Search results for: stability enhancement.
1326 The Effect of Slow Variation of Base Flow Profile on the Stability of Slightly Curved Mixing Layers
Authors: Irina Eglite, Andrei A. Kolyshkin
Abstract:
The effect of small non-parallelism of the base flow on the stability of slightly curved mixing layers is analyzed in the present paper. Assuming that the instability wavelength is much smaller than the length scale of the variation of the base flow we derive an amplitude evolution equation using the method of multiple scales. The proposed asymptotic model provides connection between parallel flow approximations and takes into account slow longitudinal variation of the base flow.Keywords: shallow water, parallel flow assumption, weaklynonlinear analysis, method of multiple scales
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14751325 Energy Efficient Autonomous Lower Limb Exoskeleton for Human Motion Enhancement
Authors: Nazim Mir-Nasiri, Hudyjaya Siswoyo Jo
Abstract:
The paper describes conceptual design, control strategies, and partial simulation for a new fully autonomous lower limb wearable exoskeleton system for human motion enhancement that can support its weight and increase strength and endurance. Various problems still remain to be solved where the most important is the creation of a power and cost efficient system that will allow an exoskeleton to operate for extended period without batteries being frequently recharged. The designed exoskeleton is enabling to decouple the weight/mass carrying function of the system from the forward motion function which reduces the power and size of propulsion motors and thus the overall weight, cost of the system. The decoupling takes place by blocking the motion at knee joint by placing passive air cylinder across the joint. The cylinder is actuated when the knee angle has reached the minimum allowed value to bend. The value of the minimum bending angle depends on usual walk style of the subject. The mechanism of the exoskeleton features a seat to rest the subject’s body weight at the moment of blocking the knee joint motion. The mechanical structure of each leg has six degrees of freedom: four at the hip, one at the knee, and one at the ankle. Exoskeleton legs are attached to subject legs by using flexible cuffs. The operation of all actuators depends on the amount of pressure felt by the feet pressure sensors and knee angle sensor. The sensor readings depend on actual posture of the subject and can be classified in three distinct cases: subject stands on one leg, subject stands still on both legs and subject stands on both legs but transit its weight from one leg to other. This exoskeleton is power efficient because electrical motors are smaller in size and did not participate in supporting the weight like in all other existing exoskeleton designs.
Keywords: Energy efficient system, exoskeleton, motion enhancement, robotics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18701324 Stabilizing Effects of Deep Eutectic Solvents on Alcohol Dehydrogenase Mediated Systems
Authors: Fatima Zohra Ibn Majdoub Hassani, Ivan Lavandera, Joseph Kreit
Abstract:
This study explored the effects of different organic solvents, temperature, and the amount of glycerol on the alcohol dehydrogenase (ADH)-catalysed stereoselective reduction of different ketones. These conversions were then analyzed by gas chromatography. It was found that when the amount of deep eutectic solvents (DES) increases, it can improve the stereoselectivity of the enzyme although reducing its ability to convert the substrate into the corresponding alcohol. Moreover, glycerol was found to have a strong stabilizing effect on the ADH from Ralstonia sp. (E. coli/ RasADH). In the case of organic solvents, it was observed that the best conversions into the alcohols were achieved with DMSO and hexane. It was also observed that temperature decreased the ability of the enzyme to convert the substrates into the products and also affected the selectivity. In addition to that, the recycling of DES up to three times gave good conversions and enantiomeric excess results and glycerol showed a positive effect in the stability of various ADHs. Using RasADH, a good conversion and enantiomeric excess into the S-alcohol were obtained. It was found that an enhancement of the temperature disabled the stabilizing effect of glycerol and decreased the stereoselectivity of the enzyme. However, for other ADHs a temperature increase had an opposite positive effect, especially with ADH-T from Thermoanaerobium sp. One of the objectives of this study was to see the effect of cofactors such as NAD(P) on the biocatlysis activities of ADHs.
Keywords: Alcohol dehydrogenases, DES, gas chromatography, RasADH.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11421323 Anti-periodic Solutions for Cohen-Grossberg Shunting Inhibitory Neural Networks with Delays
Authors: Yongkun Li, Tianwei Zhang, Shufa Bai
Abstract:
By using the method of coincidence degree theory and constructing suitable Lyapunov functional, several sufficient conditions are established for the existence and global exponential stability of anti-periodic solutions for Cohen-Grossberg shunting inhibitory neural networks with delays. An example is given to illustrate our feasible results.
Keywords: Anti-periodic solution, coincidence degree, global exponential stability, Cohen-Grossberg shunting inhibitory cellular neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15041322 Stability Analysis of Three-Dimensional Flow and Heat Transfer over a Permeable Shrinking Surface in a Cu-Water Nanofluid
Authors: Roslinda Nazar, Amin Noor, Khamisah Jafar, Ioan Pop
Abstract:
In this paper, the steady laminar three-dimensional boundary layer flow and heat transfer of a copper (Cu)-water nanofluid in the vicinity of a permeable shrinking flat surface in an otherwise quiescent fluid is studied. The nanofluid mathematical model in which the effect of the nanoparticle volume fraction is taken into account is considered. The governing nonlinear partial differential equations are transformed into a system of nonlinear ordinary differential equations using a similarity transformation which is then solved numerically using the function bvp4c from Matlab. Dual solutions (upper and lower branch solutions) are found for the similarity boundary layer equations for a certain range of the suction parameter. A stability analysis has been performed to show which branch solutions are stable and physically realizable. The numerical results for the skin friction coefficient and the local Nusselt number as well as the velocity and temperature profiles are obtained, presented and discussed in detail for a range of various governing parameters.
Keywords: Heat Transfer, Nanofluid, Shrinking Surface, Stability Analysis, Three-Dimensional Flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21941321 Sliding Mode Power System Stabilizer for Synchronous Generator Stability Improvement
Authors: J. Ritonja, R. Brezovnik, M. Petrun, B. Polajžer
Abstract:
Many modern synchronous generators in power systems are extremely weakly damped. The reasons are cost optimization of the machine building and introduction of the additional control equipment into power systems. Oscillations of the synchronous generators and related stability problems of the power systems are harmful and can lead to failures in operation and to damages. The only useful solution to increase damping of the unwanted oscillations represents the implementation of the power system stabilizers. Power system stabilizers generate the additional control signal which changes synchronous generator field excitation voltage. Modern power system stabilizers are integrated into static excitation systems of the synchronous generators. Available commercial power system stabilizers are based on linear control theory. Due to the nonlinear dynamics of the synchronous generator, current stabilizers do not assure optimal damping of the synchronous generator’s oscillations in the entire operating range. For that reason the use of the robust power system stabilizers which are convenient for the entire operating range is reasonable. There are numerous robust techniques applicable for the power system stabilizers. In this paper the use of sliding mode control for synchronous generator stability improvement is studied. On the basis of the sliding mode theory, the robust power system stabilizer was developed. The main advantages of the sliding mode controller are simple realization of the control algorithm, robustness to parameter variations and elimination of disturbances. The advantage of the proposed sliding mode controller against conventional linear controller was tested for damping of the synchronous generator oscillations in the entire operating range. Obtained results show the improved damping in the entire operating range of the synchronous generator and the increase of the power system stability. The proposed study contributes to the progress in the development of the advanced stabilizer, which will replace conventional linear stabilizers and improve damping of the synchronous generators.
Keywords: Control theory, power system stabilizer, robust control, sliding mode control, stability, synchronous generator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10611320 A New Time Discontinuous Expanded Mixed Element Method for Convection-dominated Diffusion Equation
Authors: Jinfeng Wang, Yuanhong Bi, Hong Li, Yang Liu, Meng Zhao
Abstract:
In this paper, a new time discontinuous expanded mixed finite element method is proposed and analyzed for two-order convection-dominated diffusion problem. The proofs of the stability of the proposed scheme and the uniqueness of the discrete solution are given. Moreover, the error estimates of the scalar unknown, its gradient and its flux in the L1( ¯ J,L2( )-norm are obtained.
Keywords: Convection-dominated diffusion equation, expanded mixed method, time discontinuous scheme, stability, error estimates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13121319 Mixed Convection Enhancement in a 3D Lid-Driven Cavity Containing a Rotating Cylinder by Applying an Artificial Roughness
Authors: Ali Khaleel Kareem, Shian Gao, Ahmed Qasim Ahmed
Abstract:
A numerical investigation of unsteady mixed convection heat transfer in a 3D moving top wall enclosure, which has a central rotating cylinder and uses either artificial roughness on the bottom hot plate or smooth bottom hot plate to study the heat transfer enhancement, is completed for fixed circular cylinder, and anticlockwise and clockwise rotational speeds, -1 ≤ Ω ≤ 1, at Reynolds number of 5000. The top lid-driven wall was cooled, while the other remaining walls that completed obstructed cubic were kept insulated and motionless. A standard k-ε model of Unsteady Reynolds-Averaged Navier-Stokes (URANS) method is involved to deal with turbulent flow. It has been clearly noted that artificial roughness can strongly control the thermal fields and fluid flow patterns. Ultimately, the heat transfer rate has been dramatically increased by involving artificial roughness on the heated bottom wall in the presence of rotating cylinder.Keywords: Artificial roughness, Lid-driven cavity, Mixed convection heat transfer, Rotating cylinder, URANS method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11551318 Small Signal Stability Assessment Employing PSO Based TCSC Controller with Comparison to GA Based Design
Authors: D. Mondal, A. Chakrabarti, A. Sengupta
Abstract:
This paper aims to select the optimal location and setting parameters of TCSC (Thyristor Controlled Series Compensator) controller using Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) to mitigate small signal oscillations in a multimachine power system. Though Power System Stabilizers (PSSs) are prime choice in this issue, installation of FACTS device has been suggested here in order to achieve appreciable damping of system oscillations. However, performance of any FACTS devices highly depends upon its parameters and suitable location in the power network. In this paper PSO as well as GA based techniques are used separately and compared their performances to investigate this problem. The results of small signal stability analysis have been represented employing eigenvalue as well as time domain response in face of two common power system disturbances e.g., varying load and transmission line outage. It has been revealed that the PSO based TCSC controller is more effective than GA based controller even during critical loading condition.Keywords: Genetic Algorithm, Particle Swarm Optimization, Small Signal Stability, Thyristor Controlled Series Compensator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19561317 Bias Stability of a-IGZO TFT and a new Shift-Register Design Suitable for a-IGZO TFT
Authors: Young Wook Lee, Sun-Jae Kim, Soo-Yeon Lee, Moon-Kyu Song, Woo-Geun Lee Min-Koo Han
Abstract:
We have fabricated a-IGZO TFT and investigated the stability under positive DC and AC bias stress. The threshold voltage of a-IGZO TFT shifts positively under those biases, and that reduces on-current. For this reason, conventional shift-register circuit employing TFTs which stressed by positive bias will be unstable, may do not work properly. We have designed a new 6-transistor shift-register, which has less transistors than prior circuits. The TFTs of the proposed shift-register are not suffering from positive DC or AC stress, mainly kept unbiased. Despite the compact design, the stable output signal was verified through the SPICE simulation even under RC delay of clock signal.Keywords: Indium Gallium Zinc Oxide (IGZO), Thin FilmTransistor (TFT), shift-register
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32561316 Efficient High Fidelity Signal Reconstruction Based on Level Crossing Sampling
Authors: Negar Riazifar, Nigel G. Stocks
Abstract:
This paper proposes strategies in level crossing (LC) sampling and reconstruction that provide high fidelity signal reconstruction for speech signals; these strategies circumvent the problem of exponentially increasing number of samples as the bit-depth is increased and hence are highly efficient. Specifically, the results indicate that the distribution of the intervals between samples is one of the key factors in the quality of signal reconstruction; including samples with short intervals does not improve the accuracy of the signal reconstruction, whilst samples with large intervals lead to numerical instability. The proposed sampling method, termed reduced conventional level crossing (RCLC) sampling, exploits redundancy between samples to improve the efficiency of the sampling without compromising performance. A reconstruction technique is also proposed that enhances the numerical stability through linear interpolation of samples separated by large intervals. Interpolation is demonstrated to improve the accuracy of the signal reconstruction in addition to the numerical stability. We further demonstrate that the RCLC and interpolation methods can give useful levels of signal recovery even if the average sampling rate is less than the Nyquist rate.
Keywords: Level crossing sampling, numerical stability, speech processing, trigonometric polynomial.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4301315 Multi-objective Optimization with Fuzzy Based Ranking for TCSC Supplementary Controller to Improve Rotor Angle and Voltage Stability
Authors: S. Panda, S. C. Swain, A. K. Baliarsingh, A. K. Mohanty, C. Ardil
Abstract:
Many real-world optimization problems involve multiple conflicting objectives and the use of evolutionary algorithms to solve the problems has attracted much attention recently. This paper investigates the application of multi-objective optimization technique for the design of a Thyristor Controlled Series Compensator (TCSC)-based controller to enhance the performance of a power system. The design objective is to improve both rotor angle stability and system voltage profile. A Genetic Algorithm (GA) based solution technique is applied to generate a Pareto set of global optimal solutions to the given multi-objective optimisation problem. Further, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto solution set. Simulation results are presented to show the effectiveness and robustness of the proposed approach.
Keywords: Multi-objective optimisation, thyristor controlled series compensator, power system stability, genetic algorithm, pareto solution set, fuzzy ranking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19381314 A 16Kb 10T-SRAM with 4x Read-Power Reduction
Authors: Pardeep Singh, Sanjay Sharma, Parvinder S. Sandhu
Abstract:
This work aims to reduce the read power consumption as well as to enhance the stability of the SRAM cell during the read operation. A new 10-transisor cell is proposed with a new read scheme to minimize the power consumption within the memory core. It has separate read and write ports, thus cell read stability is significantly improved. A 16Kb SRAM macro operating at 1V supply voltage is demonstrated in 65 nm CMOS process. Its read power consumption is reduced to 24% of the conventional design. The new cell also has lower leakage current due to its special bit-line pre-charge scheme. As a result, it is suitable for low-power mobile applications where power supply is restricted by the battery.Keywords: A 16Kb 10T-SRAM, 4x Read-Power Reduction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19501313 Numerical Investigation of Instabilities in Free Shear Layer Produced by NS-DBD Actuator
Authors: Ilya Popov, Steven Hulshoff
Abstract:
A numerical investigation of the effects of nanosecond barrier discharge on the stability of a two-dimensional free shear layer is performed. The computations are carried out using a compressible Navier-Stokes algorithm coupled with a thermodynamic model of the discharge. The results show that significant increases in the shear layer-s momentum thickness and Reynolds stresses occur due to actuation. Dependence on both frequency and amplitude of actuation are considered, and a comparison is made of the computed growth rates with those predicted by linear stability theory. Amplitude and frequency ranges for the efficient promotion of shear-layer instabilities are identified.Keywords: NS-DBD, plasma, actuator, flow control, instability, shear layer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17011312 New Suspension Mechanism Using Camber Thrust for a Formula Car
Authors: Shinji Kajiwara
Abstract:
The basic ability of a vehicle is to “run”, “turn” and “stop”. The safeness and comfort during a drive on various road surfaces and speed depends on the performance of these basic abilities of the vehicle. Stability and maneuverability of a vehicle are vital in automotive engineering. The stability of a vehicle is the ability of the vehicle to revert back to a stable state during a drive when faced with crosswinds and irregular road conditions. Maneuverability of a vehicle is the ability of the vehicle to change direction during a drive swiftly based on the steering of the driver. The stability and maneuverability of a vehicle can also be defined as the driving stability of the vehicle. Since the fossil fueled vehicle is the main type of transportation today, the environmental factor in automotive engineering is also vital. By improving the fuel efficiency of the vehicle, the overall carbon emission will be reduced, thus reducing the effect of global warming and greenhouse gas on the Earth. Another main focus of the automotive engineering is the safety performance of the vehicle, especially with the worrying increase of vehicle collision every day. With better safety performance of a vehicle, every driver will be more confident driving every day. Next, let us focus on the “turn” ability of a vehicle. By improving this particular ability of the vehicle, the cornering limit of the vehicle can be improved, thus increasing the stability and maneuverability factor. In order to improve the cornering limit of the vehicle, a study to find the balance between the steering systems, the stability of the vehicle, higher lateral acceleration and the cornering limit detection must be conducted. The aim of this research is to study and develop a new suspension system that will boost the lateral acceleration of the vehicle and ultimately improving the cornering limit of the vehicle. This research will also study environmental factor and the stability factor of the new suspension system. The double wishbone suspension system is widely used in a four-wheel vehicle, especially for high cornering performance sports car and racing car. The double wishbone designs allow the engineer to carefully control the motion of the wheel by controlling such parameters as camber angle, caster angle, toe pattern, roll center height, scrub radius, scuff, and more. The development of the new suspension system will focus on the ability of the new suspension system to optimize the camber control and to improve the camber limit during a cornering motion. The research will be carried out using the CAE analysis tool. Using this analysis tool we will develop a JSAE Formula Machine equipped with the double wishbone system and also the new suspension system and conduct simulation and conduct studies on the performance of both suspension systems.
Keywords: Automobile, Camber Thrust, Cornering force, Suspension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36001311 Effective Sonar Target Classification via Parallel Structure of Minimal Resource Allocation Network
Authors: W.S. Lim, M.V.C. Rao
Abstract:
In this paper, the processing of sonar signals has been carried out using Minimal Resource Allocation Network (MRAN) and a Probabilistic Neural Network (PNN) in differentiation of commonly encountered features in indoor environments. The stability-plasticity behaviors of both networks have been investigated. The experimental result shows that MRAN possesses lower network complexity but experiences higher plasticity than PNN. An enhanced version called parallel MRAN (pMRAN) is proposed to solve this problem and is proven to be stable in prediction and also outperformed the original MRAN.Keywords: Ultrasonic sensing, target classification, minimalresource allocation network (MRAN), probabilistic neural network(PNN), stability-plasticity dilemma.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15961310 Numerical Investigation of the Chilling of Food Products by Air-Mist Spray
Authors: Roy J. Issa
Abstract:
Spray chilling using air-mist nozzles has received much attention in the food processing industry because of the benefits it has shown over forced air convection. These benefits include an increase in the heat transfer coefficient and a reduction in the water loss by the product during cooling. However, few studies have simulated the heat transfer and aerodynamics phenomena of the air-mist chilling process for optimal operating conditions. The study provides insight into the optimal conditions for spray impaction, heat transfer efficiency and control of surface flooding. A computational fluid dynamics model using a two-phase flow composed of water droplets injected with air is developed to simulate the air-mist chilling of food products. The model takes into consideration droplet-to-surface interaction, water-film accumulation and surface runoff. The results of this study lead to a better understanding of the heat transfer enhancement, water conservation, and to a clear direction for the optimal design of air-mist chilling systems that can be used in commercial applications in the food and meat processing industries.Keywords: Droplets impaction efficiency, Droplet size, Heat transfer enhancement factor, Water runoff.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19541309 Reducing Pressure Drop in Microscale Channel Using Constructal Theory
Authors: K. X. Cheng, A. L. Goh, K. T. Ooi
Abstract:
The effectiveness of microchannels in enhancing heat transfer has been demonstrated in the semiconductor industry. In order to tap the microscale heat transfer effects into macro geometries, overcoming the cost and technological constraints, microscale passages were created in macro geometries machined using conventional fabrication methods. A cylindrical insert was placed within a pipe, and geometrical profiles were created on the outer surface of the insert to enhance heat transfer under steady-state single-phase liquid flow conditions. However, while heat transfer coefficient values of above 10 kW/m2·K were achieved, the heat transfer enhancement was accompanied by undesirable pressure drop increment. Therefore, this study aims to address the high pressure drop issue using Constructal theory, a universal design law for both animate and inanimate systems. Two designs based on Constructal theory were developed to study the effectiveness of Constructal features in reducing the pressure drop increment as compared to parallel channels, which are commonly found in microchannel fabrication. The hydrodynamic and heat transfer performance for the Tree insert and Constructal fin (Cfin) insert were studied using experimental methods, and the underlying mechanisms were substantiated by numerical results. In technical terms, the objective is to achieve at least comparable increment in both heat transfer coefficient and pressure drop, if not higher increment in the former parameter. Results show that the Tree insert improved the heat transfer performance by more than 16 percent at low flow rates, as compared to the Tree-parallel insert. However, the heat transfer enhancement reduced to less than 5 percent at high Reynolds numbers. On the other hand, the pressure drop increment stayed almost constant at 20 percent. This suggests that the Tree insert has better heat transfer performance in the low Reynolds number region. More importantly, the Cfin insert displayed improved heat transfer performance along with favourable hydrodynamic performance, as compared to Cfinparallel insert, at all flow rates in this study. At 2 L/min, the enhancement of heat transfer was more than 30 percent, with 20 percent pressure drop increment, as compared to Cfin-parallel insert. Furthermore, comparable increment in both heat transfer coefficient and pressure drop was observed at 8 L/min. In other words, the Cfin insert successfully achieved the objective of this study. Analysis of the results suggests that bifurcation of flows is effective in reducing the increment in pressure drop relative to heat transfer enhancement. Optimising the geometries of the Constructal fins is therefore the potential future study in achieving a bigger stride in energy efficiency at much lower costs.Keywords: Constructal theory, enhanced heat transfer, microchannel, pressure drop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14931308 Flow Characteristics and Heat Transfer Enhancement in 2D Corrugated Channels
Authors: Veli Ozbolat, Nehir Tokgoz, Besir Sahin
Abstract:
Present study numerically investigates the flow field and heat transfer of water in two dimensional sinusoidal and rectangular corrugated wall channels. Simulations are performed for fully developed flow conditions at inlet sections of the channels that have 12 waves. The temperature of the input fluid is taken to be less than that temperature of wavy walls. The governing continuity, momentum and energy equations are numerically solved using finite volume method based on SIMPLE technique. The investigation covers Reynolds number in the rage of 100-1000. The effects of the distance between upper and lower corrugated walls are studied by varying Hmin/Hmax ratio from 0.3 to 0.5 for keeping wave length and wave amplitude values fixed for both geometries. The effects of the wall geometry, Reynolds number and the distance between walls on the flow characteristics, the local Nusselt number and heat transfer are studied. It is found that heat transfer enhancement increases by usage of corrugated horizontal walls in an appropriate Reynolds number regime and channel height.
Keywords: Corrugated Channel, CFD, Flow Characteristics, Heat Transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33151307 Comparison on Electrode and Ground Arrangements Effect on Heat Transfer under Electric Force in a Channel and a Cavity Flow
Authors: Suwimon Saneewong Na Ayuttaya, Chainarong Chaktranond, Phadungsak Rattanadecho
Abstract:
This study numerically investigates the effects of Electrohydrodynamic on flow patterns and heat transfer enhancement within a cavity which is on the lower wall of channel. In this simulation, effects of using ground wire and ground plate on the flow patterns are compared. Moreover, the positions of electrode wire respecting with ground are tested in the range of angles θ = 0 - 180o. High electrical voltage exposes to air is 20 kV. Bulk mean velocity and temperature of inlet air are controlled at 0.1 m/s and 60 OC, respectively. The result shows when electric field is applied, swirling flow is appeared in the channel. In addition, swirling flow patterns in the main flow of using ground plate are widely spreader than that of using ground wire. Moreover, direction of swirling flow also affects the flow pattern and heat transfer in a cavity. These cause the using ground wire to give the maximum temperature and heat transfer higher than using ground plate. Furthermore, when the angle is at θ = 60o, high shear flow effect is obtained. This results show high strength of swirling flow and effective heat transfer enhancement.
Keywords: Swirling Flow, Heat Transfer, Electrohydrodynamic, Numerical Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21241306 HOPF Bifurcation of a Predator-prey Model with Time Delay and Habitat Complexity
Authors: Li Hongwei
Abstract:
In this paper, a predator-prey model with time delay and habitat complexity is investigated. By analyzing the characteristic equations, the local stability of each feasible equilibria of the system is discussed and the existence of a Hopf bifurcation at the coexistence equilibrium is established. By choosing the sum of two delays as a bifurcation parameter, we show that Hopf bifurcations can occur as crosses some critical values. By deriving the equation describing the flow on the center manifold, we can determine the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions. Numerical simulations are carried out to illustrate the main theoretical results.
Keywords: Predator-prey system, delay, habitat complexity, HOPF bifurcation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18701305 Voltage Stability Proximity Index Determined by LES Algorithm
Authors: Benalia Nadia, Bensiali Nadia, Mekki Mounira
Abstract:
In this paper, we propose an easily computable proximity index for predicting voltage collapse of a load bus using only measured values of the bus voltage and power; Using these measurements a polynomial of fourth order is obtained by using LES estimation algorithms. The sum of the absolute values of the polynomial coefficient gives an idea of the critical bus. We demonstrate the applicability of our proposed method on 6 bus test system. The results obtained verify its applicability, as well as its accuracy and the simplicity. From this indicator, it is allowed to predict the voltage instability or the proximity of a collapse. Results obtained by the PV curve are compared with corresponding values by QV curves and are observed to be in close agreement.
Keywords: least square method, Voltage Collapse, Voltage Stability, PV curve
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22871304 Condition Monitoring for Controlling the Stability of the Rotating Machinery
Authors: A. Chellil, I. Gahlouz, S. Lecheb, A. Nour, S. Chellil, H. Mechakra, H. Kebir
Abstract:
In this paper, the experimental study for the instability of a separator rotor is presented, under dynamic loading response in the harmonic analysis condition. The global measurement and analysis of vibration on the cement separator RC500 is carried, the points of measurement used are radial dots, vertical, horizontal and oblique. The measures of trends and spectral analysis for reconnaissance of the main anomalies, the main defects in the separator and manifestation, the results prove that the defects effect has a negative effect on the stability of the rotor. Experimentally the study of the rotor in transient system allowed to determine the vibratory responses due to the unbalances and various excitations.Keywords: Rotor, experimental, defect, frequency, specter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17561303 Experimental Study on the Effects of Water-in-Oil Emulsions to the Pressure Drop in Pipeline Flow
Authors: S. S. Dol, M. S. Chan, S. F. Wong, J. S. Lim
Abstract:
Emulsion formation is unavoidable and can be detrimental to an oil field production. The presence of stable emulsions also reduces the quality of crude oil and causes more problems in the downstream refinery operations, such as corrosion and pipeline pressure drop. Hence, it is important to know the effects of emulsions in the pipeline. Light crude oil was used for the continuous phase in the W/O emulsions where the emulsions pass through a flow loop to test the pressure drop across the pipeline. The results obtained shows that pressure drop increases as water cut is increased until it peaks at the phase inversion of the W/O emulsion between 30% to 40% water cut. Emulsions produced by gradual constrictions show a lower stability as compared to sudden constrictions. Lower stability of emulsions in gradual constriction has the higher influence of pressure drop compared to a sudden sharp decrease in diameter in sudden constriction. Generally, sudden constriction experiences pressure drop of 0.013% to 0.067% higher than gradual constriction of the same ratio. Lower constriction ratio cases cause larger pressure drop ranging from 0.061% to 0.241%. Considering the higher profitability in lower emulsion stability and lower pressure drop at the developed flow region of different constrictions, an optimum design of constriction is found to be gradual constriction with a ratio of 0.5.Keywords: Constriction, pressure drop, turbulence, water cut, water-in-oil emulsions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11061302 Properties of a Stochastic Predator-Prey System with Holling II Functional Response
Authors: Xianqing Liu, Shouming Zhong, Fuli Zhong, Zijian Liu
Abstract:
In this paper, a stochastic predator-prey system with Holling II functional response is studied. First, we show that there is a unique positive solution to the system for any given positive initial value. Then, stochastically bounded of the positive solution to the stochastic system is derived. Moreover, sufficient conditions for global asymptotic stability are also established. In the end, some simulation figures are carried out to support the analytical findings.
Keywords: stochastically bounded, global stability, Holling II functional response, white noise, Markovian switching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15851301 Periodic Solutions of Recurrent Neural Networks with Distributed Delays and Impulses on Time Scales
Authors: Yaping Ren, Yongkun Li
Abstract:
In this paper, by using the continuation theorem of coincidence degree theory, M-matrix theory and constructing some suitable Lyapunov functions, some sufficient conditions are obtained for the existence and global exponential stability of periodic solutions of recurrent neural networks with distributed delays and impulses on time scales. Without assuming the boundedness of the activation functions gj, hj , these results are less restrictive than those given in the earlier references.
Keywords: Recurrent neural networks, global exponential stability, periodic solutions, distributed delays, impulses, time scales.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15951300 Fuzzy Logic Control of Static Var Compensator for Power System Damping
Authors: N.Karpagam, D.Devaraj
Abstract:
Static Var Compensator (SVC) is a shunt type FACTS device which is used in power system primarily for the purpose of voltage and reactive power control. In this paper, a fuzzy logic based supplementary controller for Static Var Compensator (SVC) is developed which is used for damping the rotor angle oscillations and to improve the transient stability of the power system. Generator speed and the electrical power are chosen as input signals for the Fuzzy Logic Controller (FLC). The effectiveness and feasibility of the proposed control is demonstrated with Single Machine Infinite Bus (SMIB) system and multimachine system (WSCC System) which show improvement over the use of a fixed parameter controller.Keywords: FLC, SVC, Transient stability, SMIB, PIDcontroller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34471299 Optimal Voltage and Frequency Control of a Microgrid Using the Harmony Search Algorithm
Authors: Hossein Abbasi
Abstract:
The stability is an important topic to plan and manage the energy in the microgrids as the same as the conventional power systems. The voltage and frequency stability is one of the most important issues recently studied in microgrids. The objectives of this paper are the modelling and designing of the components and optimal controllers for the voltage and frequency control of the AC/DC hybrid microgrid under the different disturbances. Since the PI controllers have the advantages of simple structure and easy implementation, so they are designed and modeled in this paper. The harmony search (HS) algorithm is used to optimize the controllers’ parameters. According to the achieved results, the PI controllers have a good performance in voltage and frequency control of the microgrid.
Keywords: Frequency control, HS algorithm, microgrid, PI controller, voltage control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13651298 Stability Analysis in a Fractional Order Delayed Predator-Prey Model
Authors: Changjin Xu, Peiluan Li
Abstract:
In this paper, we study the stability of a fractional order delayed predator-prey model. By using the Laplace transform, we introduce a characteristic equation for the above system. It is shown that if all roots of the characteristic equation have negative parts, then the equilibrium of the above fractional order predator-prey system is Lyapunov globally asymptotical stable. An example is given to show the effectiveness of the approach presented in this paper.
Keywords: Fractional predator-prey model, laplace transform, characteristic equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25001297 Ultimately Bounded Takagi-Sugeno Fuzzy Management in Urban Traffic Stream Mechanism: Multi-Agent Modeling Approach
Authors: Reza Ghasemi, Negin Amiri Hazaveh
Abstract:
In this paper, control methodology based on the selection of the type of traffic light and the period of the green phase to accomplish an optimum balance at intersections is proposed. This balance should be flexible to the static behavior of time, and randomness in a traffic situation; the goal of the proposed method is to reduce traffic volume in transportation, the average delay for each vehicle, and control over the crash of cars. The proposed method was specifically investigated at the intersection through an appropriate timing of traffic lights by sampling a multi-agent system. It consists of a large number of intersections, each of which is considered as an independent agent that exchanges information with each other, and the stability of each agent is provided separately. The robustness against uncertainties, scalability, and stability of the closed-loop overall system are the main merits of the proposed methodology. The simulation results show that the fuzzy intelligent controller in this multi-factor system which is a Takagi-Sugeno (TS) fuzzy is more useful than scheduling in the fixed-time method and it reduces the lengths of vehicles queuing.
Keywords: Fuzzy intelligent controller, traffic-light control, multi-agent systems, state space equations, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 558