Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32009
Optical and Dielectric Properties of Self-Assembled 0D Hybrid Organic-Inorganic Insulator

Authors: S. Kassou, R. El Mrabet, A. Belaaraj, P. Guionneau, N. Hadi, T. Lamcharfi


The organic–inorganic hybrid perovskite-like [C6H5C2H4NH3]2ZnCl4 (PEA-ZnCl4) was synthesized by saturated solutions method. X-ray powder diffraction, Raman spectroscopy, UV-visible transmittance, and capacitance meter measurements have been used to characterize the structure, the functional groups, the optical parameters, and the dielectric constants of the material. The material has a layered structure. The optical transmittance (T %) was recorded and applied to deduce the absorption coefficient (α) and optical band gap (Eg). The hybrid shows an insulator character with a direct band gap about 4.46 eV, and presents high dielectric constants up to a frequency of about 105 Hz, which suggests a ferroelectric behavior. The reported optical and dielectric properties can help to understand the fundamental properties of perovskite materials and also to be used for optimizing or designing new devices.

Keywords: Dielectric constants, optical band gap (Eg), optical parameters, Raman spectroscopy, self-assembly organic inorganic hybrid.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1183


[1] D. B. Mitzi, “Synthesis, structure, and properties of organic-inorganic perovskites and related materials.” Prog. Inorg. Chem., vol. 48, pp. 1-121, 2007.
[2] S. Zhang,G. Lanty, J. S. Lauret, E. Deleporte, P. Audebert and L. Galmiche, “Synthesis and optical properties of novel organic–inorganic hybrid nanolayer structure semiconductors.” Acta. Mater., vol. 57, pp. 3301-3309, 2009.
[3] D. Ionescu, I. B. Ciobanu and I. Radinschi, “Frequency resonant behaviour of the effective permittivity for a polyvalent liquid crystal in microwave range.” J. Optoelectron. Adv. M., vol. 9, pp. 2608-2616, 2007.
[4] S. Zhang, P. Audebert, Y. Wei, J. S. Lauret, L. Galmiche and E. Deleporte “Synthesis and optical properties of novel organic–inorganic hybrid uv (R–NH 3) 2 PbCl 4 semiconductors.” J. Mater. Chem., vol. 21, pp. 466-474, 2011.
[5] M. F. Mostafa and S. S. El-Khiyami, “Crystal structure and electric properties of the organic–inorganic hybrid: ((CH 2)6(NH3)2)ZnCl4.” J. Solid State Chem., vol. 209, pp. 82-88, 2014.
[6] B. Kulicka, R. Jakubas, Z. Ciunik, G. Bator, W. Medycki, J. Świergiel and J. Baran, “Structure, phase transitions and molecular dynamics in 4-methylpyridinium tetrachloroantimonate (III), (4-CH3C5H4NH)(SbCl4).” J. Phys. Chem. Solids, vol. 65, pp. 871-879, 2004.
[7] C. B. Mohamed, K. Karoui, S. Saidi, K. Guidara and A. B. Rhaiem, “Electrical properties, phase transitions and conduction mechanisms of the ((C2H5)NH3)2CdCl4 compound. ” Physica B, vol. 451, pp. 87-95, 2014.
[8] S. Kalyanaraman, P. M. Shajinshinu and S. Vijayalakshmi, “Refractive index, band gap energy, dielectric constant and polarizability calculations of ferroelectric Ethylenediaminium Tetrachlorozincate crystal.” J. Phys. Chem. Solids, vol. 86, pp. 108-113, 2015.
[9] T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications.” J. Mater. Chem. A, vol. 1, pp. 5628-5641, 2013.
[10] N. A. Benedek, J. M. Rondinelli, H. Djani, P. Ghosez and P. Lightfoot, “Understanding ferroelectricity in layered perovskites: new ideas and insights from theory and experiments.” Dalton Trans., vol. 44, pp. 10543-10558, 2015.
[11] Z. Cheng and J. Lin, “Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering.” CrystEngComm, vol. 12, pp. 2646-2662, 2010.
[12] Y. Wei, P. Audebert, L. Galmiche, J. S. Lauret and E. Deleporte, “Synthesis, optical properties and photostability of novel fluorinated organic–inorganic hybrid (R–NH3)2PbX4 semiconductors.” J. Phys. D: Appl. Phys., vol. 46, pp. 135105, 2013.
[13] K. Pradeesh, G. S. Yadav, M. Singh and G. V. Prakash, “Synthesis, structure and optical studies of inorganic–organic hybrid semiconductor, NH3(CH2)12NH3PbI4.” Mater. Chem. Phys., vol. 124(1), pp. 44-47, 2010.
[14] N. V. Petrova and , I. N. Yakovkin “DFT calculations of the electronic structure of SnOx layers on Pd (110).” Eur. Phys. J. B, vol. 86, pp. 1-5, 2013.
[15] R. El Mrabet, S. Kassou, O., Tahiri, A., Belaaraj and P. Guionneau, “Theoretical and experimental investigations of optical, structural and electronic properties of the lower-dimensional hybrid (NH3-(CH2) 10-NH3) ZnCl4.” Eur. Phys. J. Plus, vol. 131, pp. 369, 2016.
[16] C. E. Ekuma, V. I. Anisimov, J. Moreno and M. Jarrell, “Electronic structure and spectra of CuO.” Eur. Phys. J. B, vol. 87, pp. 1-6, 2014.
[17] S. Kassou, A., Kaiba, P., Guionneau and A. Belaaraj, “Organic-inorganic hybrid perovskite (C6H5(CH2)2NH3)2CdCl4: Synthesis, structural and thermal properties.” J. Struct. Chem., vol. 57, pp. 737-743, 2016.
[18] S. Naderizadeh, S. M. Elahi, M. R. Abolhassani, F. Kanjouri, N., Rahimi and J. Jalilian, “Electronic and optical properties of Full-Heusler alloy Fe3− xMnxSi.” Eur. Phys. J. B, vol. 85, pp. 1-7, 2012.
[19] S. Sharma and A. S. Verma, “Structural, electronic, optical, elastic and thermal properties of ZnXAs2 (X= Si and Ge) chalcopyrite semiconductors.” Eur. Phys. J. B, vol. 87, pp. 1-14, 2014.
[20] R. Khenata, B. Daoudi, M. Sahnoun, H., Baltache, M. Rérat, A. H. Reshak, B. Bouhafs, H. Abid and M. Driz. “Structural, electronic and optical properties of fluorite-type compounds.” Eur. Phys. J. B, vol. 47, pp. 63-70, 2005.
[21] I. C. Smith, E. T. Hoke, D. Solis‐Ibarra, M.D. McGehee and H. I. Karunadasa, “A layered hybrid perovskite solar‐cell absorber with enhanced moisture stability.” Angew. Chem. Int. Ed., vol. 126, pp. 11414-11417, 2014.
[22] C. G. Bischak, E. M., Sanehira, J. T. Precht, J. M. Luther and N. S. Ginsberg “Heterogeneous Charge Carrier Dynamics in Organic–Inorganic Hybrid Materials: Nanoscale Lateral and Depth-Dependent Variation of Recombination Rates in Methylammonium Lead Halide Perovskite Thin Films.” Nano letters, vol. 15, pp. 4799-4807, 2015.
[23] M. A. Green, Y. Jiang, A. M. Soufiani and A. Ho-Baillie, “Optical Properties of Photovoltaic Organic–Inorganic Lead Halide Perovskites.” J. phys. Chem. Lett., vol. 6, pp. 4774-4785. 2015.
[24] X. Liu, W. Zhao, H. Cui, Y. A. Xie, Y. Wang, T. Xu and F. Huang, “Organic–inorganic halide perovskite based solar cells–revolutionary progress in photovoltaics.” Inorg. Chem. Front., vol. 2, pp. 315-335, 2015.
[25] N. G. Park, “Perovskite solar cells: an emerging photovoltaic technology.” Mater. Today, vol. 18, pp. 65-72, 2015.
[26] Y. Zhao and K. Zhu, “Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications.” Chem. Soc. Rev, vol. 45, pp. 655-689, 2016.
[27] L. Pedesseau, J. M. Jancu, A. Rolland, E. Deleporte, C. Katan and J. Even, “Electronic properties of 2D and 3D hybrid organic/inorganic perovskites for optoelectronic and photovoltaic applications.” J. Opt. Quant. Electron., vol. 46, pp. 1225-1232, 2014.
[28] C. Motta, F. El-Mellouhi and S. Sanvito,. “Charge carrier mobility in hybrid halide perovskites.” Sci. Rep., vol. 5, 2015.
[29] S. M. B. Dhas and S. Natarajan, “Growth and characterization of two new NLO materials from the amino acid family: l-Histidine nitrate and l-Cysteine tartrate monohydrate.” Opt. Commun., vol. 281, pp. 457-462, 2008.
[30] J. J. Zhang, T. Zhang, Y. E. Jin, S. S. Liu, S. D. Yuan, Z. Cui, L. Zhang and W. H. Wang, “A tunable lighting system integrated by inorganic and transparent organic light-emitting diodes.” Optoelectron. Lett., vol. 10, pp. 198-201, 2014.
[31] L. Wang, M. H. Yoon, G. Lu, Y. Yang, A., Facchetti and T. J. Marks, “High-performance transparent inorganic–organic hybrid thin-film n-type transistors.” Nat. Mater., vol. 5, pp. 893-900, 2006.
[32] S. Kassou, R. El-Mrabet, A. Kaiba, P. Guionneau and A. Belaaraj, “Combined experimental and density functional theory studies of an organic–inorganic hybrid perovskite.” Phys. Chem. Chem. Phys., vol. 18, pp. 9431-9436, 2016.
[33] W. Amamou, H. Feki, N. Chniba-Boudjada and F. Zouari, “Synthesis, crystal structure, vibrational properties and theoretical investigation of (N, N- dimethylbenzylammonium) trichlorocadmate (II).” J. Mol. Struct.,vol. 1059, pp. 169-175, 2014.
[34] A. Jellibi, I. Chaabane and K. Guidara, “Experimental and theoretical study of AC electrical conduction mechanisms of Organic–inorganic hybrid compound Bis (4-acetylanilinium) tetrachlorocadmiate (II).” Physica E, vol. 80, pp.155-162, 2016.
[35] B. Staśkiewicz, I. Turowska-Tyrk, J. Baran, C. Górecki and Z. Czapla, “Structural characterization, thermal, vibrational properties and molecular motions in perovskite-type diaminopropanetetrachlorocadmate NH3(CH2)3NH3CdCl4 crystal.” J. Phys. Chem. Solid., vol. 75, pp. 1305-1317, 2014.
[36] R. Elwej, M. Hamdi, N. Hannachi and F. Hlel, “Synthesis, structural characterization and dielectric properties of (C6H9N2)2(Hg0.75Cd0.25)Cl4 compound.” Spectrochim. Acta Mol. Biomol., vol. 121, pp. 632-640, 2014.
[37] S. Kalyanaraman, V. Krishnakumar, H. Hagemann and K. Ganesan, “Infrared and polarized Raman spectra of dixanthinium tetrachlorozincate single crystal.” J. Phys. Chem. Solid., vol. 68, pp. 256-263, 2007.
[38] P. Judeinstein and C. Sanchez, “Hybrid organic–inorganic materials: a land of multidisciplinarity.” J. Mater. Chem., vol. 6, pp. 511-525, 1996.
[39] C. Sanchez, B. Lebeau, F. Chaput and J. P. Boilot, “Optical properties of functional hybrid organic–inorganic nanocomposites.” Adv. Mater., vol. 15, pp. 1969-1994, 2003.
[40] C. Kitel, Introduction to solid state. John Wiley Sons, 1966.
[41] J. Tauc, Optical properties of amorphous semiconductors. In Amorphous and Liquid Semiconductors. Springer US, 1974, pp. 159-220.
[42] A. O. Polyakov, A. H. Arkenbout, J. Baas, G. R. Blake, A. Meetsma, A., Caretta, P. H. M. van Loosdrecht and T. T. M. Palstra, “Coexisting ferromagnetic and ferroelectric order in a CuCl4-based organic–inorganic hybrid.” Chem. Mater., vol. 24, pp. 133-139, 2011.
[43] S. K. J. Al-Ani, Y. Al-Ramadin, M. S. Zihlif, M. Volpe, M. Malineonico, E. Martuscelli and G. Ragosta. “ The optical properties of polymethylmethacrylate polymer dispersed liquid crystals”. Polymer Testing, vol. 18, pp. 611-619, 1999.
[44] S. Ilican, M. Zor, Y. Caglar, and M. Caglar, “ Optical characterization of the CdZn(S1-xSex)2 thin films deposited by spray pyrolysis method.” Opt. Appl, vol. 36, pp. 29-37, 2006..
[45] F. E. Fernández, Y. González, H. Liu, A. Martínez, V. Rodríguez and W. Jia, “Structure, morphology, and properties of strontium barium niobate thin films grown by pulsed laser deposition.” Integr. Ferroelectr., vol. 42, pp. 219-233, 2002.
[46] M. D. Catedral, A. K. G. Tapia, R. V. Sarmago, J. P. Tamayo and E. J. del Rosario, “Effect of dopant ions on the electrical conductivity and microstructure of polyaniline (emeraldine salt).” Science Diliman, Vol. 16(2), pp. 41-46, 2007.
[47] W. Li, Z. Chen, R. N. Premnath, B. Kabius and O. Auciello, “Controllable giant dielectric constant in AlOx/TiOy nanolaminates.” J. Appl. Phys., vol. 110, pp. 024106, 2011.
[48] Q. Li, L. Chen, M. R. Gadinski, S. Zhang, G. Zhang, H.Li, A. Haque, L-Q. Chen, T. Jackson and Q. Wang, “Flexible high-temperature dielectric materials from polymer nanocomposites.” Nature, vol. 523, pp. 576-579, 2015.
[49] K. Maex, M.R. Baklanov, D. Shamiryan, S.H. Brongersma and Z.S. Yanovitskaya “Low dielectric constant materials for microelectronics.” J. Appl. Phys., vol. 93, pp. 8793-8841, 2003.
[50] D. H. Fabini, T. Hogan, H. A. Evans, C. C. Stoumpos, M. G. Kanatzidis and R. Seshadri “Dielectric and thermodynamic signatures of low-temperature glassy dynamics in the hybrid perovskites CH3NH3PbI3 and HC(NH2)2PbI3.” J. Phys. Chem. Chem. Lett., vol. 7, pp. 376-381, 2016.