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Abstract—In this paper, we proposed a method to design a 
model-following adaptive controller for linear/nonlinear plants. 
Radial basis function neural networks (RBF-NNs), which are known 
for their stable learning capability and fast training, are used to 
identify linear/nonlinear plants. Simulation results show that the 
proposed method is effective in controlling both linear and nonlinear 
plants with disturbance in the plant input. 

Keywords—Linear/nonlinear plants, neural networks, radial basis 
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I. INTRODUCTION

N the study of control systems, a linear operator using 
well-established techniques in linear algebra generally 

defines the system performance. However, the motion of real 
systems tends to be nonlinear by environmental changes. 
Recently, a family of RBF-NNs [1] has been applied to 
adaptive control [2]-[4]. In many nonlinear control systems, the 
multi-layered perceptron neural networks (MLP-NNs) are 
commonly used for system identification. However, it is well 
known that the utility of MLP-NNs normally involves heavy 
computation, due to their long and iterative training of the 
weight vector. Moreover, they quite often suffer from 
numerical instability, due to the network parameters remaining 
at local minima during the training. Now, it is well known that 
the RBF-NNs are stable as compared with the conventional 
MLP-NNs and a number of non-iterative network parameter 
tuning paradigms have also been proposed. 
In this paper, we propose a design method of the 
model-following adaptive controllers for linear and nonlinear 
plants using RBF-NNs. The organization of this paper is as 
follows: In Section 2, the problem formulation is described. 
RBF-NNs and the structure of the proposed control scheme are 
described in Section 3. In section 4, simulation results using 
both linear and nonlinear plants are given. Finally some 
conclusions are remarked in Section 5.  
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II. PROBLEM STATEMENTS

Consider a single-input, single-output discrete system: 
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where

( )py k : plant output, 

f : unknown linear/nonlinear function, 

0 0b ,
( )u k : plant input. 

The purpose of this paper is to identify the linear/nonlinear 
function f  and the parameters jb  of the linear term, and 
to implement a stable model-following adaptive controller. 

III. PRINCIPLE OF DESIGN

A.  Radial Basis Function Network
Fig. 1 illustrates an RBF-NN with  inputs,  radial basis 
functions (RBFs), and a single output. In Fig. 1, the RBF-NN 
can be viewed as a single hidden-layer feed forward neural 
network. 

iN hN

Fig. 1 Radial basis function neural network
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Here  is called as the weight vector. 
Each layer neuron computes the following Gaussian response 
function: 

1 2, , ,
h

T

Nw w ww

2

2exp .
2

i
ih

x c
 (2) 

In the above equation,  is  the input vector, 1 2, , ,
i

T

Nx x xx

ic  denotes the centroid vector for the i-th RBF, 2  denotes 
the  norm, and 2L  determines the radius. 
The output neuron is then given as the linear weighted sum of 
the output values of RBFs, i.e., 

1

1 ,
hN

i i
i

y h w  (3) 

where  is a constant,  is the number of RBFs. hN

B.  Process of Design
We consider here the problem of controlling the plant described 
in Section 2 and the process of design. Let the difference 
equation of a plant be given as (1). Then, let us assume that the 
difference equation for the reference model is given by a 
second-order system, 

 (4) 1 2

0 1

( 1) ( ) ( 1)
( ) ( 1),

m m m m m

m m

y k a y k a y k
b r k b r k

where

  ( ): model output,
  ( ): reference input.

my k
r k

The error  between the model output and the plant output 
is defined as 

( )e k

 (5) ( ) ( ) ( ).m pe k y k y k

Now, let us assume that at the steady state the following 
condition is satisfied: 

 (6) ( 1) ( )e k e k .

From (6), the following equation is obtained: 

 (7) ( 1) ( 1) ( ) ( ).m p m py k y k y k y k

By substituting (1) and (4) into (7) and replacing  with 
, we have 
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where ( ), ( 1), , ( 1) .p p pf k f y k y k y k L

Notice that the first term  on the right hand side in (7) is 
not replaced with (4). By so doing, the integral term 

( )my k
( 1u k )

will be appeared in the plant input. Therefore, a new relation for 
the plant input  can be derived: ( )u k
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In the above, due to the appearance of , it is considered 
that the controllers so designed are not affected by the load 
disturbance. Although the proposed design method is 
extremely simple as compared with Narendra’s method [5], the 
same result may be obtained. On the other hand, substituting (9) 
into (1), we obtain 

( 1)u k

1 2

0 1

( 1) ( ) ( 1

( ) ( 1).
p m p m p

m m

y k a y k a y k
b r k b r k

)
 (10) 

Then, the error ( 1)e k  is given by 

.1 2( 1) ( ) ( 1)m me k a e k a e k  (11) 

Therefore, the following condition is satisfied for arbitrary 
initial value :(0)e

 (12) lim ( ) 0.
k

e k

C.  Design for Nonlinear Plants
In the system identification of plants, the multi-layer perceptron 
neural networks (MLP-NNs) with back-propagation algorithm 
[2]-[4] have been widely used. However, as discussed early, it 
is well known that employing the MLP-NNs involves rather 
heavy computation due to the iteratively updating of the weight 
vectors and the fact that there may always be a danger of the 
network parameters remaining at local minima. This limits their 
practical use, since an on-line processing is inevitable for 
controlling the dynamical systems. In this paper, we thus 
propose to use RBF-NNs for representing the plant within the 
system identification. 
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In the design, the function f  in (9) is replaced with the 
output of the RBF-NN and the input vector 

( ) ( ), ( 1), , ( 1)
T

p p pk y k y k y k Lx (i.e.,  )iN L ,
namely 

1

1( ) ( ) ,
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T
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with the response function 
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Then, the difference equation for plants yields 

1

1 0

1( 1) ( ) ( )
hN L

p i i j
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)
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 (15) 

Finally, the plant input  is given by (9) with 
linear/nonlinear function (13). 

( )u k

D.  Estimating Feedforward and Weight Parameters [6] 
To estimate both the feedforward parameters 

and the weight parameters 
 of the RBF-NN in (15), we apply the 

singular value decomposition (SVD) [7], instead of applying 
the conventional least squares.

( 0,1, , 1jb j L
( 1, 2, , )iw i N

E.  Adaptive Control Algorithm
From (15), 
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If the centroids ic  are known, we can obtain the unknown 
parameter vector , by applying the conventional recursive 
least-squares method to (16), as follows: 
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                                                                                  (17) 

On the other hand, if the centroids ic  are unknown, we apply 
the recursive K-means algorithm [8] as follows: 
Step 1: Choose a set of centers  arbitrarily and 

give the initial learning rate 
1 1, , ,

hNc c c

(0) 1 .
Step 2: Compute the minimum Euclidean distance 

( ) ( ) ( 1) ( 1, 2, , )

arg min ( )
i i

i

l k k k i N

r l k
hx c

 (18) 

Step 3: Adjust the location of these centers as follows 

( ) ( 1) ( ) ( ) ( 1) ( )
( 1) ( )

i i i

i

k k k k k i r
k i r

c c x c
c

 (19) 

Step 4: 1k k  , ( ) 0.998 ( 1)k k  and go to Step 2.

IV. SIMULATION STUDY

Consider a system described by 

0 1( 1) ( ) ( 1),py k f b u k b u k  (20) 

where

 (21) 0

1

0.350
,

0.076
b
b

and,

1 2 2

1 2

( )
( ) ( 1) ,

1 ( )

   : in case of nonlinear plant
( ) ( 1),

   : in case of linear plant

p
p p

p

p p

y k
a y k a y k

y k
f

a y k a y k
 (22) 

where

1

2

0.581
.

0.0067
a
a

On the other hand, a reference model is given by 
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In simulation experiments, the sampling time is 0.5[s], the 
initial values , , the number of RBFs  is 10 and 
the other parameters are set arbitrarily. We also assumed that at 
the sample number 80 a step-wise disturbance with the 
magnitude 0.1 is added to the plant input . Simulation 
examples are limited to second-order plants in order to simplify 
the problem. 

1 1a 2 1a hN

( )u k

A.  Linear Plant 
For the linear plant, the simulation result is shown in Fig. 2. In 
Fig. 2, the solid and dotted lines represent model and plant 
outputs, respectively. 

B. Nonlinear Plant 
For the nonlinear plant, the simulation result is shown in Fig. 3. 
Simulation condition is the same as the linear plant. 

V. CONCLUSION

In this paper, we have proposed a new model-following 
adaptive controller for both linear and nonlinear plants. In the 
proposed method, RBF-NNs have been used for the system 
identification of linear and nonlinear plants. Simulation results 
have revealed that the proposed control scheme is suitable for 
both linear and nonlinear plants. Moreover, the proposed 
method control method is extremely simple as compared with 
Narendra’s method. 

Fig. 2 Simulation result for the linear plant

Fig. 3 Simulation result for the nonlinear plant. 
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