Search results for: variable structure controller
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4034

Search results for: variable structure controller

3614 Half-Circle Fuzzy Number Threshold Determination via Swarm Intelligence Method

Authors: P.-W. Tsai, J.-W. Chen, C.-W. Chen, C.-Y. Chen

Abstract:

In recent years, many researchers are involved in the field of fuzzy theory. However, there are still a lot of issues to be resolved. Especially on topics related to controller design such as the field of robot, artificial intelligence, and nonlinear systems etc. Besides fuzzy theory, algorithms in swarm intelligence are also a popular field for the researchers. In this paper, a concept of utilizing one of the swarm intelligence method, which is called Bacterial-GA Foraging, to find the stabilized common P matrix for the fuzzy controller system is proposed. An example is given in in the paper, as well.

Keywords: Half-circle fuzzy numbers, predictions, swarm intelligence, Lyapunov method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1922
3613 Study and Evaluation of Added Stresses under Foundation due to Adjacent Structure

Authors: Alireza M. goltabar, Issa shooshpasha , Reza Shamstabar kami , Mostafa Habibi

Abstract:

Added stresses due to adjacent structure should be considered in foundation design and stress control in soil under the structure. This case is considered less than other cases in design and calculation whereas stresses in implementation are greater than analytical stress. Structure load are transmitted to earth by foundation and role of foundation is propagation of load on the continuous and half extreme soil. This act cause that, present stresses lessen to allowable strength of soil. Some researchers such as Boussinesq and westergaurd by using of some assumption studied on this issue, theorically. Target of this paper is study and evaluation of added stresses under structure due to adjacent structure. For this purpose, by using of assumption, theoric relation and numeral methods, effects of adjacent structure with 4 to 10 storeys on the main structure with 4 storeys are studied and effect of parameters and sensitivity of them are evaluated.

Keywords: stress, soil, adjacent structure, foundation, loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1455
3612 A Model-following Adaptive Controller for Linear/Nonlinear Plantsusing Radial Basis Function Neural Networks

Authors: Yuichi Masukake, Yoshihisa Ishida

Abstract:

In this paper, we proposed a method to design a model-following adaptive controller for linear/nonlinear plants. Radial basis function neural networks (RBF-NNs), which are known for their stable learning capability and fast training, are used to identify linear/nonlinear plants. Simulation results show that the proposed method is effective in controlling both linear and nonlinear plants with disturbance in the plant input.

Keywords: Linear/nonlinear plants, neural networks, radial basisfunction networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
3611 Exact Solutions of Steady Plane Flows of an Incompressible Fluid of Variable Viscosity Using (ξ, ψ)- Or (η, ψ)- Coordinates

Authors: Rana Khalid Naeem, Asif Mansoor, Waseem Ahmed Khan, Aurangzaib

Abstract:

The exact solutions of the equations describing the steady plane motion of an incompressible fluid of variable viscosity for an arbitrary state equation are determined in the (ξ,ψ) − or (η,ψ )- coordinates where ψ(x,y) is the stream function, ξ and η are the parts of the analytic function, ϖ =ξ( x,y )+iη( x,y ). Most of the solutions involve arbitrary function/ functions indicating  that the flow equations possess an infinite set of solutions. 

Keywords: Exact solutions, Fluid of variable viscosity, Navier-Stokes equations, Steady plane flows

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3452
3610 Solitary Wave Solutions for Burgers-Fisher type Equations with Variable Coefficients

Authors: Amit Goyal, Alka, Rama Gupta, C. Nagaraja Kumar

Abstract:

We have solved the Burgers-Fisher (BF) type equations, with time-dependent coefficients of convection and reaction terms, by using the auxiliary equation method. A class of solitary wave solutions are obtained, and some of which are derived for the first time. We have studied the effect of variable coefficients on physical parameters (amplitude and velocity) of solitary wave solutions. In some cases, the BF equations could be solved for arbitrary timedependent coefficient of convection term.

Keywords: Solitary wave solution, Variable coefficient Burgers- Fisher equation, Auxiliary equation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
3609 Model Predictive 2DOF PID Slip Suppression Control of Electric Vehicle under Braking

Authors: Tohru Kawabe

Abstract:

In this paper, a 2DOF (two degrees of freedom) PID (Proportional-Integral-Derivative) controller based on MPC (Model predictive control) algorithm fo slip suppression of EV (Electric Vehicle) under braking is proposed. The proposed method aims to improve the safety and the stability of EVs under braking by controlling the wheel slip ration. There also include numerical simulation results to demonstrate the effectiveness of the method.

Keywords: Model predictive control, PID controller, Two degrees of freedom, Electric Vehicle, Slip suppression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1847
3608 Control Configuration Selection and Controller Design for Multivariable Processes Using Normalized Gain

Authors: R. Hanuma Naik, D. V. Ashok Kumar, K. S. R. Anjaneyulu

Abstract:

Several of the practical industrial control processes are multivariable processes. Due to the relation amid the variables (interaction), delay in the loops, it is very intricate to design a controller directly for these processes. So first, the interaction of the variables is analyzed using Relative Normalized Gain Array (RNGA), which considers the time constant, static gain and delay time of the processes. Based on the effect of RNGA, relative gain array (RGA) and NI, the pair (control configuration) of variables to be controlled by decentralized control is selected. The equivalent transfer function (ETF) of the process model is estimated as first order process with delay using the corresponding elements in the Relative gain array and Relative average residence time array (RARTA) of the processes. Secondly, a decentralized Proportional- Integral (PI) controller is designed for each ETF simply using frequency response specifications. Finally, the performance and robustness of the algorithm is comparing with existing related approaches to validate the effectiveness of the projected algorithm.

Keywords: Decentralized control, interaction, Multivariable processes, relative normalized gain array, relative average residence time array, steady state gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2318
3607 General Purpose Pulse Width Modulation Based Sliding Mode Controller for Buck DC-DC

Authors: M.Bensaada , A.Boudghene Stambouli , M.Bekhti, A. Bellar, L. Boukhris

Abstract:

This paper is a simple and systematic approaches to the design and analysis a pulse width modulation (PWM) based sliding mode controller for buck DC-DC Converters. Various aspects of the design, including the practical problems and the proposed solutions, are detailed. However, these control strategies can't compensate for large load current and input voltage variations. In this paper, a new control strategy by compromising both schemes advantages and avoiding their drawbacks is proposed, analyzed and simulated.

Keywords: Buck, DC/DC converters, sliding mode control, pulse width modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2685
3606 Adaptive Control Strategy of Robot Polishing Force Based on Position Impedance

Authors: Wang Zhan-Xi, Zhang Yi-Ming, Chen Hang, Wang Gang

Abstract:

Manual polishing has problems such as high labor intensity, low production efficiency and difficulty in guaranteeing the consistency of polishing quality. The use of robot polishing instead of manual polishing can effectively avoid these problems. Polishing force directly affects the quality of polishing, so accurate tracking and control of polishing force is one of the most important conditions for improving the accuracy of robot polishing. The traditional force control strategy is difficult to adapt to the strong coupling of force control and position control during the robot polishing process. Therefore, based on the analysis of force-based impedance control and position-based impedance control, this paper proposed a type of adaptive controller. Based on force feedback control of active compliance control, the controller can adaptively estimate the stiffness and position of the external environment and eliminate the steady-state force error produced by traditional impedance control. The simulation results of the model show that the adaptive controller has good adaptability to changing environmental positions and environmental stiffness, and can accurately track and control polishing force.

Keywords: robot polishing, force feedback, impedance control, adaptive control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 621
3605 Control of Vibrations in Flexible Smart Structures using Fast Output Sampling Feedback Technique

Authors: T.C. Manjunath, B. Bandyopadhyay

Abstract:

This paper features the modeling and design of a Fast Output Sampling (FOS) Feedback control technique for the Active Vibration Control (AVC) of a smart flexible aluminium cantilever beam for a Single Input Single Output (SISO) case. Controllers are designed for the beam by bonding patches of piezoelectric layer as sensor / actuator to the master structure at different locations along the length of the beam by retaining the first 2 dominant vibratory modes. The entire structure is modeled in state space form using the concept of piezoelectric theory, Euler-Bernoulli beam theory, Finite Element Method (FEM) and the state space techniques by dividing the structure into 3, 4, 5 finite elements, thus giving rise to three types of systems, viz., system 1 (beam divided into 3 finite elements), system 2 (4 finite elements), system 3 (5 finite elements). The effect of placing the sensor / actuator at various locations along the length of the beam for all the 3 types of systems considered is observed and the conclusions are drawn for the best performance and for the smallest magnitude of the control input required to control the vibrations of the beam. Simulations are performed in MATLAB. The open loop responses, closed loop responses and the tip displacements with and without the controller are obtained and the performance of the proposed smart system is evaluated for vibration control.

Keywords: Smart structure, Finite element method, State spacemodel, Euler-Bernoulli theory, SISO model, Fast output sampling, Vibration control, LMI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822
3604 A Quadcopter Stability Analysis: A Case Study Using Simulation

Authors: C. S. Bianca Sabrina, N. Egidio Raimundo, L. Alexandre Baratella, C. H. João Paulo

Abstract:

This paper aims to present a study, with the theoretical concepts and applications of the Quadcopter, using the MATLAB simulator. In order to use this tool, the study of the stability of the drone through a Proportional - Integral - Derivative (PID) controller will be presented. After the stability study, some tests are done on the simulator and its results will be presented. From the mathematical model, it is possible to find the Newton-Euler angles, so that it is possible to stabilize the quadcopter in a certain position in the air, starting from the ground. In order to understand the impact of the controllers gain values on the stabilization of the Euler-Newton angles, three conditions will be tested with different controller gain values.

Keywords: Controllers, drones, quadcopter, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1069
3603 Underlying Cognitive Complexity Measure Computation with Combinatorial Rules

Authors: Benjapol Auprasert, Yachai Limpiyakorn

Abstract:

Measuring the complexity of software has been an insoluble problem in software engineering. Complexity measures can be used to predict critical information about testability, reliability, and maintainability of software systems from automatic analysis of the source code. During the past few years, many complexity measures have been invented based on the emerging Cognitive Informatics discipline. These software complexity measures, including cognitive functional size, lend themselves to the approach of the total cognitive weights of basic control structures such as loops and branches. This paper shows that the current existing calculation method can generate different results that are algebraically equivalence. However, analysis of the combinatorial meanings of this calculation method shows significant flaw of the measure, which also explains why it does not satisfy Weyuker's properties. Based on the findings, improvement directions, such as measures fusion, and cumulative variable counting scheme are suggested to enhance the effectiveness of cognitive complexity measures.

Keywords: Cognitive Complexity Measure, Cognitive Weight of Basic Control Structure, Counting Rules, Cumulative Variable Counting Scheme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895
3602 LMI Approach to Regularization and Stabilization of Linear Singular Systems: The Discrete-time Case

Authors: Salim Ibrir

Abstract:

Sufficient linear matrix inequalities (LMI) conditions for regularization of discrete-time singular systems are given. Then a new class of regularizing stabilizing controllers is discussed. The proposed controllers are the sum of predictive and memoryless state feedbacks. The predictive controller aims to regularizing the singular system while the memoryless state feedback is designed to stabilize the resulting regularized system. A systematic procedure is given to calculate the controller gains through linear matrix inequalities.

Keywords: Singular systems, Discrete-time systems, Regularization, LMIs

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
3601 Torque Ripple Minimization in Switched Reluctance Motor Using Passivity-Based Robust Adaptive Control

Authors: M.M. Namazi, S.M. Saghaiannejad, A. Rashidi

Abstract:

In this paper by using the port-controlled Hamiltonian (PCH) systems theory, a full-order nonlinear controlled model is first developed. Then a nonlinear passivity-based robust adaptive control (PBRAC) of switched reluctance motor in the presence of external disturbances for the purpose of torque ripple reduction and characteristic improvement is presented. The proposed controller design is separated into the inner loop and the outer loop controller. In the inner loop, passivity-based control is employed by using energy shaping techniques to produce the proper switching function. The outer loop control is employed by robust adaptive controller to determine the appropriate Torque command. It can also overcome the inherent nonlinear characteristics of the system and make the whole system robust to uncertainties and bounded disturbances. A 4KW 8/6 SRM with experimental characteristics that takes magnetic saturation into account is modeled, simulation results show that the proposed scheme has good performance and practical application prospects.

Keywords: Switched Reluctance Motor, Port HamiltonianSystem, Passivity-Based Control, Torque Ripple Minimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
3600 Development of Motor and Controller for VVA Module of Gasoline Vehicle

Authors: Joon Sung Park, Jun-Hyuk Choi, Jin-Hong Kim, In-Soung Jung

Abstract:

Due to environmental concerns, the recent regulation on automobile fuel economy has been strengthened. The market demand for efficient vehicles is growing and automakers to improve engine fuel efficiency in the industry have been paying a lot of effort. To improve the fuel efficiency, it is necessary to reduce losses or to improve combustion efficiency of the engine. VVA (Variable Valve Actuation) technology enhances the engine's intake air flow, reduce pumping losses and mechanical friction losses. And also, VVA technology is the engine's low speed and high speed operation to implement each of appropriate valve lift. It improves the performance of engine in the entire operating range. This paper presents a design procedure of DC motor and drive for VVA system and shows the validity of the design result by experimental result with prototype.

Keywords: DC motor, Inverter, VVA, Electric Drive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
3599 A Markov Chain Approximation for ATS Modeling for the Variable Sampling Interval CCC Control Charts

Authors: Y. K. Chen, K. C. Chiou, C. Y. Chen

Abstract:

The cumulative conformance count (CCC) charts are widespread in process monitoring of high-yield manufacturing. Recently, it is found the use of variable sampling interval (VSI) scheme could further enhance the efficiency of the standard CCC charts. The average time to signal (ATS) a shift in defect rate has become traditional measure of efficiency of a chart with the VSI scheme. Determining the ATS is frequently a difficult and tedious task. A simple method based on a finite Markov Chain approach for modeling the ATS is developed. In addition, numerical results are given.

Keywords: Cumulative conformance count, variable sampling interval, Markov Chain, average time to signal, control chart.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525
3598 Computation of the Filtering Properties of Photonic Crystal Waveguide Discontinuities Using the Mode Matching Method

Authors: Athanasios Theoharidis, Thomas Kamalakis, Ioannis Neokosmidis, Thomas Sphicopoulos

Abstract:

In this paper, the application of the Mode Matching (MM) method in the case of photonic crystal waveguide discontinuities is presented. The structure under consideration is divided into a number of cells, which supports a number of guided and evanescent modes. These modes can be calculated numerically by an alternative formulation of the plane wave expansion method for each frequency. A matrix equation is then formed relating the modal amplitudes at the beginning and at the end of the structure. The theory is highly efficient and accurate and can be applied to study the transmission sensitivity of photonic crystal devices due to fabrication tolerances. The accuracy of the MM method is compared to the Finite Difference Frequency Domain (FDFD) and the Adjoint Variable Method (AVM) and good agreement is observed.

Keywords: Optical Communications, Integrated Optics, Photonic Crystals, Optical Waveguide Discontinuities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
3597 Topology Optimization of Cable Truss Web for Prestressed Suspension Bridge

Authors: Vadims Goremikins, Karlis Rocens, Dmitrijs Serdjuks

Abstract:

A suspension bridge is the most suitable type of structure for a long-span bridge due to rational use of structural materials. Increased deformability, which is conditioned by appearance of the elastic and kinematic displacements, is the major disadvantage of suspension bridges. The problem of increased kinematic displacements under the action of non-symmetrical load can be solved by prestressing. The prestressed suspension bridge with the span of 200 m was considered as an object of investigations. The cable truss with the cross web was considered as the main load carrying structure of the prestressed suspension bridge. The considered cable truss was optimized by 47 variable factors using Genetic algorithm and FEM program ANSYS. It was stated, that the maximum total displacements are reduced up to 29.9% by using of the cable truss with the rational characteristics instead of the single cable in the case of the worst situated load.

Keywords: Decreasing displacements, Genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2701
3596 Identifying Dynamic Structural Parameters of Soil-Structure System Based on Data Recorded during Strong Earthquakes

Authors: Vahidreza Mahmoudabadi, Omid Bahar, Mohammad Kazem Jafari

Abstract:

In many applied engineering problems, structural analysis is usually conducted by assuming a rigid bed, while imposing the effect of structure bed flexibility can affect significantly on the structure response. This article focuses on investigation and evaluation of the effects arising from considering a soil-structure system in evaluation of dynamic characteristics of a steel structure with respect to elastic and inelastic behaviors. The recorded structure acceleration during Taiwan’s strong Chi-Chi earthquake on different floors of the structure was our evaluation criteria. The respective structure is an eight-story steel bending frame structure designed using a displacement-based direct method assuring weak beam - strong column function. The results indicated that different identification methods i.e. reverse Fourier transform or transfer functions, is capable to determine some of the dynamic parameters of the structure precisely, rather than evaluating all of them at once (mode frequencies, mode shapes, structure damping, structure rigidity, etc.). Response evaluation based on the input and output data elucidated that the structure first mode is not significantly affected, even considering the soil-structure interaction effect, but the upper modes have been changed. Also, it was found that the response transfer function of the different stories, in which plastic hinges have occurred in the structure components, provides similar results.

Keywords: System identification, dynamic characteristics, soil-structure system, bending steel frame structure, displacement-based design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 951
3595 Control Algorithm for Shunt Active Power Filter using Synchronous Reference Frame Theory

Authors: Consalva J. Msigwa, Beda J. Kundy, Bakari M. M. Mwinyiwiwa,

Abstract:

This paper presents a method for obtaining the desired reference current for Voltage Source Converter (VSC) of the Shunt Active Power Filter (SAPF) using Synchronous Reference Frame Theory. The method relies on the performance of the Proportional-Integral (PI) controller for obtaining the best control performance of the SAPF. To improve the performance of the PI controller, the feedback path to the integral term is introduced to compensate the winding up phenomenon due to integrator. Using Reference Frame Transformation, reference signals are transformed from a - b - c stationery frame to 0 - d - q rotating frame. Using the PI controller, the reference signals in the 0 - d - q rotating frame are controlled to get the desired reference signals for the Pulse Width Modulation. The synchronizer, the Phase Locked Loop (PLL) with PI filter is used for synchronization, with much emphasis on minimizing delays. The system performance is examined with Shunt Active Power Filter simulation model.

Keywords: Phase Locked Loop (PLL), Voltage Source Converter (VSC), Shunt Active Power Filter (SAPF), PI, Pulse Width Modulation (PWM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3567
3594 Controller Design for Euler-Bernoulli Smart Structures Using Robust Decentralized FOS via Reduced Order Modeling

Authors: T.C. Manjunath, B. Bandyopadhyay

Abstract:

This paper features the modeling and design of a Robust Decentralized Fast Output Sampling (RDFOS) Feedback control technique for the active vibration control of a smart flexible multimodel Euler-Bernoulli cantilever beams for a multivariable (MIMO) case by retaining the first 6 vibratory modes. The beam structure is modeled in state space form using the concept of piezoelectric theory, the Euler-Bernoulli beam theory and the Finite Element Method (FEM) technique by dividing the beam into 4 finite elements and placing the piezoelectric sensor / actuator at two finite element locations (positions 2 and 4) as collocated pairs, i.e., as surface mounted sensor / actuator, thus giving rise to a multivariable model of the smart structure plant with two inputs and two outputs. Five such multivariable models are obtained by varying the dimensions (aspect ratios) of the aluminium beam. Using model order reduction technique, the reduced order model of the higher order system is obtained based on dominant Eigen value retention and the Davison technique. RDFOS feedback controllers are designed for the above 5 multivariable-multimodel plant. The closed loop responses with the RDFOS feedback gain and the magnitudes of the control input are obtained and the performance of the proposed multimodel smart structure system is evaluated for vibration control.

Keywords: Smart structure, Euler-Bernoulli beam theory, Fastoutput sampling feedback control, Finite Element Method, Statespace model, Vibration control, LMI, Model order Reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1753
3593 Sensorless Speed Based on MRAS with Tuning of IP Speed Controller in FOC of Induction Motor Drive Using PSO

Authors: Youcef Bekakra, Djilani Ben attous

Abstract:

In this paper, a field oriented control (FOC) induction motor drive is presented. In order to eliminate the speed sensor, an adaptation algorithm for tuning the rotor speed is proposed. Based on the Model Reference Adaptive System (MRAS) scheme, the rotor speed is tuned to obtain an exact FOC induction motor drive. The reference and adjustable models, developed in stationary stator reference frame, are used in the MRAS scheme to estimate induction rotor speed from measured terminal voltages and currents. The Integral Proportional (IP) gains speed controller are tuned by a modern approach that is the Particle Swarm Optimization (PSO) algorithm in order to optimize the parameters of the IP controller. The use of PSO as an optimization algorithm makes the drive robust, with faster dynamic response, higher accuracy and insensitive to load variation. The proposed algorithm has been tested by numerical simulation, showing the capability of driving load.

Keywords: Induction motor drive, field oriented control, model reference adaptive system (MRAS), particle swarm optimization (PSO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012
3592 Variable vs. Fixed Window Width Code Correlation Reference Waveform Receivers for Multipath Mitigation in Global Navigation Satellite Systems with Binary Offset Carrier and Multiplexed Binary Offset Carrier Signals

Authors: Fahad Alhussein, Huaping Liu

Abstract:

This paper compares the multipath mitigation performance of code correlation reference waveform receivers with variable and fixed window width, for binary offset carrier and multiplexed binary offset carrier signals typically used in global navigation satellite systems. In the variable window width method, such width is iteratively reduced until the distortion on the discriminator with multipath is eliminated. This distortion is measured as the Euclidean distance between the actual discriminator (obtained with the incoming signal), and the local discriminator (generated with a local copy of the signal). The variable window width have shown better performance compared to the fixed window width. In particular, the former yields zero error for all delays for the BOC and MBOC signals considered, while the latter gives rather large nonzero errors for small delays in all cases. Due to its computational simplicity, the variable window width method is perfectly suitable for implementation in low-cost receivers.

Keywords: Correlation reference waveform receivers, binary offset carrier, multiplexed binary offset carrier, global navigation satellite systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 483
3591 Performance Analysis of a Discrete-time GeoX/G/1 Queue with Single Working Vacation

Authors: Shan Gao, Zaiming Liu

Abstract:

This paper treats a discrete-time batch arrival queue with single working vacation. The main purpose of this paper is to present a performance analysis of this system by using the supplementary variable technique. For this purpose, we first analyze the Markov chain underlying the queueing system and obtain its ergodicity condition. Next, we present the stationary distributions of the system length as well as some performance measures at random epochs by using the supplementary variable method. Thirdly, still based on the supplementary variable method we give the probability generating function (PGF) of the number of customers at the beginning of a busy period and give a stochastic decomposition formulae for the PGF of the stationary system length at the departure epochs. Additionally, we investigate the relation between our discretetime system and its continuous counterpart. Finally, some numerical examples show the influence of the parameters on some crucial performance characteristics of the system.

Keywords: Discrete-time queue, batch arrival, working vacation, supplementary variable technique, stochastic decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434
3590 Control Strategy for an Active Suspension System

Authors: C. Alexandru, P. Alexandru

Abstract:

The paper presents the virtual model of the active suspension system used for improving the dynamic behavior of a motor vehicle. The study is focused on the design of the control system, the purpose being to minimize the effect of the road disturbances (which are considered as perturbations for the control system). The analysis is performed for a quarter-car model, which corresponds to the suspension system of the front wheel, by using the DFC (Design for Control) software solution EASY5 (Engineering Analysis Systems) of MSC Software. The controller, which is a PIDbased device, is designed through a parametric optimization with the Matrix Algebra Tool (MAT), considering the gain factors as design variables, while the design objective is to minimize the overshoot of the indicial response.

Keywords: Active suspension, Controller, Dynamics, Vehicle

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2258
3589 Experimental Simulation Set-Up for Validating Out-Of-The-Loop Mitigation when Monitoring High Levels of Automation in Air Traffic Control

Authors: Oliver Ohneiser, Francesca De Crescenzio, Gianluca Di Flumeri, Jan Kraemer, Bruno Berberian, Sara Bagassi, Nicolina Sciaraffa, Pietro Aricò, Gianluca Borghini, Fabio Babiloni

Abstract:

An increasing degree of automation in air traffic will also change the role of the air traffic controller (ATCO). ATCOs will fulfill significantly more monitoring tasks compared to today. However, this rather passive role may lead to Out-Of-The-Loop (OOTL) effects comprising vigilance decrement and less situation awareness. The project MINIMA (Mitigating Negative Impacts of Monitoring high levels of Automation) has conceived a system to control and mitigate such OOTL phenomena. In order to demonstrate the MINIMA concept, an experimental simulation set-up has been designed. This set-up consists of two parts: 1) a Task Environment (TE) comprising a Terminal Maneuvering Area (TMA) simulator as well as 2) a Vigilance and Attention Controller (VAC) based on neurophysiological data recording such as electroencephalography (EEG) and eye-tracking devices. The current vigilance level and the attention focus of the controller are measured during the ATCO’s active work in front of the human machine interface (HMI). The derived vigilance level and attention trigger adaptive automation functionalities in the TE to avoid OOTL effects. This paper describes the full-scale experimental set-up and the component development work towards it. Hence, it encompasses a pre-test whose results influenced the development of the VAC as well as the functionalities of the final TE and the two VAC’s sub-components.

Keywords: Automation, human factors, air traffic controller, MINIMA, OOTL, Out-Of-The-Loop, EEG, electroencephalography, HMI, human machine interface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
3588 Asynchronous Sequential Machines with Fault Detectors

Authors: Seong Woo Kwak, Jung-Min Yang

Abstract:

A strategy of fault diagnosis and tolerance for asynchronous sequential machines is discussed in this paper. With no synchronizing clock, it is difficult to diagnose an occurrence of permanent or stuck-in faults in the operation of asynchronous machines. In this paper, we present a fault detector comprised of a timer and a set of static functions to determine the occurrence of faults. In order to realize immediate fault tolerance, corrective control theory is applied to designing a dynamic feedback controller. Existence conditions for an appropriate controller and its construction algorithm are presented in terms of reachability of the machine and the feature of fault occurrences.

Keywords: Asynchronous sequential machines, corrective control, fault diagnosis and tolerance, fault detector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1367
3587 A WIP Control Based On an Intelligent Controller

Authors: Chih-Hui Chiu, Chun-Hsien Lin

Abstract:

In this study, a robust intelligent backstepping tracking control (RIBTC) system combined with adaptive output recurrent cerebellar model articulation control (AORCMAC) and H∞ control technique is proposed for wheeled inverted pendulums (WIPs) real-time control with exact system dynamics unknown. Moreover, a robust H∞ controller is designed to attenuate the effect of the residual approximation errors and external disturbances with desired attenuation level. The experimental results indicate that the WIPs can stand upright stably when using the proposed RIBTC.

Keywords: Wheeled inverted pendulum, backsteppingtracking control, H∞ control, adaptive output recurrentcerebellar model articulation control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1852
3586 Multivariable Predictive PID Control for Quadruple Tank

Authors: Qamar Saeed, Vali Uddin, Reza Katebi

Abstract:

In this paper multivariable predictive PID controller has been implemented on a multi-inputs multi-outputs control problem i.e., quadruple tank system, in comparison with a simple multiloop PI controller. One of the salient feature of this system is an adjustable transmission zero which can be adjust to operate in both minimum and non-minimum phase configuration, through the flow distribution to upper and lower tanks in quadruple tank system. Stability and performance analysis has also been carried out for this highly interactive two input two output system, both in minimum and non-minimum phases. Simulations of control system revealed that better performance are obtained in predictive PID design.

Keywords: Proportional-integral-derivative Control, GeneralizedPredictive Control, Predictive PID Control, Multivariable Systems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3278
3585 Fifth Order Variable Step Block Backward Differentiation Formulae for Solving Stiff ODEs

Authors: S.A.M. Yatim, Z.B. Ibrahim, K.I. Othman, F. Ismail

Abstract:

The implicit block methods based on the backward differentiation formulae (BDF) for the solution of stiff initial value problems (IVPs) using variable step size is derived. We construct a variable step size block methods which will store all the coefficients of the method with a simplified strategy in controlling the step size with the intention of optimizing the performance in terms of precision and computation time. The strategy involves constant, halving or increasing the step size by 1.9 times the previous step size. Decision of changing the step size is determined by the local truncation error (LTE). Numerical results are provided to support the enhancement of method applied.

Keywords: Backward differentiation formulae, block backwarddifferentiation formulae, stiff ordinary differential equation, variablestep size.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2263