**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**262

# Search results for: trigonometric polynomial.

##### 262 Cubic Trigonometric B-Spline Applied to Linear Two-Point Boundary Value Problems of Order Two

**Authors:**
Nur Nadiah Abd Hamid ,
Ahmad Abd. Majid,
Ahmad Izani Md. Ismail

**Abstract:**

**Keywords:**
trigonometric B-spline,
two-point boundary valueproblem,
spline interpolation,
cubic spline

##### 261 Monotone Rational Trigonometric Interpolation

**Authors:**
Uzma Bashir,
Jamaludin Md. Ali

**Abstract:**

This study is concerned with the visualization of monotone data using a piecewise C1 rational trigonometric interpolating scheme. Four positive shape parameters are incorporated in the structure of rational trigonometric spline. Conditions on two of these parameters are derived to attain the monotonicity of monotone data and othertwo are leftfree. Figures are used widely to exhibit that the proposed scheme produces graphically smooth monotone curves.

**Keywords:**
Trigonometric splines,
Monotone data,
Shape preserving,
C1 monotone interpolant.

##### 260 Circular Approximation by Trigonometric Bézier Curves

**Authors:**
Maria Hussin,
Malik Zawwar Hussain,
Mubashrah Saddiqa

**Abstract:**

We present a trigonometric scheme to approximate a circular arc with its two end points and two end tangents/unit tangents. A rational cubic trigonometric Bézier curve is constructed whose end control points are defined by the end points of the circular arc. Weight functions and the remaining control points of the cubic trigonometric Bézier curve are estimated by variational approach to reproduce a circular arc. The radius error is calculated and found less than the existing techniques.

**Keywords:**
Control points,
rational trigonometric Bézier curves,
radius error,
shape measure,
weight functions.

##### 259 Transformations between Bivariate Polynomial Bases

**Authors:**
Dimitris Varsamis,
Nicholas Karampetakis

**Abstract:**

It is well known, that any interpolating polynomial p (x, y) on the vector space Pn,m of two-variable polynomials with degree less than n in terms of x and less than m in terms of y, has various representations that depends on the basis of Pn,m that we select i.e. monomial, Newton and Lagrange basis e.t.c.. The aim of this short note is twofold : a) to present transformations between the coordinates of the polynomial p (x, y) in the aforementioned basis and b) to present transformations between these bases.

**Keywords:**
Bivariate interpolation polynomial,
Polynomial basis,
Transformations.

##### 258 Adaptive Motion Planning for 6-DOF Robots Based on Trigonometric Functions

**Authors:**
Jincan Li,
Mingyu Gao,
Zhiwei He,
Yuxiang Yang,
Zhongfei Yu,
Yuanyuan Liu

**Abstract:**

Building an appropriate motion model is crucial for trajectory planning of robots and determines the operational quality directly. An adaptive acceleration and deceleration motion planning based on trigonometric functions for the end-effector of 6-DOF robots in Cartesian coordinate system is proposed in this paper. This method not only achieves the smooth translation motion and rotation motion by constructing a continuous jerk model, but also automatically adjusts the parameters of trigonometric functions according to the variable inputs and the kinematic constraints. The results of computer simulation show that this method is correct and effective to achieve the adaptive motion planning for linear trajectories.

**Keywords:**
6-DOF robots,
motion planning,
trigonometric function,
kinematic constraints

##### 257 A Novel Deinterlacing Algorithm Based on Adaptive Polynomial Interpolation

**Authors:**
Seung-Won Jung,
Hye-Soo Kim,
Le Thanh Ha,
Seung-Jin Baek,
Sung-Jea Ko

**Abstract:**

**Keywords:**
Deinterlacing,
polynomial interpolation.

##### 256 Factoring a Polynomial with Multiple-Roots

**Authors:**
Feng Cheng Chang

**Abstract:**

**Keywords:**
Polynomial roots,
greatest common divisor,
Longhand polynomial division,
Euclidean GCD Algorithm.

##### 255 Designing FIR Filters with Polynomial Approach

**Authors:**
Sunil Bhooshan,
Vinay Kumar

**Abstract:**

**Keywords:**
FIR filter,
Polynomial.

##### 254 Cubic Trigonometric B-spline Approach to Numerical Solution of Wave Equation

**Authors:**
Shazalina Mat Zin,
Ahmad Abd. Majid,
Ahmad Izani Md. Ismail,
Muhammad Abbas

**Abstract:**

The generalized wave equation models various problems in sciences and engineering. In this paper, a new three-time level implicit approach based on cubic trigonometric B-spline for the approximate solution of wave equation is developed. The usual finite difference approach is used to discretize the time derivative while cubic trigonometric B-spline is applied as an interpolating function in the space dimension. Von Neumann stability analysis is used to analyze the proposed method. Two problems are discussed to exhibit the feasibility and capability of the method. The absolute errors and maximum error are computed to assess the performance of the proposed method. The results were found to be in good agreement with known solutions and with existing schemes in literature.

**Keywords:**
Collocation method,
Cubic trigonometric B-spline,
Finite difference,
Wave equation.

##### 253 L1-Convergence of Modified Trigonometric Sums

**Authors:**
Sandeep Kaur Chouhan,
Jatinderdeep Kaur,
S. S. Bhatia

**Abstract:**

**Keywords:**
Conjugate Dirichlet kernel,
Dirichlet kernel,
L1-convergence,
modified sums.

##### 252 Blow up in Polynomial Differential Equations

**Authors:**
Rudolf Csikja,
Janos Toth

**Abstract:**

Methods to detect and localize time singularities of polynomial and quasi-polynomial ordinary differential equations are systematically presented and developed. They are applied to examples taken form different fields of applications and they are also compared to better known methods such as those based on the existence of linear first integrals or Lyapunov functions.

**Keywords:**
blow up,
finite escape time,
polynomial ODE,
singularity,
Lotka–Volterra equation,
Painleve analysis,
Ψ-series,
global existence

##### 251 On Generalized New Class of Matrix Polynomial Set

**Authors:**
Ghazi S. Kahmmash

**Abstract:**

New generalization of the new class matrix polynomial set have been obtained. An explicit representation and an expansion of the matrix exponential in a series of these matrix are given for these matrix polynomials.

**Keywords:**
Generating functions,
Recurrences relation and Generalization of the new class matrix polynomial set.

##### 250 Evolutionary Design of Polynomial Controller

**Authors:**
R. Matousek,
S. Lang,
P. Minar,
P. Pivonka

**Abstract:**

**Keywords:**
Evolutionary design,
Genetic algorithms,
PID controller,
Pole placement,
Polynomial controller

##### 249 Discrete Polynomial Moments and Savitzky-Golay Smoothing

**Authors:**
Paul O'Leary,
Matthew Harker

**Abstract:**

**Keywords:**
Gram polynomials,
Savitzky-Golay Smoothing,
Discrete Polynomial Moments

##### 248 Segmentation of Piecewise Polynomial Regression Model by Using Reversible Jump MCMC Algorithm

**Authors:**
Suparman

**Abstract:**

Piecewise polynomial regression model is very flexible model for modeling the data. If the piecewise polynomial regression model is matched against the data, its parameters are not generally known. This paper studies the parameter estimation problem of piecewise polynomial regression model. The method which is used to estimate the parameters of the piecewise polynomial regression model is Bayesian method. Unfortunately, the Bayes estimator cannot be found analytically. Reversible jump MCMC algorithm is proposed to solve this problem. Reversible jump MCMC algorithm generates the Markov chain that converges to the limit distribution of the posterior distribution of piecewise polynomial regression model parameter. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of piecewise polynomial regression model.

**Keywords:**
Piecewise,
Bayesian,
reversible jump MCMC,
segmentation.

##### 247 Fuzzy Fingerprint Vault using Multiple Polynomials

**Authors:**
Daesung Moon,
Woo-Yong Choi,
Kiyoung Moon

**Abstract:**

Fuzzy fingerprint vault is a recently developed cryptographic construct based on the polynomial reconstruction problem to secure critical data with the fingerprint data. However, the previous researches are not applicable to the fingerprint having a few minutiae since they use a fixed degree of the polynomial without considering the number of fingerprint minutiae. To solve this problem, we use an adaptive degree of the polynomial considering the number of minutiae extracted from each user. Also, we apply multiple polynomials to avoid the possible degradation of the security of a simple solution(i.e., using a low-degree polynomial). Based on the experimental results, our method can make the possible attack difficult 2192 times more than using a low-degree polynomial as well as verify the users having a few minutiae.

**Keywords:**
Fuzzy vault,
fingerprint recognition multiple polynomials.

##### 246 Computable Function Representations Using Effective Chebyshev Polynomial

**Authors:**
Mohammed A. Abutheraa,
David Lester

**Abstract:**

We show that Chebyshev Polynomials are a practical representation of computable functions on the computable reals. The paper presents error estimates for common operations and demonstrates that Chebyshev Polynomial methods would be more efficient than Taylor Series methods for evaluation of transcendental functions.

**Keywords:**
Approximation Theory,
Chebyshev Polynomial,
Computable Functions,
Computable Real Arithmetic,
Integration,
Numerical Analysis.

##### 245 Implementation and Analysis of Elliptic Curve Cryptosystems over Polynomial basis and ONB

**Authors:**
Yong-Je Choi,
Moo-Seop Kim,
Hang-Rok Lee,
Ho-Won Kim

**Abstract:**

**Keywords:**
Elliptic Curve Cryptosystem,
Crypto Algorithm,
Polynomial Basis,
Optimal Normal Basis,
Security.

##### 244 A Thought on Exotic Statistical Distributions

**Authors:**
R K Sinha

**Abstract:**

**Keywords:**
Exotic Statistical Distributions,
Kurtosis,
Mixture
Distributions,
Multi-modal

##### 243 A New Approach to Polynomial Neural Networks based on Genetic Algorithm

**Authors:**
S. Farzi

**Abstract:**

**Keywords:**
GMDH,
GPNN,
GA,
PNN.

##### 242 A Deterministic Polynomial-time Algorithm for the Clique Problem and the Equality of P and NP Complexity Classes

**Authors:**
Zohreh O. Akbari

**Abstract:**

**Keywords:**
Clique problem,
Deterministic Polynomial-time
Algorithm,
Equality of P and NP Complexity Classes.

##### 241 Flexure of Cantilever Thick Beams Using Trigonometric Shear Deformation Theory

**Authors:**
Yuwaraj M. Ghugal,
Ajay G. Dahake

**Abstract:**

A trigonometric shear deformation theory for flexure of thick beams, taking into account transverse shear deformation effects, is developed. The number of variables in the present theory is same as that in the first order shear deformation theory. The sinusoidal function is used in displacement field in terms of thickness coordinate to represent the shear deformation effects. The noteworthy feature of this theory is that the transverse shear stresses can be obtained directly from the use of constitutive relations with excellent accuracy, satisfying the shear stress free conditions on the top and bottom surfaces of the beam. Hence, the theory obviates the need of shear correction factor. Governing differential equations and boundary conditions are obtained by using the principle of virtual work. The thick cantilever isotropic beams are considered for the numerical studies to demonstrate the efficiency of the. Results obtained are discussed critically with those of other theories.

**Keywords:**
Trigonometric shear deformation,
thick beam,
flexure,
principle of virtual work,
equilibrium equations,
stress.

##### 240 Numerical Inverse Laplace Transform Using Chebyshev Polynomial

**Authors:**
Vinod Mishra,
Dimple Rani

**Abstract:**

In this paper, numerical approximate Laplace transform inversion algorithm based on Chebyshev polynomial of second kind is developed using odd cosine series. The technique has been tested for three different functions to work efficiently. The illustrations show that the new developed numerical inverse Laplace transform is very much close to the classical analytic inverse Laplace transform.

**Keywords:**
Chebyshev polynomial,
Numerical inverse Laplace transform,
Odd cosine series.

##### 239 Stress Solitary Waves Generated by a Second-Order Polynomial Constitutive Equation

**Authors:**
Tsun-Hui Huang,
Shyue-Cheng Yang,
Chiou-Fen Shieh

**Abstract:**

In this paper, a nonlinear constitutive law and a curve fitting, two relationships between the stress-strain and the shear stress-strain for sandstone material were used to obtain a second-order polynomial constitutive equation. Based on the established polynomial constitutive equations and Newton’s second law, a mathematical model of the non-homogeneous nonlinear wave equation under an external pressure was derived. The external pressure can be assumed as an impulse function to simulate a real earthquake source. A displacement response under nonlinear two-dimensional wave equation was determined by a numerical method and computer-aided software. The results show that a suit pressure in the sandstone generates the phenomenon of stress solitary waves.

**Keywords:**
Polynomial constitutive equation,
solitary.

##### 238 The BGMRES Method for Generalized Sylvester Matrix Equation AXB − X = C and Preconditioning

**Authors:**
Azita Tajaddini,
Ramleh Shamsi

**Abstract:**

**Keywords:**
Linear matrix equation,
Block GMRES,
matrix Krylov
subspace,
polynomial preconditioner.

##### 237 Efficient Alias-free Level Crossing Sampling

**Authors:**
Negar Riazifar,
Nigel G. Stocks

**Abstract:**

This paper proposes strategies in level crossing (LC) sampling and reconstruction that provide alias-free high-fidelity signal reconstruction for speech signals without exponentially increasing sample number with increasing bit-depth. We introduce methods in LC sampling that reduce the sampling rate close to the Nyquist frequency even for large bit-depth. The results indicate that larger variation in the sampling intervals leads to alias-free sampling scheme; this is achieved by either reducing the bit-depth or adding a jitter to the system for high bit-depths. In conjunction with windowing, the signal is reconstructed from the LC samples using an efficient Toeplitz reconstruction algorithm.

**Keywords:**
Alias-free,
level crossing sampling,
spectrum,
trigonometric polynomial.

##### 236 On CR-Structure and F-Structure Satisfying Polynomial Equation

**Authors:**
Manisha Kankarej

**Abstract:**

**Keywords:**
CR-submainfolds,
CR-structure,
Integrability condition & Nijenhuis tensor.

##### 235 New Laguerre-s Type Method for Solving of a Polynomial Equations Systems

**Authors:**
Oleksandr Poliakov,
Yevgen Pashkov,
Marina Kolesova,
Olena Chepenyuk,
Mykhaylo Kalinin,
Vadym Kramar

**Abstract:**

**Keywords:**
Iterative method,
Laguerre's method,
Newton's
method,
polynomial equation,
system of equations

##### 234 Particle Filter Applied to Noisy Synchronization in Polynomial Chaotic Maps

**Authors:**
Moussa Yahia,
Pascal Acco,
Malek Benslama

**Abstract:**

Polynomial maps offer analytical properties used to obtain better performances in the scope of chaos synchronization under noisy channels. This paper presents a new method to simplify equations of the Exact Polynomial Kalman Filter (ExPKF) given in [1]. This faster algorithm is compared to other estimators showing that performances of all considered observers vanish rapidly with the channel noise making application of chaos synchronization intractable. Simulation of ExPKF shows that saturation drawn on the emitter to keep it stable impacts badly performances for low channel noise. Then we propose a particle filter that outperforms all other Kalman structured observers in the case of noisy channels.

**Keywords:**
Chaos synchronization,
Saturation,
Fast ExPKF,
Particlefilter,
Polynomial maps.

##### 233 An Interval Type-2 Dual Fuzzy Polynomial Equations and Ranking Method of Fuzzy Numbers

**Authors:**
Nurhakimah Ab. Rahman,
Lazim Abdullah

**Abstract:**

According to fuzzy arithmetic, dual fuzzy polynomials cannot be replaced by fuzzy polynomials. Hence, the concept of ranking method is used to find real roots of dual fuzzy polynomial equations. Therefore, in this study we want to propose an interval type-2 dual fuzzy polynomial equation (IT2 DFPE). Then, the concept of ranking method also is used to find real roots of IT2 DFPE (if exists). We transform IT2 DFPE to system of crisp IT2 DFPE. This transformation performed with ranking method of fuzzy numbers based on three parameters namely value, ambiguity and fuzziness. At the end, we illustrate our approach by two numerical examples.

**Keywords:**
Dual fuzzy polynomial equations,
Interval type-2,
Ranking method,
Value.