
 

 

 
Abstract—Elastoplastic analysis of a structural system involves 

defining failure/yield criterion, flow rules and hardening rules. The 
failure/yield criterion defines the limit beyond which the material 
flows plastically and hardens/softens or remains perfectly plastic 
before ultimate collapse. The failure/yield criterion is represented 
geometrically in three/two dimensional Haigh-Westergaard stress-
space to facilitate a better understanding of the behavior of the 
material. In the present study geometric representations in three and 
two-dimensional stress-space of a few important failure/yield 
criterion are presented. The criteria presented are the modified forms 
obtained due to the conditional solutions of the equation of stress 
invariants. A comparison of the failure/yield surfaces is also 
presented here to obtain the effectiveness of each of them and it has 
been found that for identical conditions the Rankine’s criterion gives 
the largest values of limiting stresses. 

 
Keywords—Deviatoric plane, failure criteria, geometric 

representation, hydrostatic axis, modified form. 

I. INTRODUCTION 

ONLINEARITY can be of the geometry of a structural 
element or of the material of the element or both. As 

more quest is being made towards understanding the nonlinear 
behavior of the structural elements, nonlinear analysis has 
gained significance. Therefore, nonlinear analysis of structural 
elements, in the recent years, has become increasingly 
important for understanding the structural behavior in the 
post-elastic range and also for the determination of design 
parameters especially with the advent of the sophisticated 
user-friendly time saving computer programs. A complete 
progressive failure analysis of a structure up to failure helps us 
to determine its deformational characteristics and assess all the 
safety aspects. Since nonlinear behavior of a material consists 
of yielding, plastic flow and hardening of the material, 
carrying out nonlinear analysis of structures/structural 
elements requires defining failure criterion (brittle materials)/ 
yield criterion (ductile materials), flow rules and hardening 
rules. Failure/Yield criterion is the limit beyond which the 
material loses its elasticity and flows like a plastic material 
and hardens/softens before ultimate collapse. Failure/Yield 
criteria are represented in the three-dimensional stress-spaces 
as surfaces so as to improve the understanding of the criterion. 
In the present study some important failure/yield criteria are 
represented in the three-dimensional principal stress-space and 
their comparisons are observed. The failure/yield criteria 
represented are the modified forms obtained from the solution 
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of 3S  problem of continuum mechanics for a definite 
condition [1]. 

II.  GEOMETRIC REPRESENTATION OF STRESS-STATE 

The geometric representation of stress-state at a point is 
very useful in the study of failure/yield criteria and the 
plasticity theory [2], [3]. Since the stress tensor 

ij  has six 

independent components, it is very much difficult to represent 
them using a six- dimensional stress-space and the simplest 

way is to consider the three principal stresses 21 ,  and 3  

as coordinates and represent the stress-state at a point as a 
point in the three-dimensional stress-space. This stress-space 
is called the Haigh-Westergaard stress-space and every point 

in the space having coordinates 21 ,  and 3  represents a 

possible stress-space of a stressed body. If we consider a 
situation when 321   , a line   is obtained that 

passes through the origin and makes /1 4454)3/1(cos   

with each of the three reference axes and such a line is called 
the hydrostatic axis as every point on this line corresponds to a 
hydrostatic or spherical state of stress (Fig. 1). The plane that 

passes through the origin and is perpendicular to the line /  
is called the   plane and has the equation 0321   . 

The planes that are parallel to the   plane but not containing 

the origin have the equation C 321   (where C  is 

an arbitrary constant) and are called the deviatoric planes. 
 

 

Fig. 1 Haigh-Westergaard Stress-Space 
 

An arbitrary state of stress at a given point within a stressed 

body with stress components 21 ,  and 3  is represented 

by point P ),,( 321   in the Haigh-Westergaard stress-
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space (Fig. 2). The stress vector OP can be decomposed into 
two components – ON and NP. The component ON is in the 

direction of the unit vector )3/1,3/1,3/1(  and 

represents the hydrostatic stress component ),,( ppp . The 

component NP is perpendicular to ON (parallel to the   
plane). Thus, 
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Fig. 2 Deviatoric Plane and Hydrostatic Axis 
 

The vector NP represents the deviatoric component of the 
stress-state ),,( 321 sss  and lies in the Meridian plane and 

perpendicular to the hydrostatic axis   and has the   value: 

  2

212
3

2
2

2
1 2JsssNP   . 

The projections of the vector NP and the coordinate axes 

i  on a deviatoric plane are shown in Fig. 3. The axes 
/
2

/
1 ,  and /

3  are the projections of the axes 21 ,  and 

3  respectively. The vector // PN is the projection of the 

vector NP  on the deviatoric plane making an angle   with 

the axis /
1 . 

 

 

Fig. 3 Stress-State on a Deviatoric Plane 

III. GEOMETRIC REPRESENTATION OF FAILURE/YIELD 

CRITERION 

A failure/yield criterion is generally expressed as:  

0),,,,( 321 ii nkF  .        (1) 

 

where, 21 ,  and 3  are the principal stresses, ik  are the 

material properties and in  represent the principal directions 

with respect to the material directions 321 ,, xxx . 

In case of isotropic materials, the failure criteria are 
independent of any material directions and can be expressed in 
the simple form as 

 

0),,,( 321 YF  .        (2) 

 
Alternatively, (2) can be written in the form consisting the 

three principal invariants of stresses, due to their independence 
of material orientation, as: 
 

0),,,( 321 YIIIF  .         (3) 

 
Moreover, since the principal stresses can be expressed in 
terms of either stress invariants 321 ,, III  or the Haigh – 

Westergaard coordinates  ,,   (3) can also be expressed as:  

 
0),,( F .           (4) 

 
Equations (1)-(4) each represent a surface in the principal 

stress space known as the Haigh-Westergaard stress space and 
such a surface is referred to as the yield surface. The shape of 
a yield surface is best described by its cross-sectional shapes 
on deviatoric planes ),(   and its meridians on meridian 

planes ),(   (Fig. 4). The cross-sections of a yield surface 

are the intersection curves between the yield surface and a 
deviatoric plane which is perpendicular to the hydrostatic axis 
  with tcons tan . The meridians of a yield surface are 

the intersection curves between the surface and a meridian 
plane which contains the hydrostatic axis and with 

tcons tan . The two extreme meridian planes 

corresponding to 
66

  and  are called tensile 

meridian (
t ) and compressive meridian (

t ) respectively. 

IV. MODIFICATION OF IMPORTANT FAILURE CRITERIA AND 

THEIR GEOMETRIC REPRESENTATIONS 

Failure/Yield criteria, which are expressed using (1), can be 
expressed using conventional forms of invariants 321 ,, JJI  

and even those conventional forms of invariants are not 
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convenient for an explicit evaluation of principal stresses and 
thus present difficulties in arriving at compact descriptions of 
yield surfaces dependent on them. Researchers, however, have 
previously derived some alternative forms that allow much 
simplified descriptions of various failure/yield criteria. They 
had derived some explicit method for the evaluation of roots 
of the cubic equation of three stress invariants (linear, 
quadratic and cubic) by converting them into cubic equations 
consisting of deviatoric invariants and using a trigonometric 
identity [4], [5]. In [1], an approach had been formulated for 
obtaining explicit solutions for the cubic equation for a 
definite condition and thereby determining the principal 
stresses and the orientation of the principal planes. In that 
study solution of the cubic equation – 032

3  ISIS  

was obtained for 0 zzyyxx  i.e. 01 I  and the 

explicit solution obtained was obtained as – 
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(a)                      (b) 

Fig. 4 (a) Deviatoric Plane (b) Meridian Plane 
 

Those solutions were then applied to various failure theories 
to obtain modified descriptions of those theories [6]. The 
failure theories that are described and discussed in this article 
are Rankine Criterion, St. Venant Criterion, Tresca Criterion, 
Von Mises Criterion, Nadai’s Criterion, Mohr – Coulomb 
Criterion and Drucker Prager Criterion. The modified 
descriptions of these important failure/yield criteria are hereby 
geometrically represented to find out the effect of such 
modifications. 

A. Rankine - Lame - Navier Criterion 

The Rankine criterion states that the yield criterion is 
reached when the combined stress results in principal stresses 
that attain the ultimate strength (for brittle materials) or yield 
strength (for ductile materials) in the uniaxial state of stress 
[7]. In terms of the principal stresses, the Rankine criterion 
can be expressed as: 

 

YYY   321 ;; .       (6) 

 
The modified form of the Rankine criterion can be 

expressed as: 
 

0
3

2
sin

3

2
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YI   for 

66


 .   (7) 

 
On   plane: The yield criterion is expressed as: 
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The cross-section of the yield surface with a deviatoric 

plane is a regular triangle as shown in Fig. 5 (a). 
On 

21    space: 

 

World Academy of Science, Engineering and Technology
International Journal of Mechanical and Mechatronics Engineering

 Vol:16, No:9, 2022 

229International Scholarly and Scientific Research & Innovation 16(9) 2022 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
ec

ha
ni

ca
l a

nd
 M

ec
ha

tr
on

ic
s 

E
ng

in
ee

ri
ng

 V
ol

:1
6,

 N
o:

9,
 2

02
2 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
12

70
1.

pd
f



 

 







 











3

2
sin

2

3
2 

 YI
 

0)( 3211332212   asI  

 

As, 0321    and 03   on 21    space, we 

get: 
 

2121 0   . 
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2
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As Rankine’s criterion is dependent on the   value the 

11  and  values for different   values are given hereby. 

For, 
 

YY and   21
00  

YY and  33
6 21   

YY and 
2

3

2

3

6 21   

 
The geometric representation of the Rankine criterion on a 

21    plane is given in Fig. 5 (b). 

 

 

(a)                      (b) 

Fig. 5 (a) Rankine Criteria on Deviatoric Plane (b) Rankine Criteria on 
21    Plane 

 
B. St. Venant Criterion 

The St. Venant criterion states that a material will fail under 
combined stress-state if the maximum unit linear strain ( max ) 

exceeds the allowable unit linear strain assumed for uniaxial 
tension [8]. This theory does not conform to experimental 
data. As per this theory: 
 

  
EE

Y  3211max

1 .    (10) 

 
The St. Venant criterion can be expressed in modified form 

as: 
 

   0sincos31
3
2 







Y

I   for 
66


  (11) 

 
On   plane, the yield criterion is expressed as: 
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The cross-section of the yield surface with a deviatoric 
plane is a regular triangle as shown in Fig. 6 (a). 

On 
21    space: 
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St. Venant’s criterion is dependent also on the  value 

except the   value and the 
11  and  values for different   

values are given hereby. 
For, 
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The geometric representation of the St. Venant criterion on 

a 
21    plane is given in Fig. 6 (b). 

 

 

 

(a)                      (b) 

Fig. 6 (a) St. Venant Criteria on a Deviatoric Plane (b) St. Venant Criteria on a 
21    Plane 

 
C. Tresca Criterion 

The Tresca criterion states that yielding of a material would 
occur when the maximum shearing stress at a point of the 
material reaches a critical value k [8]. In terms of principal 
stresses, we have 

 

kMax  )
2

1
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2

1
,

2

1
( 133221  . 

 
From a uniaxial test, for 032   and Y 1 , we 

determine 
22

1 Yk


 . And from a pure shear test, for 

 1 , 02   and  3
, we determine k . Therefore, 

if the Tresca criterion is used, the tensile strength and the 
shear strength of a material are related by  2Y . Therefore, 

the Tresca criterion can be expressed as: 
 

Y  31
.        (14) 

 
The Tresca criterion can be expressed in its modified form 

as: 
 

0cos2 2  YI   for 
66


 .    (15) 

 
On   plane, the yield criterion is expressed as: 
 



cos2

2 2
YI   for 

66


 .     (16) 
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On a deviatoric plane Tresca criterion is a regular hexagon 

with six singular corners (Fig. 7 (a)). 
On 21    space: 
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As previously, 0)( 3211332212   asI  
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YY and  5.05.00 21
0   

336 21
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The geometric representation of the Tresca criterion on a 

21    plane is given in Fig. 7 (b). 

 

 

(a)                      (b) 

Fig. 7 (a) Tresca Criteria on Deviatoric Plane (b) Tresca Criteria on 21    Plane 

 

 

(a)                      (b) 

Fig. 8 (a) Von Mises Criteria on Deviatoric Plane (b) Von Mises Criteria on 21    Plane 

 
D. Von Mises Criterion 

Von Mises criterion states that yielding of a material would 
occur when the distortional strain energy exceeds the strain 
energy under uniaxial tension [9]. Since the distortional/shear 
strain energy is proportional to the second invariant of the 
deviatoric stress tensor 2J , the criterion can be expressed as: 

02
2  kJ . 

From a uniaxial test, for 032   and Y 1 , we 

determine 
3
Yk


 . And from a pure shear test, for  1 , 

02   and  3
, we determine k . Therefore, if the 

Tresca criterion is used, the tensile strength and the shear 
strength of a material are related by  3Y

. Therefore, the 

von Mises criterion can be expressed as: 
 

030
3 2

2

2  Y
Y JJ  .      (18) 

The von Mises criterion in modified form is expressed as:  
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 .       (19) 

 
On   plane, the yield criterion is expressed as: 
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The cross-section of the yield surface with a deviatoric 

plane is a circle as shown in Fig. 8 (a). 
On the 21    sub-space: 
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As previously, 0)( 3211332212   asI  
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YY and
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The geometric representation of the von Mises criterion on 

a 21    plane is given in Fig. 8 (b). 

E. Nadai’s Criterion 

Nadai’s criterion, a different form of von Mises criterion, 
states that a material failure will occur when the octahedral 

shear stress (
23

2
JOCT  ) reaches a critical value given as 

Y
3

2  [10]. The criterion is expressed as: 

 

YOCT  
3

2 .         (22) 

 
The modified expression comes out to be the same as the 

previous one i.e., that of von Mises expression: 
 

03 2  YI   for 
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 .      (23) 

 
On   plane, the yield criterion is expressed as: 
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The cross-section of the yield surface with a deviatoric 

plane is a circle (same as that of the von Mises criterion) as 

shown in Fig. 8 (a). 
On the 21    sub-space: 
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As previously, 0)( 3211332212   asI  

and 2
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The geometric representation of the Nadai’s criterion on a 

21    plane (same as that of the von Mises criterion) is given 

in Fig. 8 (b). 

F. Mohr – Coulomb Criterion 

The Mohr – Coulomb criterion is a generalization of the 
Tresca criterion. It considers the critical value of shearing 
stress on a plane to be a function of the normal stress acting on 
the same plane [11]. The Mohr – Coulomb criterion is 
expressed as: 
 

 tan c .       (26) 

 
The Mohr – Coulomb criterion can also be expressed in 

modified form as: 
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On   plane, the yield criterion is expressed as: 
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The cross-section Çof the yield surface with a deviatoric 

plane is an irregular hexagon with curved edges as shown in 
Fig. 9 (a). 

On 21    space: 
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It can be seen that the 11  and  values of the Mohr – 

Coulomb criterion depend on both   and   values. The 

various 11  and  values for different   and   values are 

given as: 
For, 

candc  21
0

6
&0 

candc
5

6

5

6

6
&

6 21    
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6

7

6
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The geometric representation of the Mohr - Coulomb 

criterion on a 21    plane is given in Fig. 9 (b). 

G. Drucker - Prager Criterion 

An approximation of the Coulomb law was expressed by 
Drucker – Prager as a simple modification of the von Mises 
criteria whereby a hydrostatic stress dependent first invariant 

1I  was introduced in the von Mises equation [12]. 

 

03 21  YJI  .       (30) 

 
 

In the present case of 01 I , the modified expression 

comes out to be as: 
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 .       (31) 

 

The modified expression comes out to be the same as the 
previous one i.e. that of Von Mises expression. 

On   plane, the yield criterion is expressed as: 
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The cross-section of the yield surface with a deviatoric 

plane is a circle (same as that of the von Mises criterion) as 
shown in Fig. 8 (a). 

On the 21    sub-space: 
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As previously, 0)( 3211332212   asI  

and 2
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2
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The geometric representation of the Drucker - Prager criterion 
on a 21    plane (same as that of the von Mises criterion) is 

given in Fig. 8 (b). 

 

(a)                      (b) 

Fig. 9 (a) Mohr – Coulomb Criteria on Deviatoric Plane (b) Mohr – Coulomb Criteria on 21    Plane

  
V. DISCUSSIONS AND CONCLUSION 

In this article modified forms of several important failure/ 
yield criteria are represented geometrically in the 

321    

stress-space and the 21    stress-space to understand the 

characteristics of the failure surfaces. The compressive and 
tensile meridian values for each of the criterion are also 
indicated alongside. It is observed from the figures that in the 

321    stress-space the geometry of von Mises, Nadai 

and Drucker - Prager criteria are of similar nature and circular 
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in shape, whereas Tresca and Mohr – Coulomb criteria have 
similar hexagonal shape with Tresca’s criterion having straight 
edges and the Mohr – Coulomb's criterion having curved 
edges. The Rankine’s and St. Venant's criteria have triangular 
shape in the 

321    space. 

A comparison of the geometric shapes of the different 
criteria is presented in Fig. 10 for same Y  value. The shapes 

of various criteria except that of Mohr – Coulomb and their 
the tensile and compressive meridian values are as already 
discussed. In the case of St Venant’s criterion the 

ct and   

values are obtained for 5.00   and  and it can be 

seen that for 0  the criterion matches with the Rankine’s. 

Mohr - Coulomb's criterion is of circular shape and that is 

obtained for 
2

0,0 00 Ycand


  . For other values of 

 and  hexagonal shapes as described before can be 

obtained. 
In this article the 21    stress-space plots of the various 

failure/yield criteria are also presented. The values of the 
limits of each criterion are given along with their descriptions 
and then subsequently indicated in Figs. 5-9 (b). The criteria 
are all of similar shape i.e. square. 

 

 

Fig. 10 Comparison of Different Failure Criteria 
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