and the cauda epididymis excised. Sperm morphology and viability were determined by microscopic procedures. The ANOVA, means plots, Student’s t-test and variation plots were used to analyze data. The common abnormalities observed included Double Head, Pin Head, Knobbed Head, No Tail and With Hook. The higher toxicant concentrations induced significantly lower body weights [F(829.899) ˃ Fcrit(4.19)] and more abnormalities [F(26.52) ˃ Fcrit(4.00)] at P˂0.05. Sperm cells in the control setup were significantly more viable than those in the 0.625% (t=0.005) and 2.500% toxicant doses (t=0.018) at the 95% confidence limit. CaC2 appeared to induced morphological abnormalities and reduced viability in sperm cells of M. musculus.
Keywords: Artificial ripening, Calcium carbide, fruit vendors, sperm morphology, sperm viability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14051541 Study on the Use of Manganese-Containing Materials as a Micro Fertilizer Based on the Local Mineral Resources and Industrial Wastes in Hydroponic Systems
Authors: Marine Shavlakadze
Abstract:
Hydroponic greenhouses systems (production of the artificial substrate without soil) are becoming popular in the world. Mostly the system is used to grow vegetables and berries. Different countries are taking action to participate in the development of hydroponic technology and solutions such as EU members, Turkey, Australia, New Zealand, Israel, Scandinavian countries, etc. Many vegetables and berries are grown by hydroponics in Europe. As a result of our research, we have obtained material containing manganese and nitrogen. It became possible to produce this fertilizer by means of one-stage thermal processing, using industrial waste containing manganese (ores and sludges) and mineral substance (ammonium nitrate) that exist in Georgia. The received material is usable as a micro-fertilizer with economic efficiency. It became possible to turn practically water-insoluble manganese dioxide substance into the soluble condition from industrial waste in an indirect way. The ability to use the material as a fertilizer is predetermined by its chemical and phase composition, as the amount of the active component of the material in relation to manganese is 30%. At the same time, the active component elements presented non-ballast sustained action compounds. The studies implemented in Poland and in Georgia by us have shown that the manganese-containing micro-fertilizer- Mn(NO3)2 can provide the plant with nitrate nitrogen, which is a form that can be used for plants, providing the economy and simplicity of the application of fertilizers. Given the fact that the application of the manganese-containing micro-fertilizers significantly increases the productivity and improves the quality of the big number of agricultural products, it is necessary to mention that it is recommended to introduce the manganese containing fertilizers into the following cultures: sugar beet, corn, potato, vegetables, vine grape, fruit, berries, and other cultures. Also, as a result of the study, it was established that the material obtained is the predominant fertilizer for vegetable cultures in the soil. Based on the positive results of the research, we consider it expedient to conduct research in hydroponic systems, which will enable us to provide plants the required amount of manganese; we also introduce nitrogen in solution and regulate the solution of pH, which is one of the main problems in hydroponic production. The findings of our research will be used in hydroponic greenhouse farms to increase the fertility of vegetable crops and, consequently, to get bountiful and high-quality harvests, which will promote the development of hydroponic greenhouses in Georgia as well as abroad.
Keywords: Hydroponics, micro-fertilizers, manganese ore, chemical amelioration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7151540 Factors Affecting Weld Line Movement in Tailor Welded Blank
Authors: Shakil A. Kagzi, Sanjay Patil, Harit K. Raval
Abstract:
Tailor Welded Blanks (TWB) are utilized in automotive industries widely because of their advantage of weight and cost reduction and maintaining required strength and structural integrity. TWB consist of two or more sheet having dissimilar or similar material and thickness; welded together to form a single sheet before forming it to desired shape. Forming of the tailor welded blank is affected by ratio of thickness of blanks, ratio of their strength, etc. mainly due to in-homogeneity of material. In the present work the relative effect of these parameters on weld line movement is studied during deep drawing of TWB using FE simulation using HYPERWORKS. The simulation is validated with results from the literature. Simulations were than performed based on Taguchi orthogonal array followed by the ANOVA analysis to determine the significance of these parameters on forming of TWB.
Keywords: ANOVA, Deep drawing, Tailor Welded Blank, TWB, Weld line movement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27961539 Failure Analysis of a Fractured Control Pressure Tube from an Aircraft Engine
Authors: M. P. Valles-González, A. González Meije, A. Pastor Muro, M. García-Martínez, B. González Caballero
Abstract:
This paper studies a failure case of a fuel pressure supply tube from an aircraft engine. Multiple fracture cases of the fuel pressure control tube from aircraft engines have been reported. The studied set was composed by the mentioned tube, a welded connecting pipe, where the fracture has been produced, and a union nut. The fracture has been produced in one of the most critical zones of the tube, in a region next to the supporting body of the union nut to the connector. The tube material was X6CrNiTi18-10, an austenitic stainless steel. Chemical composition was determined using an X-Ray fluorescence spectrometer (XRF) and combustion equipment. Furthermore, the material was characterized mechanically, by a hardness test, and microstructurally using a stereo microscope and an optical microscope. The results confirmed that the material was within specifications. To determine the macrofractographic features, a visual examination and an observation using a stereo microscope of the tube fracture surface were carried out. The results revealed a tube plastic macrodeformation, surface damaged and signs of a possible corrosion process. Fracture surface was also inspected by scanning electron microscopy (FE-SEM), equipped with an energy-dispersive X-ray microanalysis system (EDX), to determine the microfractographic features in order to find out the failure mechanism involved in the fracture. Fatigue striations, which are typical from a progressive fracture by a fatigue mechanism, were observed. The origin of the fracture was placed in defects located on the outer wall of the tube, leading to a final overload fracture.
Keywords: Aircraft Engine, microstructure, fatigue, FE-SEM, fractography, fracture, fuel tube, stainless steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5811538 Relations between Human Capital Investments and Business Excellence in Croatian Companies
Authors: Ivana Tadić, Željana Aljinović Barać, Nikolina Plazonić
Abstract:
Living today in turbulent business environment forces companies to distinguish from each other, securing sustainable competitive growth and competitive advantage. The best possible solution is to invest (effort and financial resources) within companies’ different practices of human resource management (HRM), more specifically in employees’ knowledge, skills and abilities. Applying this approach companies will create enviable level of human capital securing its economic growth. Employees become human capital for their employers at the moment when they contribute with their own knowledge and abilities in creating material and non-material value of the company. The main aim of this research is to explore the relations between human capital investments and business excellence of Croatian companies. Furthermore, the differences in the level of human capital investments with regard to several companies’ characteristics (e.g. size of the company, ownership and type of the industry) are investigated.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26811537 Modelling of Composite Steel and Concrete Beam with the Lightweight Concrete Slab
Authors: V. Přivřelová
Abstract:
Well-designed composite steel and concrete structures highlight the good material properties and lower the deficiencies of steel and concrete, in particular they make use of high tensile strength of steel and high stiffness of concrete. The most common composite steel and concrete structure is a simply supported beam, which concrete slab transferring the slab load to a beam is connected to the steel cross-section. The aim of this paper is to find the most adequate numerical model of a simply supported composite beam with the cross-sectional and material parameters based on the results of a processed parametric study and numerical analysis. The paper also evaluates the suitability of using compact concrete with the lightweight aggregates for composite steel and concrete beams. The most adequate numerical model will be used in the resent future to compare the results of laboratory tests.
Keywords: Composite beams, high-performance concrete, highstrength steel, lightweight concrete slab, modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25261536 Geometric Representation of Modified Forms of Seven Important Failure Criteria
Authors: Ranajay Bhowmick
Abstract:
Elastoplastic analysis of a structural system involves defining failure/yield criterion, flow rules and hardening rules. The failure/yield criterion defines the limit beyond which the material flows plastically and hardens/softens or remains perfectly plastic before ultimate collapse. The failure/yield criterion is represented geometrically in three/two dimensional Haigh-Westergaard stress-space to facilitate a better understanding of the behavior of the material. In the present study geometric representations in three and two-dimensional stress-space of a few important failure/yield criterion are presented. The criteria presented are the modified forms obtained due to the conditional solutions of the equation of stress invariants. A comparison of the failure/yield surfaces is also presented here to obtain the effectiveness of each of them and it has been found that for identical conditions the Rankine’s criterion gives the largest values of limiting stresses.
Keywords: Deviatoric plane, failure criteria, geometric representation, hydrostatic axis, modified form.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3851535 Electrochemical Performance of Al-Mn2O3 Based Electrode Materials
Authors: Noor Ul Ain Bhatti, M. Junaid Khan, Javed Ahmad, Murtaza Saleem, Shahid M. Ramay, Saadat A. Siddiqi
Abstract:
Manganese oxide is being recently used as electrode material for rechargeable batteries. In this study, Al incorporated Mn2O3 compositions were synthesized to study the effect of Al doping on electrochemical performance of host material. Structural studies were carried out using X-ray diffraction analysis to confirm the phase stability and explore the lattice parameters, crystallite size, lattice strain, density and cell volume. Morphology and composition were analyzed using field emission scanning electron microscope and energy dispersive X-ray spectroscopy, respectively. Dynamic light scattering analysis was performed to observe the average particle size of the compositions. FTIR measurements exhibit the O-Al-O and O-Mn-O and Al-O bonding and with increasing the concentration of Al, the vibrational peaks of Mn-O become sharper. An enhanced electrochemical performance was observed in compositions with higher Al content.
Keywords: Mn2O3, electrode materials, energy storage and conversion, electrochemical performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18671534 Elasto-Visco-Plastic-Damage Model for Pre-Strained 304L Stainless Steel Subjected to Low Temperature
Authors: Jeong-Hyeon Kim, Ki-Yeob Kang, Myung-Hyun Kim, Jae-Myung Lee
Abstract:
Primary barrier of membrane type LNG containment system consist of corrugated 304L stainless steel. This 304L stainless steel is austenitic stainless steel which shows different material behaviors owing to phase transformation during the plastic work. Even though corrugated primary barriers are subjected to significant amounts of pre-strain due to press working, quantitative mechanical behavior on the effect of pre-straining at cryogenic temperatures are not available. In this study, pre-strain level and pre-strain temperature dependent tensile tests are carried to investigate mechanical behaviors. Also, constitutive equations with material parameters are suggested for a verification study.
Keywords: Constitutive equation, corrugated sheet, pre-strain effect, elasto-visco-plastic-damage model, 304L stainless steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16391533 Recovery of Post-Consumer PET Bottles in a Composite Material Preparation
Authors: Rafenomananjara Tsinjo Nirina, Tomoo Sekito, Andrianaivoravelona Jaconnet Oliva
Abstract:
Manufacturing a composite material from post-consumer bottles is an interesting outlet since Madagascar is still facing the challenges of managing plastic waste on the one hand and appropriate waste treatment facilities are not yet developed on the other hand. New waste management options are needed to divert End-Of-Life (EOL) soft plastic wastes from landfills and incineration. Waste polyethylene terephthalate (PET) bottles might be considered as a valuable resource and recovered into polymer concrete. The methodology is easy to implement and appropriate to the local context in Madagascar. This approach will contribute to the production of ecological building materials that might be profitable for the environment and the construction sector. This work aims to study the feasibility of using the post-consumer PET bottles as an alternative binding agent instead of the conventional Portland cement and water. Then, the mechanical and physical properties of the materials were evaluated.
Keywords: PET recycling, polymer concrete, ecological building materials, pollution mitigation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9741532 Inverse Problem Methodology for the Measurement of the Electromagnetic Parameters Using MLP Neural Network
Authors: T. Hacib, M. R. Mekideche, N. Ferkha
Abstract:
This paper presents an approach which is based on the use of supervised feed forward neural network, namely multilayer perceptron (MLP) neural network and finite element method (FEM) to solve the inverse problem of parameters identification. The approach is used to identify unknown parameters of ferromagnetic materials. The methodology used in this study consists in the simulation of a large number of parameters in a material under test, using the finite element method (FEM). Both variations in relative magnetic permeability and electrical conductivity of the material under test are considered. Then, the obtained results are used to generate a set of vectors for the training of MLP neural network. Finally, the obtained neural network is used to evaluate a group of new materials, simulated by the FEM, but not belonging to the original dataset. Noisy data, added to the probe measurements is used to enhance the robustness of the method. The reached results demonstrate the efficiency of the proposed approach, and encourage future works on this subject.Keywords: Inverse problem, MLP neural network, parametersidentification, FEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17741531 Facility Location Problem in Emergency Logistic
Authors: Yousef Abu Nahleh, Arun Kumar, Fugen Daver
Abstract:
Facility location is one of the important problems affecting the relief operations. The location model in this paper is motivated by arranging the flow of relief materials from the main warehouse to continent warehouse and further to regional warehouse and from these to the disaster area. This flow makes the relief organization always ready to deal with the disaster situation during shortest possible time. The main purpose of this paper is merge the concept of just in time and the campaign system in emergency supply chain,so that when the disaster happens the affected country can request help from the nearest regional warehouse, which will supply the relief material and the required stuff to support and assist the victims in the disaster area. Furthermore, the regional warehouse places an order to the continent warehouse to replenish the material that is distributed to the disaster area. This way they will always be ready to respond to any type of disaster.
Keywords: Facility location, Center-of-Gravity Technique, Humanitarian relief, emergency supply chain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38131530 Construction of a Low Carbon Eco-City Index System Based on CAS Theory: A Case of Hexi Newtown in Nanjing, China
Authors: Xu Tao, Yilun Xu, Dingwei Xiang, Yaofei Sun
Abstract:
The practice of urban planning and construction based on the concept of the “low carbon eco-city” has been universally accepted by the academic community in response to urban issues such as population, resources, environment, and social development. Based on this, the current article first analyzes the concepts of low carbon eco-city, then builds a complex adaptive system (CAS) theory based on Chinese traditional philosophical thinking, and analyzes the adaptive relationship between material and non-material elements. A three-dimensional evaluation model of natural ecology, economic low carbon, and social harmony was constructed. Finally, the construction of a low carbon eco-city index system in Hexi Newtown of Nanjing was used as an example to verify the effectiveness of the research results; this paradigm provides a new way to achieve a low carbon eco-city system.
Keywords: Complex adaptive system, low carbon ecology, index system, model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10091529 Microstructure and Electrochemical Properties of LiNi1/3Co1/3Mn1/3-xAlxO2 Cathode Material for Lithium Ion Batteries
Authors: Wei-Bo Hua, Zhuo Zheng, Xiao-Dong Guo, Ben-He Zhong
Abstract:
The layered structure LiNi1/3Co1/3Mn1/3-xAlxO2 (x = 0 ~ 0.04) series cathode materials were synthesized by a carbonate co-precipitation method, followed by a high temperature calcination process. The influence of Al substitution on the microstructure and electrochemical performances of the prepared materials was investigated by X-Ray diffraction (XRD), scanning electron microscopy (SEM), and galvanostatic charge/discharge test. The results show that the LiNi1/3Co1/3Mn1/3-xAlxO2 has a well-ordered hexagonal α-NaFeO2 structure. Although the discharge capacity of Al-doped samples decreases as x increases, LiNi1/3Co1/3Mn1/3-0.02Al0.02O2 exhibits superior capacity retention at high voltage (4.6 V). Therefore, LiNi1/3Co1/3Mn1/3-0.02Al0.02O2 is a promising material for “green” vehicles.Keywords: Lithium ion battery, carbonate co-precipitation, microstructure, electrochemical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20821528 Battery Grading Algorithm in 2nd-Life Repurposing Li-ion Battery System
Authors: Ya Lv, Benjamin Ong Wei Lin, Wanli Niu, Benjamin Seah Chin Tat
Abstract:
This article presents a methodology that improves reliability and cyclability of 2nd-life Li-ion battery system repurposed as energy storage system (ESS). Most of the 2nd-life retired battery systems in market have module/pack-level state of health (SOH) indicator, which is utilized for guiding appropriate depth of discharge (DOD) in the application of ESS. Due to the lack of cell-level SOH indication, the different degrading behaviors among various cells cannot be identified upon reaching retired status; in the end, considering end of life (EOL) loss and pack-level DOD, the repurposed ESS has to be oversized by > 1.5 times to complement the application requirement of reliability and cyclability. This proposed battery grading algorithm, using non-invasive methodology, is able to detect outlier cells based on historical voltage data and calculate cell-level historical maximum temperature data using semi-analytic methodology. In this way, the individual battery cell in the 2nd-life battery system can be graded in terms of SOH on basis of the historical voltage fluctuation and estimated historical maximum temperature variation. These grades will have corresponding DOD grades in the application of the repurposed ESS to enhance the system reliability and cyclability. In all, this introduced battery grading algorithm is non-invasive, compatible with all kinds of retired Li-ion battery systems which lack of cell-level SOH indication, as well as potentially being embedded into battery management software for preventive maintenance and real-time cyclability optimization.
Keywords: Battery grading algorithm, 2nd-life repurposing battery system, semi-analytic methodology, reliability and cyclability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 850